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Learning and Adaptation 
 

George Nagy, Rensselaer Polytechnic Institute 
Troy, NY 

 
 
 

This is a review, from an intuitive rather than a mathematical 
perspective, of the statistical foundations of adaptive 
recognition systems. Key considerations for laying siege to 
adaptive classification are priors, sample size and sampling 
strategy, labels, statistical dependences, and dimensionality. 
The small-sample bias and variance of maximum likelihood, 
maximum a posteriori and Bayes estimators are calculated for 
small concrete cases. Conventional methods are contrasted with 
expectation maximization for estimating the sufficient 
statistics of mixtures in a simple setting. It is argued that 
correlation among features is sometimes unjustly maligned. A 
counterintuitive increase in the error rate when a second 
feature is added is traced to the curse of dimensionality. 
Adaptive classification is presented in the context of both 
parametric and non-parametric (nearest neighbors and neural 
nets) estimation. Some recent theoretical results and not-so 
recent experimental observations on hybrid classification 
(based on both labeled and unlabeled samples) are summarized. 
The role of rejects in adaptive classification is explored. 
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Learning and Adaptation 
 

George Nagy 
 

The five most important features for classifying classification 
problems:  
priors, sample size, labels, independence, dimensionality 
 
Supervised training 
 

Parameter estimation  
 

(bias, variance. sufficiency, consistency) 
Unimodal distributions (Binomial, Normal) 

ML 
MAP 
Bayes  

 
Mixture distributions (finite and exponential) 

Clustering 
Old methods 
EM 

 
Nonparametric classification 

NN or NN? 
 
Unsupervised learning 

 
Tracking: Maude, Robert Lucky's adaptive equalizer 
Nearest Neighbors - dynamic pruning 
A self-correcting classifier (1966, 1992) 
 

Hybrid training 
 

The exponential value of supervised samples (Cover). 
Unsupervised samples cure Hughes' Disease (Landgrebe). 
Chitti Babu strikes again. 

 
Context (move to OCR talk) 
 

Language 
Clustering and language context: cipher substitution 

Style 
Pragma 

 
Aphorisms: 
 

Rejects are where the boundary is. 
Don't waste time on easy discriminations. 
Take advantage of every slap on the wrist. 
If you don't have a small-sample estimation problem, 

you paid for too many samples. 
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Don't let the machine sleep. 
 
Candide's Guide, Baird & Nagy, Autonomous 
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Learning and Adaptation 
 

George Nagy 
Rensselaer Polytechnic Institute  

 
 

Five features for classifying classification problems 
 
Supervised training 

Parameter estimation  
Properties of ML, MAP & Bayes estimators 
Mixture estimation, conventional & EM 
The curse of dimensionality 
Correlated features 
 

Nonparametric classification 
NN or NN? 

 
"Unsupervised" learning 

 
Hybrid training and tracking 

The value of labeled samples 
Experimental observations 
Rejects 

 
Aphorisms 
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Five features for classifying classification problems 
 
 
Priors:   known or must be estimated? 

uniform or disparate? 
number of classes fixed? 

 
 
Sampling:   labeled, unlabeled, distribution? 
    training set representative? 
    training set static or dynamic? 

granularity? 
 
 
Labels:   cost, reliability, specificity, completeness? 
    machine aided? 
    from operator corrections? 
 
 
Independence: symbols (context),  

samples (source, sensor),  
features?  

 
 
Dimensionality: too few or too many? 
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THREE COINS IN THE FOUNTAIN 
 
 

Prior probability: P(θ) = 6θ(1-θ)  [0<θ≤1] 
 
Outcome Χ: 2 Heads, 1 Tail 
 

P(Χ=2H,1T | θ)= 3θ2(1-θ) 
 
 

θθML = m/n = 2/3   = 0.667 (argmaxθ p(Χ|θ)) 
 
 
 
Posterior probability: p(θ|Χ) = 60 θ3(1-θ)2 

 
 

θθMAP =(m+1)/(n+2)= 3/5 = 0.600 (argmaxθ p(θ|Χ)) 

 

θθB  =(m+2)/(n+4)= 4/7  = 0.571 ( Ep(θ|Χ)[θ] ) 

 
 
 
 
⌠1 
 xm-1(1-x)n-1 dx= Γ(m)Γ(n)/Γ(m+n),     Γ(n+1) = n! 
⌡0 
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 P(θ) 
 
 
 
 
 
 
 
 
 
 
 
 0    1.0 θ 
 
 
 
 
 
 P(θ|Χ) 
 
 
 
 
 
 
 
 
 
 
 
 0    1.0 θ 
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The Variance of θθ 
 
m is binomial with parameter θ: 
 

E[m] = nθ   E[m2] = nθ(1-θ) + n2θ2 
 
 
E[θθML]  = E[m/n] = 1/n E[m] = θ 
 
E[θθML

2]  = E[(m/n)2] = 1/n2 E[m2] = 1/n θ(1-θ) + θ2 
 
VAR[θθML] = E[θθML

2] - (E[θθML])
2 = 1/n θ(1-θ)    * 

 
 
 
E[θθB]  = E[(m+2)/(n+4)] = 1/(n+4) (E[m] + 2) = 
(nθ+2)/(n+4) 
 
E[θθB

2]  = E[((m+2)/(n+4))2] = 1/(n+4)2 {E[m2] +4E[m] + 4} 
 

= 1/(n+4)2 {n(n-1)θ2 + 5nθ + 4}  
 
VAR[θθB] = 1/(n+4)2 {n(n-1)θ2 +5nθ+4-(nθ+2)2} 
 
  = n/(n+4) 2 θ(1-θ)      * 
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The Bias of θθ 
 
BIAS[θθ]  = (E[θ] - θ)2 
 
BIAS[θθML]  = (θ - θ)2 = 0 
 
BIAS[θθB]  =((nθ+2)/(n+4)-θ)2=((2-4θ)/(n+4))2 
 
   ∈ [0, (2/(n+4))2] 
 

e.g., when n=3, θ=0.25, then bias=(+0.14)2 
 
 
SUMMARY: 
 
ML estimator: unbiased, higher variance fully reflects 
sample variability. 
 
Bayes and MAP estimators: biased, lower variance 
because they average prior and posterior 
distributions.  
(Beware when P(θB)=0!) Tighter priors decrease 
variance but increase bias. 

 
In adaptation, good priors are usually available, so 
MAP  and Bayes estimators are appropriate. The priors 
determine the weighting of new vs. old samples. 
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High dimensionality inevitably increases 
bias/variance. 
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Consistency and Efficiency 
 
θ is consistent if    P(|θ-θ| ≤ ε)→1 as n→∞. 
 

Practically all estimators are consistent. 
 
An unbiased estimator is efficient if  
it has the smallest possible variance. 
 

Is the Bayes estimator efficient? 
 
It is asymptotically efficient if its deviation from the 
parameter approaches the normal distribution quickest. 
 

Sufficient Statistic 
 
A statistic is sufficient if it has all the necessary information 
necessary to estimate the parameter. 
 
Test: s is a sufficient statistic for θ  
if P(Χ|s) can be written in the form P(Χ|s) = g(s,θ) h(Χ). 
 

for Bernoulli, h(Χ)=1, s=Σx:  
 

P(Χ|s) = g(s, θ) = nCmθm(1-θ)n-m = nCm θm(1-θ)n-Σx 
 
In our example, number of heads is a sufficient statistic  

(because we don't need the order). 



11/7/02      w7\aug97\adapt  George Nagy, RPI Learning and Adaptation  12 

Mixture Distributions 
 
Clustering   Vector Space or Similarity Measure 

(SM→VS via multidimensional scaling, 
 VS→SM via distance function) 

 
Problems: 
choice of metric (no individual covariances) 
local minima 
initialization 
necessary constraints: 
 number of classes or minimum cluster separation  
 maximum cluster diameter 
 minimum/maximum cluster population 

 
Maximum Likelihood (identifiable densities) 
 
ML estimation for a mixture differs from that for a single 
distribution only by the presence of the (unknown) mixture 
coefficients. The number is components is usually assumed 
fixed and known. 
 
According to the model, a component is first selected 
according to the mixture coefficients interpreted as 
probabilities, then a sample is drawn from the component 
distribution. 
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ML by balancing moments of normal densities: 
 

1-D, two components:  
Σxi  = f1(n1, n2, µ1, µ2) 
Σxi

2  = f2(n1, n2, µ1, µ2, σ1, σ2) 
Σxi

3  = f3(n1, n2, µ1, µ2, σ1, σ2) 
Σxi

4 = . . . 
. . . 

Five nonlinear equations that require a  
solution of a ninth-degree polynomial! 
 
ML by direct optimization: 
 
Equations for the parameters can be derived by 
differentiating the log-likelihood wrt each parameter.  
Need to ensure mixture coefficients that are positive and 
sum to 1. E.g., Lagrange multipliers: before differentiating, 
add a term of the form λ(P1 + P2 +.. - 1)  . 
 
For 5 features, 10 classes, and 1000 normally distributed 
samples, we obtain (1+1+15) x 10 = 170 coupled non-
linear equations, each consisting of 1000 ratio terms. 
 
ML by gradient descent: 
 
The equations for the parameters can be rearranged into a 
form suitable for iterative solution (Duda and Hart, p. 200). 
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This formulation is identical to that obtained by 
Expectation Maximization. 



11/7/02      w7\aug97\adapt  George Nagy, RPI Learning and Adaptation  15 

Expectation Maximization 
 
Example 1. Three partitions with unknown parameter r  
   (simplified from Dempster et al.): 
 
 

name   x1   x2   x3 
fraction   0.5  0.25 r  0.75 r - 0.5 
sample population  80     32 

 
Hidden variables:      x1 and x2. 
Sufficient statistic for estimating r:  x1 and x2. 
 
E-Step: Compute the expected value of the hidden 
variables given the current parameter(s). 
 

x1
p = 80 × 0.50 / (0.5 + 0.25 rp)    

 (1) 
x2

p = 80 × 0.25 rp / (0.5 + 0.25 rp)    (2) 
 
M-Step: Find the new parameter(s) from the current value 
of the hidden variables. 
 

X2
p / (x2

p + 32) = 0.25rp+1 / (rp+1 - 0.5)  or  
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rp+1 = 0.5x2
p / (0.75 x2

p - 8)      (3) 
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Iterative solution: 
 
Initial value of r = r0 = 0.7 
 

E1:  x1
0  = 59.25,   x2

0  = 20.75 
M1:  r1  =   1.37 
 
E2:  x1

1  = 47.50,   x2
1  = 32.50 

M2:  r2  =   0.992 
 
E3:  x1

2  = 53.47,   x2
2  = 26.53 

M3:  r3  =   1.115 
 
 
Eventually, rn converges to 1.077 
 
This can also be obtained here in a single step by solving 
the recursion obtained by combining (2) and (3). 
 
  rp+1 = 10rp / (13rp - 4) 
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Example 2. Two-component Gaussian mixture 
 
Model: One of the components is selected according to the 
mixing parameters, then a sample is drawn from 
component.  
 
Mixing parameters P1, P2 known ( ½ , ½); 
variances σ2 equal and known, means unknown. 
 
Two samples (incomplete data): Χ:  {x1 = 0.2, x2 = 0.7}. 
 
Hidden variables:  z1 = (z11, z12), z2 = (z21, z22) 

zi = (0,1) or (1,0), depending on source of sample xi. 
Sufficient statistic:  z1, z2 

 
Complete data: {(x1, z1), (x2, z2)} 
 
Initial estimate of the means: µ1

0 = 0.0, µ2
0 = 1.0 

 
E-step: Determine E[z1, z2] given x1, x2, µ1

0, µ2
0 

 
E[z1, z2] = E[z1], E[z2] = (E[z11,], E[z12]);    (E[z21,], 
E[z22]) 
 
zij is the probability that sample i was from component j 
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M-step: Determine µ1, µ2 given z1, z2 
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First two steps 
E-Step: 
 
E z z p z x p z x

E
ce

ce ce

ce

ce ce

if c

[ , ] ( | ), ( | )

[ ] ,

. ,
.

( . ) /

( . ) / ( . ) /

( . ) /

( . ) / ( . ) /

11
0

12
0

11
0

1 12
0

1

0 2 2

0 2 2 0 2 2

0 2 2

0 2 2 0 2 2

2

1
0 2 2

1
0 2 2

2
0 2 2

2
0 2 2

1
0 2 2

2
0 2 2

010
05

2 0

=

=
+ +

= =
×

− −

− − − −

− −

− − − −
z1

0
µ σ

µ σ µ σ

µ σ

µ σ µ σ

σ
π .

.
.

,
.

( . , . )

[ , ]
.

. .
,

.
. .

( . , . )

10

08187
0 8187 00408

00408
0 8187 00408

0 9525 0 0475

0 0863
0 0863 0 6376

0 6376
0 0863 0 6376

01192 0880821
0

22
0

=
+ +

=

=
+ +

=E z z

 

 

M-Step: 
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The process converges to µ1= 0.2,  µ2 = 0.7 for small σ2,  
and to µ1= µ2 = 0.45 for large σ2. 
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Convergence of EM Algorithm 
 
Convergence to a (local) maximum of the  
Log Likelihood Function is proved by showing that 
it is greater than the log of expectation of the  
Likelihood of the Complete Data. 
(Jensen's Inequality for Convex Functions like the Logarithm:) 

log E [Y] ≥≥ E [log Y] 
L 

 

 
log [z11 p(x1,z11),+z21 p(x2,z21)] ≥ z11 log p(x1,z11)+z21 log 
p(x2,z21) 
 
 
           µ1 

 
 

The upper curve is the log likelihood of the Incomplete 
Data, as a function of µ1. 

The lower curves are the expectations of the Complete 
Data based on the current mixture coefficients. 
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Correlated Features 
 
It is widely believed that statistical dependence among 
the features increases the error rate. Not necessarily: 
 

P(A) = ½, P(B) = ½ 

 

x1 , x2 are binary features, such that  

 

P(x1= 1 | A) = P(x2= 1 | A)  

=  P(x1= 1 | B) = P(x2= 1 | B) = ½ . 

 
 
The Bayes error P* = 0 if  
 
P(x1 = 1, x2= 1 | A) = 1,  P(x1 = 0, x2= 0 | B) = 1 ! 
 
Correlation helps if it is different for each class. 
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The Curse of Dimensionality 
 
In nonparametric classification, sample size must increase 
exponentially with dimensionality. 
 
Even in parameteric classification, the sample size must 
grow polynomially. 
 

The Hughes Phenomenon 
 
Additional dimensions may increase the error rate! The root 
cause is that the parameters are estimated with too few 
samples, therefore the decision rule is suboptimal. 
 
A simple example: 
 
Two classes, P(ω1) = P(ω2) = 0.5; 
 
m=1, m=2 training samples, symmetric feature 
probabilities. 
 

For m=1, S1 ∈∈ ω1 with Prob = ½. 
For m=2, S1 ∈∈ ω1, S2 ∈∈ ω2 

 
Conditional feature probabilities   P*       P1   P2  
P(x1|ω1) = 0.6.     0.40 0.48000 0.4800 
P(x1|ω1) = 0.6,  P(x2|ω1) = 0.60 0.40 0.49000 0.4800 
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P(x1|ω1) = 0.6,  P(x2|ω1) = 0.55 0.40 0.49375 0.4875 
P(x1|ω1) = 0.6,  P(x2|ω1) = 0.50 0.40 0.49500 0.4900 
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1 feature, 2 training samples (S1 ∈∈ ωω1, S2 ∈∈ ωω2) 
 

Training set T1:  S1 = 1, S2 = 0; 
Training set T1:  S1 = 0, S2 = 1; 
Training set T1:  S1 = 1, S2 = 1; 
Training set T1:  S1 = 0, S2 = 0; 
 
P(T1) = 0.36  P(error|T1) = 0.4 
P(T2) = 0.16  P(error|T2) = 0.6 
P(T3) = 0.24  P(error|T3) = 0.5 
P(T4) = 0.24  P(error|T4) = 0.5 

 
P[error] = ΣΣ P(Ti) P(error|Ti)  = 0.48,  

 (Bayes error  = 0.40). 
 
2 features, 2 training samples (S1 ∈∈ ωω 1, S2 ∈∈ ωω 2) 
 

 Case 1 Case 2 Case 3 
 P(x1|ω1)=0.60 P(x1|ω1)=0.60 P(x1|ω1)=0.60 
 P(x2|ω1)=0.60 P(x2|ω1)=0.55 P(x2|ω1)=0.50 
 P(x1|ω2)=0.40 P(x1|ω2)=0.40 P(x1|ω2)=0.40 
 P(x2|ω2)=0.40 P(x2|ω2)=0.45 P(x2|ω2)=0.50 
    
T1 S1=(1,1) S2=(0,0)  
P(T1)  0.1296 0.1089 0.0900 
P(error|T1) 0.4000 0.4250 0.4500 
    
T2 S1=(0,0) S2=(1,1)  
P(T2)  0.0256 0.0324 0.0400 
P(error|T2) 0.6000 0.5940 0.5500 
    
T3 S1=(0,1) S2=(0,1)  
P(T3)  0.0576 0.0594 0.0600 
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P(error|T3) 0.5000 0.5000 0.5000 
    
P[error] 0.4800 0.4875 0.4900 
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Graphical illustration of Hughes phenomenon: 
 
 

      1-D discriminant 
    2-D discriminant 

 
 
 
 
 

 
 

  ω1  (known mean)       ω2 (unknown mean) 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
Adding a useless dimension increases the error if sample size is finite. 

estimated 
mean  
(2-D) 

estimated 
mean 
(1-D) 
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Nonparametric Classification 

 
 
 

Neural networks 
 
Easy to modify to use decision-based reinforcement.  
Batch or sample based? 
 
 
Nearest Neighbors 
 
Use KNN and deport minority voters. Tag contribution of 
each reference sample, then omit long-unused references. 
(Prune and preprocess for speed.) 
 
 
Validation set necessary for all adaptive classifiers. 
 
Nonparametric techniques are easy to program and hard to 
analyze. Small-sample and dimensionality problems are 
hidden. 
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Hybrid Classification 
 
 

On the exponential value of labeled samples 
V. Castelli and T. M. Cover, PRL 16, 105-111, 1995 

 
2 classes, mixture coefficients PA, 1-PA, identifiable 
densities 

Labeled training samples:  X1, X2, … Xm 
Unlabeled training samples:  X'1, X'2, … 
Test sample:     X0 

    
# of labeled 

samples 
# of unlabeled 

samples 
Probability of error 

0 u 0.5 
1 0 2PA(1-PA) (1) 
∞ u P* 
1 ∞ 2P*(1-P*) 
m ∞ P* + e-am 

(1) For (1,0) decision rule is to give X0 the same label as X1. 
 
Error(m,∞∞)  
 

= P[training sample OK] × P[test sample wrong] 
+ P[training sample wrong] × P[test sample OK]  
 
= P* + (1-2P*) × P[training sample wrong] 
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∴ Error(1,∞) = P*+(1-2P*)P* = 2P*(1-P*). 
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       A      B 
 
 
 
 
        X 
Error rate for m training samples: 
 
if class Xi = l, P[training sample wrong]  

= P[ΠPclass(l)P(Xi|class l) < ΠPclass(k)P(Xi)|class k)] 
 
  (e.g., if Xi in A, = PAP(Xi|A) < PBP(Xi|B) ) 
 
Now bring products to one side, take logs, and consider 
each term in the resulting sum, 
 

log[Pclass(l)P(Xi|class l) / Pclass(k)P(Xi)|class k)],  

 

as an iid random variable. Then, for m>>1, "it can be 
shown" 
that P[training sample wrong] 

    ⌠ 
    -m log{2(PAPB)1/2 ⌡ [p(x|A)p(x|B)]1/2}+ o(m) 
 = e  
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Hence the error, with m labeled samples, converges to the 
Bayes error at an exponential rate that depends on the 
overlap (Bhattacharyya distance) between the two 
densities (weighted by the a prioris). 
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MAUDE 
 
B. Gold, Machine Recognition of Hand-Sent Morse 
Code, IRE-IT 17-24, March 1989  
 
Adaptation to running average of the mean of short and 
long spaces after elimination of shortest and longest  
(out of 6) spaces. 
 
Results on  
184 messages, 45,000 characters, 53 operators 

~16% of messages with >6% character error 
 
Causes of error: 
1. duration of marks and spaces 
2. missing and extra marks and spaces (operator error) 
 
Human performance (12 operators): 
~ 1% on English, letter cipher, or number cipher text 
 
Simulation on IBM 704:  
adaptive estimation of variance would reduce pertinent 
character errors three-fold 
 
 
Citation: "… speech recognizers using only the 
waveform of speech are bound to be severely limited," 
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Adaptive Equalization 
 
R.W. Lucky, Techniques for Adaptive Equalization of 
Digital Communication Systems, BSTJ XLV, 2, 255-
286, February 1966 
 
Adjust tap gains of transversal filter to preserve pulse 
waveform and keep eye diagram open 
(assume output symbol recognized correctly) 
 
16-level quantization for 9600 baud digital transmission 
over telephone lines 
 
Typical error rate << 1%, but works well even at 10% 
 
Delayed feedback depending on magnitude of deviation 
from ideal - adaptation time of the order of seconds 
 
Up-down counters to store adaptation weights:  
tap gain adjusted on underflow or overflow. 
 
For binary operation, impossible to find a setting or 
disturbance from which equalizer does not recover 
 
The equalizer is preset with a short sequence of known 
test pulses. Averaged tenfold gain by adaptation over 
preset equalizer. 
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Use of external error control also examined. 
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The Effect of Unlabeled Samples in Reducing the  
Small Sample Size Problem and Mitigating the  

Hughes Phenomenon 
 
B.S. Shahshani & D.A. Landgrebe, IEEE-Trans. 
Geoscience & Remote Sensing 32, 5, 1087-1095, 1994 
 

Data: AVIRIS multispectral (210 band) scanner 
 
Four classes: soil, wheat, soybean, corn 
 
Sample size: ~2500 pixels 
 
Training set: 100 labeled samples/class  (X 10) 
 
Dimensionality: 1-18 bands 
(bands ranked by Bhattacharyya distance) 
 
Classifiers: 1. Gaussian quadratic 2. Minimum distance 
   (ML for labeled, MAP for unlabeled) 
 
Training: 1.   20 labeled samples per class 
   2. 100 labeled samples per class 
   3.   20 labeled +   500 unlabeled samples 
   4.   20 labeled + 1000 unlabeled samples 
 
EM ML estimation with unlabeled samples, using 
estimates based on labeled samples as starting point. 
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Experimental observations (Shashani and Landgrebe): 
 
 
The quadratic classifier yields higher accuracy 
 
The accuracy on test data at first increases, then  
decreases with dimensionality 
 
The decrease is more pronounced for small training set 
 
The decrease occurs earlier for the quadratic classifier 
 
Additional unlabeled training samples reduce the error, 
and inrease the maximum useful dimensionality 
(5.4% at d=7 vs. 3.2% at d=13) 
 
Part of the observed effect is due to MAP classification 
 
Unlabeled samples are particularly useful when labeled 
training set drawn from adjacent pixels 
 
 
(The paper does not state whether multimodal 
classifiers were used for any class) 
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Rejection in adaptation 
 
 P(X,ω) 
     A    B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11/7/02      w7\aug97\adapt  George Nagy, RPI Learning and Adaptation  39 

SUMMARY 
 
Both explicit (parametric classifiers) and implicit 
(nonparametric classifiers) require estimating the 
characteristics of the data from a training set. The single most 
important set of parameters are usually the priors. 
 
Even if the training set is representative, finite sample size 
introduces bias and variance, especially when many 
parameters must be estimated. Multimodal and composite 
(HMM) distributions require mixture estimation techniques. 
 
Correlation among features can help or hinder. Although 
independence assumptions are seldom justified, they are 
preferable to highly biased small-sample estimates of second-
order parameters. 
 
There is no such thing as completely unsupervised learning or 
classification. But the effective sample size can be increased 
by taking advantage of unlabeled samples. 
 
When the training set is not representative, use  
adaptive methods that exploit mostly-correct classification. 
 
Nevertheless, labeled samples are valuable:  
endeavor to obtain more. 
 
Don't waste rejects: they may contain useful information. 
 
Don't ever let the machine rest. 
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