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1 Introduction

Horizontal and vertical rulings (or rules) are prevalent in
bureaucratic forms, tables, schematic diagrams, organization
charts, music scores, and engineering drawings. In some
applications, the configuration of such isothetic rulings can
serve as a signature for a family of similar objects. While the
ruling configuration is generally obvious to a human
observer, extracting it from a bi-level scanned document
and representing it in a format useful for classification
often encounters the following difficulties:

¢ Spurious lines may appear due to alignment of nonrul-
ing document components.

¢ Rulings may disappear because of inadequate spatial or
amplitude quantization.

¢ Copied and scanned images may be subject to arbitrary
translation, rotation, and scaling.

Selectivity for rulings over spurious lines is promoted by
simultaneous extraction of the largest set of mutually parallel
or perpendicular lines. The desirable geometric invariance
can be secured by using ratios of distances between rulings
rather than their locations within the image. The effect of
missing lines can be alleviated by turning the sequence
of ratios into a symbol string and measuring the similarity
of ruling configurations with an edit distance. We have
already demonstrated form classification based on these
notions on a small dataset. The objective of this report is
to provide some analytical support for the method.

In the next section, we review relevant prior work. In
Sec. 3, we derive an approximation to the probability of
error in ruling detection. Section 4 addresses the minimum
number of ratios required to preserve the ruling configura-
tion. Section 5 quantifies some effects of positional noise
due to insufficient foreground pixels and to random-phase
spatial sampling. For the sake of completeness, in Sec. 6,
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we briefly review our earlier experiment on form classifica-
tion based on ruling gap ratios. In Sec. 7, we summarize our
findings and list the remaining obstacles to developing a
truly satisfactory predictive theory of ruling-based form
classification.

2 Prior Work

Line segment recognition has been steadily improved during
the last three decades as part of table interpretation,'™ form
processing,”™ engineering drawing analysis, "> and feature
extraction from natural images.'* Analysis of historical
forms'>'® became popular even as most contemporary forms
migrated to the Web. The Hough transform that we use for
line location has remained one of the leading methods for
line and arc extraction since its rediscovery by Duda and
Hart in the early 1970s."” It does not require edge linking
and is, therefore, often preceded only by edge extraction
with the venerable Prewitt filter'® or other (Sobel,
Roberts)'? 3 x 3 pixel edge filters. The Hough transform was
recently used with parameters similar to ours, but with a
Canny filter, for strong line detection in a more general docu-
ment analysis context.’> We have found neither research
addressing the extraction and quantification of rectilinear
rule structures independently of other document content,
nor prior application of orthogonal line filtering to Hough
lines or skew detection.”!

Our interest in spatial sampling noise was triggered by
peaks in the autocorrelation function corresponding to oppo-
site stroke edges in scanned character images.?? The variation
(noise!) due to repeated scanning was exploited by Zhou and
Lopresti to decrease the optical character recognition (OCR)
error.”> Random-phase sampling noise was systematically
investigated in remote sensing”** and in scanned docu-
ments,”® but pixel jitter is usually modeled as if it were in-
dependent random displacement of sensor elements.”’ The
relationship between spatial and amplitude quantization in
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document scanning for OCR was explored thoroughly by
Barney Smith.?®

Levenshtein introduced the edit distance for error-
correcting codes in 1965.* The optimal Wagner-Fischer algo-
rithm was published a decade later.** Many variations of
the original algorithms have appeared since then.’'* The
role of the edit distance in communications and text process-
ing was augmented by its application to genome sequencing.
Developments relevant to document image analysis include
normalization methods and kernel techniques for embedding
the edit distance in a vector space.*® The public-domain EDIT
DISTANCE WEIGHTED program that we use was posted in
2010 by Schauerte and Fink.*’

The current study was initiated during a phase of the
multilingual automatic document classification and transla-
tion (MADCAT) project®® aiming to categorize a small sub-
set of the collection of Kurdish documents recovered during
the Anfal uprising.**** The Hough transform parameters and
preliminary results on the classification of some degraded
forms were presented at the 2014 SPIE conference on docu-
ment recognition and retrieval*! and some of the analysis at
the 2014 workshop on statistical, structural, and syntactic
pattern recognition.*

3 Ruling Selection

The rules are selected in five simple steps. An example of the
result is shown in Fig. 1.

1. Extract near-horizontal line segments (those within 6,
degrees of the horizontal axis).

2. Extract near-vertical line segments (those within 8,
degrees of the vertical axis).

3. Add 90 deg to the angle of near-horizontal lines.
4. Histogram all angles into N bins.

5. Keep only lines with slope within one-half bin-width
of the centroid of the peak bin.

The 6, and 6, thresholds depend on the maximum
expected skew. We usually set them at 30 deg. After Step 3,
all the lines are “near-vertical.” The number N of histogram
bins is not critical: we use 20 bins of one degree and two
infinite-width bins on either side. The histogram typically
contains 80 to 100 lines, of which 3 to 30 may be horizontal
rulings (~30 for a form with writing lines for every entry),
and 3 to 6 vertical rulings. The rest are “spurious” rulings
engendered by accidental alignment of edge pixels. Let
the total number of true rulings be R, and the number of spu-
rious rulings be S, with § > R. If all R rulings fill into a sin-
gle bin and if none of the other bins contain more than R — 1
spurious rulings, then rule selection succeeds. What is the
probability that the rule selection (and the corresponding
skew determination) fails?.

We assume, optimistically, that the spurious lines are
independently and randomly distributed with uniform slope
probability. Then, the most probable failure configuration is
R spurious rulings falling into some bin other than the true
rulings’ bin, and all the other S — R spurious rules falling
into separate bins, as shown in Fig. 2. There are

(N-1) (]Svj,i)

equally likely configurations. All other failure configurations
are at least O(N) times less probable.

Once the configuration is fixed, the probability of R spu-
rious lines in one bin with each of the other (S — R) lines in a
separate bin is a multinomial. A spurious line falls into any
bin other than the rulings bin with probability 1/(N — 1).
Therefore, a tight lower bound on the selection error is

Fig. 1 Horizontal ruling lines from a skewed and noisy death certificate, extracted by ortho-filtering.
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Fig. 2 Most likely configuration for error in rule selection for N =20, R =6, and S = 12.
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P(false_max) > PeR

00 (52 (i) ()
(3G

As seen from Table 1, PeR for R = 6, S = 12 is over 200
times less than for R = 3, § = 6 (for N = 20 bins). Hence,
the striking advantage of combining the horizontal and ver-
tical lines for ruling selection, especially when rulings are
sparse. The assumption of independent and identically dis-
tributed (i.i.d.) angle distribution of the nonruling lines is,
however, questionable. Furthermore, the number of bins
(N) cannot be arbitrarily increased because the limited num-
ber of pixels constituting a ruling precludes precise estima-
tion of its radial and angular coordinates.

The probability of any specific configuration of S indis-
tinguishable lines in N’ = N — 1 indistinguishable bins can
be exactly computed via the sequence of conditional prob-
abilities of generating a new configuration by adding a line to
an existing configuration. (The usual terminology is balls
into boxes, bins, or urns).

Let PS[MO,/(Q’ M]akl N Mi,k;’ ey MSJ(J denotes the
probability of a histogram with k;, empty bins. k; bins
with 1 line, k, bins with 2 lines, and so on. There are S =
Z,(j X k;) lines altogether. The number of possible configu-
rations, or partitions of S, is given by Sloan A00041 (OEIS)
as 1,1,2,3,5,7, 11, 15... The probabilities of nonzero bin
occupancies, for S from O to 3, are

Po[Myni] =1,

Pi[Moyi_1, My 1] = Po[Mo ] X 1,

(N'—=1)
Py[Mo 12, My 5] = P[Mo i1, M, ] XN
Py[Mo -y, My ] = P[Moyi—_1, M, ] XN

N' =2
P3[Mon_3, M 3] = Po[Mon_o, My 5] X N

2
P3[Moy1—o, My, My, | = Po[Mon—2, M, 5] X
(- 1)

+ Py[My yi_y. My 4] X

P3[Moy_1, M3,] = Py[Moy_1, My,] X%-

The exact probability of skew detection error can be cal-
culated. For R = §, the bound is exact. With S = 6, the
bound underestimates the error for R = 3 by 19.4%, for R =
4 by 7.6%, and for R = 5 by 0.9%. For N > §, the error
decreases as O(R™'), with the constant of proportionality
governed by S.
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Table 1 Dominant term of the probability of false maxima in the angle
histograms. The bold values show the advantage of doubling R and S.

N R S PeR (%) N R S PeR (%)
20 3 3 027701 40 3 3 0.065746
20 3 6 395461 40 3 6 1.122005
20 3 9 661081 40 3 9 3.119688
20 3 12 333205 40 3 12 4.099149
20 6 6  0.00004 40 6 6 1.11E - 06
20 6 9 000242 40 6 9  7.94E - 05
20 6 12 001060 40 6 12 0.000579

An asymptotic approximation*’ of interest in load balanc-
ing of servers without central control and in estimating
linked-list lengths from collisions in hashing states that, for
S = N’, the expected maximum bin occupancy is E[ky.] —
[In N'/In(In N)]; [In 19/ In(In 19)] = 2.73. This suggests
that conflicting configurations with more than three spurious
lines in a bin are unlikely even with S = N'. In contrast to
our bound, this equation offers no way of estimating the
probability of error for R > In N’/ In(In N”). For N’ = 19
and S = 6, the exact conditional probability computation
yields E[k max] = 1.64.

4 Ruling Gap Ratios

If the configuration of rectangular rulings is to be used as a
signature for a family of documents, then it is essential to
circumvent the effects of arbitrary and unknown translation,
rotation, and scaling that may occur while copying and scan-
ning the documents. The perpendicular distance (i.e., the dif-
ference of p-coordinates) between a pair of parallel lines is
invariant under translation and rotation, but not under scal-
ing. However, the ratio of the perpendicular distances
between rulings is invariant under all three transformations.
(It is, in fact, invariant under a generalized affine transforma-
tion, which includes nonisotropic scaling and shear.).

In this section, we consider only one set of parallel lines.
The results apply to both the near-horizontal and the near-
vertical rulings. Information from the two sets of parallel rul-
ings can be combined during the form classification phase.
We make use only of the Hough p-coordinates, which are
estimated from all the edge pixels of the ruling. The length
and lateral position of the rulings often cannot be accurately
determined because they depend only on a few end pixels.

Let p,, Py, pe, and p, be the radial coordinates of four
arbitrarily selected parallel rulings L,, L,, L., and L.
Consider all R(R —1)/2 pairwise distance ratios of the
form (p, top,)/(p.top,). How many of the possible ratios
are required to characterize the disposition of R parallel
rulings?

Let the extracted rulings, sorted according to their p coor-
dinates, be Ly,Ly,...,L;,...,Lg, with py <p;,;. Define
basis ratio y; = (pi12 = piy1)/(Piv1 — pi)- Then, any pair-
wise inter-ruling distance p; — p; can be written in terms
of the first pair of rulings and the basis ratios y; as

Nov/Dec 2014 « Vol. 23(6)
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ps =P =(p2—p1) X711 Xy2 X ..o
XYt (L+y {1 +rial - (T +722)])).

The y; terms on the left account for the rule-to-rule dis-
tances up to p;, and the (1 4 y;) terms on the right for the
inter-rule gaps from p; to p,. Therefore, any pairwise ratio
can be expressed in terms of only the basis ratios as
Ps — Pt

Pu — Pw B
i Xy X o Xy (L+y A1+ vl (1 +7,0)]})
rixXya X Xy (L+p{l + 70l (47,2010

This means that the order and relative location of any set
of rectilinear lines can be captured by two basis-ratio sequen-
ces I'y and I'y. If, for example, the near-horizontal rulings
have p-coordinates [120, 234, 890, 1242, and 1600] and the
vertical rulings [210, 300, 540, and 890], then the corre-
sponding sequences are

Ty = [(890 — 234)/(234 — 120), (1242 — 890)/
(890 — 234), (1600 — 1242)/(1242/890)]
= [5.75.0.54, and 1.02],

Ty = [(540 — 300)/(300 — 210), (890 — 540) /(540 — 300)]
= [2.67.1.46].

For full-page rulings, the edges of the page (if detectable)
can be included to ensure a minimum of three rulings of
either orientation. A form with fewer rulings would not
be much of a form in any case, but the null sequence is
admissible for symbol matching.

5 Noisy p Coordinates

The location of the rulings is subject to at least two kinds of
uncertainty. The first is caused by the limitation of precise
location estimation from a finite number of pixels. The sec-
ond is the inevitable random-phase spatial-sampling noise.
We also observed variability due to the fact that forms
from different print shops, or even from the same printer
but different press runs, may be printed with slightly differ-
ent settings. We have not, however, seen enough instances of
multisource variability to attempt to model it.

5.1 Measurement Error

We compute the effect on the ruling gap ratios of i.i.d.
Gaussian noise on the ruling locations p;. The effect of
this noise on the gap between two rulings is additive. We
assume that the noise on a ruling at p;, is & = N(0, o),
where 0y < p;,1 — p; (i.e., the variability is much less than
the length of the gap). Therefore, the ruling gap in the numer-
ator of a basis ratio can be considered a Gaussian random
variable X = (p;2 + €12) — (piy1 + €41)  distributed
according to N(u,c), where y = p;,» — p;y and 6* = 20}
(the variances of the independent noise variables at the ends
of the gap add). The variable in the denominator of the ratio
is Y= (p;i.1 +¢&1)— (pi +¢), distributed according to
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N(n,0), where n = p;.; —p; because adjacent gaps that
share a ruling perturbed by &;,1, X and Y are correlated.
The distribution of the ratio of two correlated Gaussian
variables is notoriously difficult to calculate because it
requires several numerical integrations. We, therefore, use
the approximation developed by Hinkley that guarantees a
low error for our conditions.** To apply Hinkley’s approxi-
mation, we must first derive the correlation coefficient py y
linking the numerator and the denominator of the basis ratio.

EXY]=E{[(pis2tit2) = (Pisatis)(pivi+is) = (piti)]}
=E[(piy2=Pis1)(Piv1—pi)] — El€i118i11] :G(Zy

_ cov[X.Y]  E[XY]- E[X]E[Y]
Then pxy = std[X]std[Y]  std[X]std[Y]
_mm=chmp L
02 2 ’

because ¢; and ¢; are independent if i # j.
Now let W = X /Y. Then, the approximate CDF, pdf, and
a bound on the approximation are

o= e =9l
Fo0) - )] <o (-2),

where Hinkley’s equations simplify, because the variances of
X and Y are the same, to

a(w) == (w4 2pxy + 1)1/2,

—_ Q=

b(w) = o) [uw — px.y (e +nw +1%)],

1
c=— (U = 2px yun +n%),

B b*(w) — ca®(w)
i) = o 5y —pi,y>a2<w>} |

The error of approximation is the probability that the
denominator is less than zero, which in our case is very
small for values of oy <5 = p;,| —p;. Figure 3 shows
the probability density function f * (w) and the cumulative
probability distribution function F * (w) for values of u = 8,
n =24, and o = 1 and 2, respectively (plotted at 0.05 inter-
vals of w). Further exploration of the parameter space shows
that for a fixed value of (u +7) and of o, the ratio of the
standard deviation to the mean of the ratio is least
when y = 7.

5.2 Random Phase Sampling Error

The precise quantification of gap ratios, like that of all image
features, is also hampered by the random-phase noise
induced by the arbitrary placement of any document with
respect to the scanner’s or camera’s sensor array. This
noise can be reduced, but not eliminated, by increasing
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Fig. 3 Approximate pdfs and CDFs for a noisy gap ratio.
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Fig. 4 Random-phase noise. Here, L; = 4.25. After spatial sampling L, will be either three or four pixels
long, depending on its position relative to the sampling grid.

the spatial sampling rate. Fortunately, the estimation of the
variability of one-dimensional features (Fig. 4) like length is
much simpler than that of two-dimensional features like
area.”

The distances between rule edges are quantized to integer
values by scanning. Consider gaps of length L; and L,
sampled at J-length intervals in Fig. 4. After sampling, L,
will be of length |L,/8] or |L,/6| -1, and L, will be
|L,/8] or |L,/8| — 1. (Gap length is the number of back-
ground pixels minus 1). The ratio can take only one of three
values, with their probabilities given as follows:

Prob(| Ly /3] - 1)/(|L/5]) = Ly mods.

Prob([L1/6] = 1)/(|L2/8] = 1)
=1-(L; modé + L, mod4),

Prob(|L,/8])/(|L2/8) = 1) = L, modsé.

In the worst case, (when, L; modé = L, modé§ = 1/2),
the three possible values occur with probabilities of 0.25,
0.50, and 0.25. If random-phase sampling noise changes
the mapping of any ratio to a symbol (Sec. 6), then identical
rule configurations will result in different symbol strings and,
therefore, in a nonzero edit distance between them. This is
likely only for gaps of a few pixels.

6 Ratio Quantization, Edit Distance, and
Classification

This paper focuses on the analytical developments of Secs. 3,
4, and 5, and it contains no new experimental results. In this
section, we merely review a single experiment that was
already presented in more detail.*'*?

The pairs of sequences of horizontal and vertical ruling
gap ratios of a set of noisy binarized forms were quantized
and mapped into strings of symbols. The forms were then
classified into preset classes by comparing the symbol strings
of unknown forms with the symbols strings of reference
forms from each class.
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6.1 Logarithmic Ratio Quantization

Uniform quantization of the ratios—for edit distance compu-
tation—would map the prevalent near-unity ratios into few
symbols. Logarithmic mapping of gap ratios to string sym-
bols flattens the resulting symbol probability distribution.
Therefore, the gap ratios y are mapped into N bins k of
size increasing away from that of the central bin for unity
ratio:

k=F(r-K.N)

— mind max (logjgy + K)(N —2)
2K

—l—l,l], N}.

The parameters N and K govern the logarithmic bin size.
The domain of the mapping includes two semi-open intervals
for very small and very large ratios (for |log y| > K).

The smallest gaps in a document typically correspond to
the space required to print or write a word or a number. Even
dense forms rarely have more than 30 lines of text; most
forms have fewer than 20. The smallest gaps are likely to
be those from double lines. The largest gap can be no larger
than page height. Gap ratios typically range from 0.1 to 10,
and the smallest significant difference is about 30%. Setting
N =24 and K = 1.3 yields 22 finite bins increasing by 30%
from y = 0.05 to y = 20. The resulting symbol alphabet is
{1, 2, ..., 24}

6.2 Edit Distance

The metric used for classification was the Levenshtein edit
distance. Schauerte’s open-source program accepts arbitrary
weights for the cost of the insertions, deletions, and substi-
tutions necessary to convert one string into another, but lack-
ing enough training data to estimate the optimal weights, we
set them all equal. With more data, substitutions could be
also weighted according to the size difference of the gap
ratios. An example of the edit distances Dy and Dy between
the horizontal and vertical basis ratio sequences (represented
here by alphabetic symbols) of forms #54 and #55 is
shown below:

Nov/Dec 2014 « Vol. 23(6)
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Assigned
1 2 3 4 5 6 7
1 3
2 23 2 1
3 0 2
4 37
5 10
6 6
True 7 4
8
9
10 1 1
11 1
12 20 1] 1
13
14
15

9 10 11 12 13 14 15 ERROR TOTAL
0 3

3 24

6 6

0 37

0 10

0 8

0 4

0 5

5 0 5
11 2 13

3 1 4

8 4 12

1 0 1 1
6 0 6

20 0 20

0 5 2 1 6 1 1

0

1 0 0 0 0 0 0 17 158

Fig. 5 Results from leave-one-out edit-distance-based classification of 158 MADCAT forms.

H54: ‘mdkkllilkkkkkkkkkkkkkkkkklkimks’ V54: ‘mikogog’
H55: ‘jlmgkmjiknhkmjljkkkkljkimjhlllmjh® V55: ‘lhknemoe’

Dy(54.55) =24  Dy(54.55) =6.

The edit distance computation could take missing or spu-
rious rules into account. When a symbol does not match, the
algorithm can check whether combining adjacent gaps
would reduce the edit distance. (A rule missed in one docu-
ment is equivalent to a spurious rule in the other and can be
analogously treated.) This check can be extended, at expo-
nentially growing cost, to several consecutive gaps.

6.3 Classification

The rule detection, logarithmic gap ratio quantization, and
string matching were applied as parts of the MADCAT
project to a set of 158 extremely noisy scanned forms of
15 types. The sizes of the groups ranged from 1 to 37
forms. These filled-out forms contain still sensitive personnel
information collected by Iraqi Government agencies, which
precludes presenting them. The forms were classified by a
nearest neighbor classifier with the edit distance function.
The resulting error rate was 11% (17 errors). Ten errors
are due to groups 3 and 12 (see Figs. 5 and 6). One error
is unavoidable because group 13, with only one member,
has no reference pattern for the nearest neighbor. There
are six confusions between groups 2 and 3 that differ only
by a single ruling. The MATLAB® program runs in 1 s per

Group 4 Group 2

form on a 2 GHz laptop, with 83% of the time taken by the
Hough transform.

7 Summary and Discussion

We explored the extraction and quantitative representation of
rectilinear ruling configurations that might serve as features
in some document image analysis tasks.

We explained, by formulating an approximation for the
probability of error, the exponential increase in the effective-
ness of sparse ruling location that can be achieved by simul-
taneous analysis of the distribution of the angular
coordinates of all quasihorizontal and quasivertical ruling
candidates. The method is simple and direct, yet apparently
seldom utilized.

We proved that the sequence of the N — 2 ratios of the
distances between N consecutive parallel rulings completely
characterizes the ruling configuration. In contrast, the histo-
gram of the size of the ruling gaps or of their ratios fails to
preserve their order.

The proposed basis ratios are least sensitive to measure-
ment noise when their magnitude is near unity. Random-
phase spatial quantization, on the other hand, significantly
perturbs the ratios only when one of the gaps is small com-
pared to the pixel size. The effect of this noise at a given
spatial resolution can be reduced by grayscale or color con-
version instead of binarization.

Since the variable-length sequences of rulings do not
easily fit vector-space classification, we mapped them into
symbol strings. The symmetric logarithmic transformation

Group 3 Group 12

Fig. 6 Models of empty tables provided with the ground truth but not used for classification. There were
no errors on tables with many rulings, like those in Group 4. There were six confusions between Groups 2

and 3, and 4 involving Group 12.
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ensured equal relative quantization error regardless of
ratio size.

A review of an earlier experiment shows only that the pro-
posed processing chain can be readily implemented and that
run time on a PC is fast enough for practical applications.
The sample size was far too small to draw defensible con-
clusions regarding accuracy and generalizability. Except pos-
sibly for historical forms, there are not many examples where
form classification by means of ruling configurations is the
best alternative. Modern forms usually have a prominent
alphanumeric or bar-coded form identifier, and in its absence
OCR will usually reveal preprinted labels that are unique to
each form class.

Predicting the actual error rate would require computing
the joint probability distribution of all the ratios under the
difficult constraint that each ratio is statistically dependent
on the two preceding ratios. One possibility is the generali-
zation of Chow’s expansion.*> One would first have to justify
the i.i.d. assumption of the uniform angular distribution of
the spurious rulings. The prediction will be even more prob-
lematic if the obvious possible improvements (e.g., variable
weights and tracking down missing/extra rulings) in the edit-
distance-based classification are implemented. None of these
are feasible without a much larger labeled sample of ruled
documents.

Although the analysis was prompted by a form-classifi-
cation task, we have received suggestions for its potential
applicability to other image analysis tasks with rectilinear
line configuration, including building, street, and agricultural
field location by remote sensing, conversion of hand-drawn
legacy drawings and diagrams, staff line extraction in cam-
era-based music score interpretation, and information recov-
ery from scanned printed tables.

Acknowledgments

The author is grateful to Dr. Daniel Lopresti (Lehigh
University) for cogent explanations of dynamic program-
ming algorithms, for an introduction to the MADCAT per-
spectives on document interpretation, and for providing
access to the experimental data. He is also indebted to Dr.
Prateek Sarkar (Google) for suggestions on earlier attempts
at analysis.

References

1. O. Hori and D. S. Doermann, “Robust table-form structure analysis
based on box-driven reasoning,” in Proc. 3rd Int. Conf. on
Document Analysis and Recognition (ICDAR’95), IEEE, Montréal,
Canada (1995).

2. K. Itonori, “A table structure recognition based on textblock arrange-
ment and ruled line position,” in Proc. 2nd Int. Conf. on Document
Analysis and Recognition (ICDAR’93), pp. 765-768, IEEE, Tsukuba
Science City, Japan (1993).

3. T. A. Bayer, “Understanding structured text documents by a model
based document analysis system,” in Proc. 2nd Int. Conf. on
Document Analysis and Recognition (ICDAR’93), pp. 448453,
IEEE, Tsukuba Science City, Japan (1993).

4. T. Watanabe et al., “Structure analysis of table-form document on the
basis of the recognition of vertical and horizontal line segments,” in
Proc. Ist Int. Conf. on Document Analysis and Recognition,
pp. 638-646, Association francaise pour la cybernetique economique
et technique (AFCET), Paris (1991).

5. A. Dengel and G. Barth, “ANASTASIL: hybrid knowledge-based sys-
tem for document layout analysis,” in Proc. 11th Int. Joint Conf. on
Artificial intelligence, pp. 1249-1254, Morgan Kaufman Publishers,
Detroit, Michigan (1989).

6. K.-C. Fan, Y.-K. Wang, and M.-L. Chang, “Form document identifica-
tion using line structure based features,” in Proc. 6th Int. Conf. on
Document Analysis and Recognition, ICDAR ‘01, IEEE Computer
Society, Seattle, Washington (2001).

Journal of Electronic Imaging

063011-7

7. T. Kieninger and A. Dengel, “Applying the T-Recs table recognition
system to the business letter domain,” Proc. 6th Int. Conf. on
Document Analysis and Recognition. ICDAR ‘01, pp. 704-708,
IEEE Computer Society, Seattle, Washington (2001).

8. J. C. Handley, “Document recognition,” Chapter 8 in Electronic
Imaging Technology, E. R. Dougherty, Ed., SPIE Press, Bellingham
(1999).

9. A. Dengel, “Towards understandable explanations for document analy-
sis systems,” in 10th IAPR International Workshop on Document
Analysis Systems (DAS), M. Blumenstein, U. Pal, and S. Uchida,
Eds, IEEE Computer Society, Queensland, Australia (2012).

10. A. K. Chhabra, V. Misra, and J. Arias, “Detection of horizontal lines in
noisy run length encoded images: the FAST method,” Lec. Notes
Comput. Sci. 1072, 35-48 (1996).

11. K. Tombre, “Analysis of engineering drawings: State of the art and chal-
lenges,” Lec. Notes Comput. Sci. 1389, 257-264 (1998).

12. Y. Yu, A. Samal, and S. Seth, “A system for recognizing a large class of
engineering drawings,” IEEE Pattern Anal. Mach. Learn. 19(8), 868—
890 (1997).

13. D. Dori and L. Wenyin “Automated CAD conversion with the machine
drawing understanding system: concepts, algorithms, and perfor-
mance,” IEEE Trans. Syst., Man, Cybern. 29(4), 411-416 (1999).

14. H. 1. Koo and N. I. Cho, “Skew estimation of natural images based on a
salient line detector,” J. Electron. Imaging 22(1), 013020 (2013).

15. B. Coiiasnon and L. Pasquer, “A real-world evaluation of a generic
document recognition method applied to a military form of the 19th
century,” in Proc. 6th Int. Conf. on Document Analysis and
Recognition, pp. 779-783, IEEE Computer Society, Seattle,
Washington (2001).

16. B. Coiiasnon, “Recognition of Tables and Forms,” in Handbook of
Document Image Processing and Recognition, D. Doermann and K.
Tombre, Eds., Springer, Berlin (2014).

17. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis,
Wiley, New York (1973).

18. J. M. S. Prewitt, “Object enhancement and extraction,” in Picture
Processing and Psychopictorics, B. S. Lipkin and A. Rosenfeld,
Eds., Academic Press, New York (1970).

19. K. R. Castleman, Digital Image Processing, Prentice Hall , Englewood
Cliffs, New Jersey(1996).

20. M. S. Erkilinc et al., “Text, photo, and line extraction in scanned docu-
ments,” J. Electron. Imaging 21(3), 033006 (2012).

21. A. Amin et al., “Comparative study of skew detection algorithms,”
J. Electron. Imaging 5(4), 443-451 (1996).

22. G. Nagy, “On the spatial autocorrelation function of noise in sampled
typewritten characters,” 1968 IEEE Region III Convention Record,
pp. 7.6.1-7.6.5, New Orleans, Louisiana (1968).

23. J.Zhou and D. Lopresti, “Repeated sampling to improve classifier accu-
racy,” in Proc. IAPR Workshop on Machine Vision Applications,
pp. 346-351, International Association for Pattern Recognition,
Kawasaki, Japan (1994).

24. D. L. Havelock, “Geometric precision in noise-free digital images,”
IEEE Trans. Pattern Anal. Mach. Intell. 11(10), 1065-1075 (1989).

25. D. L. Havelock, “The topology of locales and its effect on position
uncertainty,” IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 380-386
(1991).

26. P. Sarkar et al., “Spatial sampling of printed patterns,” IEEE Trans.
Pattern Anal. Mach. Intell. 20(3), 344-351 (1998).

27. H. S. Baird, “The state of the art in document image degradation
modeling,” in Digital Document Processing, B. B. Chaudhuri, Ed.,
pp. 261-279, Springer, Verlag (2007).

28. E. B. Smith, “Characterization of image degradation caused by scan-
ning,” Pattern Recogn. Lett. 19(13), 1191-1197 (1998).

29. V. I Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” Dokl. Akad. Nauk SSSR 163(4), 845-848 (1965).

30. R. A. Wagner and M. J. Fischer, “The string-to-string correction prob-
lem,” J. ACM 21(1), 168-173 (1974).

31. V. L. Levenshtein, “Universal bounds for codes and designs,” in
Handbook of Coding Theory, V. S. Pless and W. C. Huffman, Eds.,
Elsevier, Amsterdam (1978).

32. P. A. V. Hall and G. R. Dowling, “Approximate string matching,”
ACM Comput. Surv. 12(4), 381-402 (1980).

33. D. Sankoff and J. B. Kruskal, Time Warps, String Edits, and
Macromolecules: ~ The Theory and Practice of Sequence
Comparison, Addison Wesley, Reading, Massachusetts (1983).

34. G. Navarro, “A guided tour to approximate string matching,”
ACM Comput. Surv. 33(1), 31-88 (2001).

35. A. Marzal and E. Vidal, “Computation of normalized edit distance and
applications,” IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 926-932
(1993).

36. M. Neuhaus and H. Bunke, “Edit distance-based kernel functions for
structural pattern classification,” Pattern Recogn. 39, 1852-1863
(2006).

37. B. Schauerte and G. A. Fink, “Focusing computational visual attention
in multi-modal human-robot interaction,” in Proc. 12th Conf. on
Multimodal Interfaces, ICMI, ACM, Beijing, China (2010).

Nov/Dec 2014 « Vol. 23(6)


http://dx.doi.org/10.1007/3-540-61226-2
http://dx.doi.org/10.1007/3-540-61226-2
http://dx.doi.org/10.1007/3-540-64381-8
http://dx.doi.org/10.1109/34.608290
http://dx.doi.org/10.1109/3468.769761
http://dx.doi.org/10.1117/1.JEI.22.1.013020
http://dx.doi.org/10.1117/1.JEI.21.3.033006
http://dx.doi.org/10.1117/12.245770
http://dx.doi.org/10.1109/34.42837
http://dx.doi.org/10.1109/34.88574
http://dx.doi.org/10.1109/34.667892
http://dx.doi.org/10.1109/34.667892
http://dx.doi.org/10.1016/S0167-8655(98)00107-X
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1145/356827.356830
http://dx.doi.org/10.1145/375360.375365
http://dx.doi.org/10.1109/34.232078
http://dx.doi.org/10.1016/j.patcog.2006.04.012

38.

39.

40.

41.

42.

43.

Journal of Electronic Imaging

Nagy: Invariant representation for rectilinear rulings

National Institute of Standards and Technology (NIST) “Multilingual
automatic document classification and translation evaluation
(MADCAT),” (3December2010),  http://www.nist.gov/itl/iad/mig/
madcat.cfm (8 January 2014).

B. P. Montgomery, “The Iraqi secret police files: a documentary record
of the Anfal genocide,” Archivaria 52, 81-82 (2001).

B. P. Montgomery, “Returning evidence to the scene of the crime: why
the Anfal files should be repatriated to Iraqi Kurdistan,” Archivaria 69,
143-171 (2010).

G. Nagy and D. Lopresti, “Form similarity via Levenshtein distance
between ortho-filtered logarithmic ruling-gap ratios,” Proc. SPIE
9021, 902106 (2013).

G. Nagy, “On parallel lines in noisy forms,” Lec. Notes Comput. Sci.
8621, 173-182 (2014).

M. Raab and A. Steger, “Balls into bins — a simple and tight analysis,”
Lec. Notes Comput. Sci. 1518, 159-170 (1998).

063011-8

44. D. V. Hinkley, “On the ratio of two correlated normal random varia-
bles,” Biometrika 56(3), 635-639 (1969).

45. C. K. Chow, “A recognition method using neighbor dependence,” IRE
Trans. Electron. Comput. EC-11, 683-690 (1962).

George Nagy is an emeritus professor of computer engineering at
RPI. He received his BEng and MEng degrees from McGill
University in 1959 and 1960, and his PhD degree on neural networks
from Cornell University in 1962. He is the author of more than 100
journal papers and book chapters, and of a dozen SPIE conference
papers. His current research includes document image processing,
data extraction from web tables, and classification of Chinese callig-
raphy. He is a fellow of the IEEE and of the IAPR.

Nov/Dec 2014 « Vol. 23(6)


http://www.nist.gov/itl/iad/mig/madcat.cfm
http://www.nist.gov/itl/iad/mig/madcat.cfm
http://www.nist.gov/itl/iad/mig/madcat.cfm
http://www.nist.gov/itl/iad/mig/madcat.cfm
http://www.nist.gov/itl/iad/mig/madcat.cfm
http://dx.doi.org/10.1117/12.2041956
http://dx.doi.org/10.1007/978-3-662-44415-3
http://dx.doi.org/10.1007/3-540-49543-6
http://dx.doi.org/10.1093/biomet/56.3.635
http://dx.doi.org/10.1109/TEC.1962.5219431
http://dx.doi.org/10.1109/TEC.1962.5219431

