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Efficiency of Modern Methods

• Methodology
– Generate Gauss-Markov Images
– Compare compression results with 

Rate-Distortion or joint entropy function



Gauss-Markov Images
Variance = 400       Mean = 128

a = 0.95 a = 0.90

Separable;    8-bit precision;
512x512 lower cut from 640x640



Gauss-Markov Images (cont.)

a = 0.50 a = 0.0

Separable;    8-bit precision;
512x512 lower cut from 640x640

Variance = 400       Mean = 128



Theoretical Bounds

Rate-Distortion Function (Gaussian, squared error)
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Comparisons



More Comparisons



Lossless Compression

0.36390.17790.2469

0.31720.08720.2392

0.37620.23120.6652

0.48380.41880.9438

6.36910

5.95480.50

3.97780.90

3.01720.95

Correlation      Joint             SPIHT             CALIC      JP2K
Parameter    Entropy (b/p)

Differences from Entropy (b/p)

* CALIC closest to entropy in all cases
* JP2K beats SPIHT above a = 0.5, but worse otherwise



What Have We Learned?

• Much room for improvement for lossy
compression : 
– > 0.5 bpp for high quality
– 4 to 6 dB at useful bit rates

• Small room for improvement for lossless 
compression - ~0.2 bpp

**Lesson: The best adaptive techniques can 
take you only so far. 



Where to go from here?

• For pure compression, much more potential 
payoff for lossy methods.

• Clearly advantageous to transform to 
independent variables and/or segment to 
stationary entities.
– closes performance to the latter gaps

• Barring advancements in pure compression, 
need to pursue
– better transforms that are adaptive to image features

• Bandelets, curvelets, etc. ?
– better segmentation methods



Technology Advances

• Dramatic increases in processor speeds seem to be 
ending
– Parallelization  by multi-core processor chips is the trend 
– New parallel forms of algorithms for compression likely to 

emerge
• Currently JPEG2000 and JPEG have parallel structure  --- nothing 

new here

• More compact, higher power batteries would expand 
application scenarios for compression

• Miniaturization to quantum limit to be reached in 10 to 15 
years
– Quantum Computers



Future Application Space

• Large images with multiple dimensions
– Examples: 

• 4 dimensions: fMRI, medical ultrasound     view
• Materials micro-structures with many attributes at given grid point.

• Content-based retrieval from large databases
– Internet application needs interactivity for consultation and quantitative 

analysis.
– Need fast search and retrieval and fast scalable decoding for browsing, 

retrieval, and transmission
• Places limits on complexity and memory usage

– Increase in size always seems to outpace gains in speed
• Not likely to close existing performance gaps with simpler techniques that 

utilize less memory.
– Fruitful or fruitless pursuit?

• Contribution is to limit degradation the least possible by being clever



Example: Retrieval from Large Multi-D Images

Click on file name in web site
and left image appears.

Right image appears using
ROI Menu and mouse
Selection of region

Any slice can be viewed by
dropping Frame menu and 
entering number 

In View menu, can select
Full volume and ROI views
In 3-D -- see next slide

167 MB 4 MB compressed 41:1

Communication/Display GUI

Micro-structure



3-D Views
Full volume ROI

Rotation by mouse manipulation



Hyperspectral Images

Codec



Multiple Description Coding

3-D SPIHT
Encoder

3-D SPIHT
Encoder

3-D SPIHT
Encoder

3-D SPIHT
Encoder

Interleaver STTP/ERC-SPIHT Bitstream

S sub-bitstreams are 
interleaved in 
appropriate size units 
(e.g. bits, bytes, 
packets, etc.)
Embedded nature is 
maintained
We can stop 
decoding at any 
compressed file size
May transmit sub-
bitstreams separately 
over MIMO channel
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Grouping Methods

Contiguous Grouping Dispersive Grouping

* 16x16 image with 2 level decomposition, and S=4

o Extensible to larger dimensions
o Compatible with parallel architectures
o Follows natural order of coding for tree-based methods: on-the-fly transmission
o Fits well into W-Z or S-W paradigm



Distributed Source Coding

Encoder Decoder

^
X

X
Y

• X and Y correlated sources
• Y known only at decoder

S-W: Encode X with H(X/Y) bits, Y with H(Y) bits, can achieve     =  
No loss of performance over when Y is known at encoder also, if  statistics 

X given Y are known.

^
X

X

Source Coding with Side Information: Slepian-Wolf 1973, Wyner-Ziv 1976

W-Z:  Lossy coding performance same whether Y is known at both ends 
or only at decoder, if  statistics  of X and Y are jointly Gaussian.

)/( YXHR ≥



Promising Realization

• Encoder of X sends index of coset
(syndrome bits of channel code)

• Decoder uses Y and coset index to 
estimate X. 



Figure courtesy of K. Ramchandran



Figure courtesy of K. Ramchandran



Figure courtesy of K. Ramchandran



DSC Image Compression Scenarios

• Low complexity encoding for image transmission
• Sensor networks

– Multiview coding
• Multiple description coding
• Camera alignment
• Cryptogram compression

None likely to bridge identified performance 
gaps, especially for the usual non-Gaussian 
lossy coding



Quantum Computing
• Quantum computers can solve some math 

problems considerably faster than classical 
computers

• Qbit(.com) – claims 2-10:1 lossless image 
compression at 1.5 Gbits/sec throughput
– with qubit processor?  US 2004/0086038 App.

• Quantum Information Theory
– Well developed; parallels Shannon theory

• Source coding theorem (von Neumann entropy limit)
• R(D) theorem
• S-W and W-Z theorems
• Channel capacity theorem



Quantum Bits and Entanglement
• General state of one qubit (input): α ‘s complex

- said to be entangled
Ex.: photon

• Output is measurement: or
– Orthogonal states can be measured
– Similarly for 2-qubit system- states are entangled

• n-qubit space – 2n dimensional Hilbert Space 
• States can not be copied or cloned.  
• A measurement changes the state: basis of secure key 

distribution
• States can be communicated
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Entropy Example

0Suppose 0 H polarization

Suppose 1 1sin0cos θθψ += Angle     polarizationθ

Von Neumann Entropy S(     ,      ) = 

0 ψ
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Binary entropy function

Two equiprobable photon states:   Shannon entropy = 1 bit

Except for                        ,      S(     ,    ) < 1 2/πθ ±=
2/πθ ±=But, only is detectable !!

Therefore, von Neumann entropy may have no realizable association to information.

0 ψ



Prospect of Lower Compression Limit

• So far, quantum information theory does not give physically 
realizable lower entropy limits 

• Also, the devices and detectors work only in the laboratory or with 
limited capability – polarizers,1-qubit gates, and short shift registers

• Short error-correcting codes, secure key distribution
• Physicists are hard at work to make the devices that form specified 

quantum states
• Physicists have taken the lead at formulating quantum information 

theory, but our community has been roused (e.g., Devetak & Berger, 
“Quantum R-D Theory,” Trans. IT Jun 2002; Rob Calderbank)

• Further reading
– M. A. Nielson, I. L. Chang: Quantum Computation and Quantum 

Information
– N. D. Mermin : Quantum Computer Science: An Introduction 
– J. Audretsch, Ed.: Entangled World: The Fascination of Quantum 

Information and Computation 
– Bennett & Shor, “Quantum Information Theory”, Trans IT, Oct 1998



Conclusion

• Substantial gaps to compression limits still exist
• Trend toward algorithms to handle large, multi-

dimensional images
• Trend to multiple core processors to spur 

development of new parallel processing paradigms
• Open question whether quantum information theory 

and quantum computation will save the day



Thank you!


