
780 IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 10, OCTOBER 2004

Optimal Error Protection for Real-Time Image
and Video Transmission

Masoud Farshchian, Sungdae Cho, and William A. Pearlman

Abstract—In this letter, a novel and computationally inexpensive
analytic mean square error (mse) distortion rate (D-R) estimator
for SPIHT which generates a nearly exact D-R function for
the two- and three-dimensional SPIHT algorithm is presented.
Utilizing our D-R estimate, we employ unequal error protection
and equal error protection in order to minimize the end to end
mse distortion of the transform domain. A major contribution
of this letter is the simple and extremely accurate analytical D-R
model which potentially improves upon pre-existing methodologies
and applications that rely on an accurate and computationally
inexpensive D-R estimate.

Index Terms—Image transmission, source-channel coding,
SPIHT, video transmission, wireless transmission.

I. INTRODUCTION

PROGRESSIVE image and video transmission is prob-
lematic in the presence of noisy channels. Progressive

source coders like Image SPIHT [1] and Video SPIHT [2]
use a variable-length format where the correct decoding of
future bits depends upon the correct transmission of past bits.
Decoding after the first single bit error can increase the ex-
pected distortion at the receiver and the best strategy is to
stop decoding before the first bit error. We assume that the
decoder has the capability to detect all block errors. Let us
denote by the mean square error (mse) distortion per
sample remaining after bits have been correctly decoded.
Due to the progressive nature of the source coder bitstream,
we stop decoding prior to the first decoding failure. Since
all blocks after an erroneous block are corrupted due to their
dependency on the incorrect block, the expected distortion

depends on the location of the first block error. If we
successfully decode all blocks up to and not including block

, the distortion per sample is denoted by . This prob-
ability of first block failure is equal to for and

for , where is

the probability of losing block . So the expected end-to-end
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distortion under a bit budget constraint of equal
sized blocks and a total source rate bits is given by

(1)

The optimization of (1) forms the objective function of the joint
source channel coding scheme analyzed in [3]–[5], [7] amongst
many other papers. The distortion in decoding up to block ,

, depends on the number of bits received for blocks.
Therefore the optimal parity allocation across different blocks
depends greatly on the distortion rate (D-R) characteristics of
the source coder. One method to estimate the D-R curve is to
decode at certain number of points at the receiver and interpo-
late the D-R function. The drawback to such a method is that it
might not be realizable for a real-time application. Furthermore,
such a method is not always accurate because the points that are
decoded may not accurately capture the slope variation to esti-
mate an accurate D-R function.

In [3], Appadwedula et al. used a piecewise exponential
model with different decay parameters. The major benefit of
using such models is that they allow (1) to be solved using
optimization techniques. Their parametric model was proposed
for a class of images. The drawback of such models is that they
are not particularized to a specific image and video sequence.
Charfi et al. [6] proposed a more accurate parametric Weibull
model where the parameters are estimated from the particular
image. In order to fit their D-R estimator to the actual D-R
curve, they required decoding four and sometimes eight exact
points on the actual D-R curve. In this letter, by analyzing the
SPIHT coder and bit plane coders in general, we offer an accu-
rate model for individual image and video coders. Furthermore
by using our D-R estimator, other parametric models can be
fitted more accurately for a particular image or video sequence.
The advantage of our model is that no decoding is required in
order to estimate the D-R function. This makes it well suited
for real-time applications relative to parametric models that
require actual D-R points.

II. D-R PROFILE OF SPIHT

Wheeler [8] analyzed the reduction in distortion for each
received bit. We will expound on that work and then design an
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accurate D-R curve estimator for the SPIHT coder. Recall from
[1] that at each iteration of the SPIHT coder, all coefficients
whose magnitudes are greater than the threshold at that
pass and are less than are considered significant by the
SPIHT coder. All other transformed coefficients which are
not significant are deemed insignificant. Once a significant
coefficient is found, its position and approximate magnitude,
which is about one and half times the threshold level, are
inferred from the significance map by one bit of information
and its sign is coded using one additional bit of information.
So a newly found transformed coefficient at location

found to be significant at a threshold is assigned
a magnitude value of . After a coefficient has been found
to be significant at threshold , then it is put in a special list
for further refinement at each subsequent SPIHT pass. Each
refinement pass effectively halves the region of uncertainty
relative to the previous refinement pass.

Initially, before any decoding, each coefficient of the image
is assumed to be zero. When a coefficient is found to be
significant at , then a sign bit and a significance bit are sent. The
mean of the lowest frequency subband is also zero, because the
image mean is subtracted before coding. Assuming that the co-
efficient is positive and uniformly distributed between 1,
then the expected square error in assuming a zero value for the
coefficient is

(2)

If we reproduce the coefficient then the ex-
pected squared error becomes

(3)

Since the quantization interval reduces by a factor of 2 and the
mse by a factor of 4 at each lower bit plane, then if refinement
bits were received for the coefficient and the coefficient
was found at a significance level , the mse between the the
actual and estimated coefficient value is

(4)

We will keep track of the number of the newly found signifi-
cant bits for each pass of the bit plane coder as well as the total
number of bits per each pass. We assume that the bit plane de-
coding starts at the level . Let us denote by as
the number of sign bits in pass and by the number
of sign bits decoded in pass . Note that is equal to the
number of coefficients found significant at pass . These quanti-
ties are easily generated by the SPIHT coder at virtually no cost
in the computational complexity of the algorithm.

Since SPIHT finds all the coefficients that are significant rel-
ative to a threshold at each pass, then is equivalent
to the number of transformed coefficients whose magnitude is
greater than or equal to and less than . Assuming that
we stopped decoding during the sorting pass of the significance

1For most images, a probability distribution biased toward the smaller values
in the interval would be more accurate, but the uniform distribution proves to be
accurate enough and satisfies the minimax criterion.

TABLE I
ACTUAL AND ESTIMATED D-R POINTS OF SPIHT IMAGES AND VIDEO

AT THE END OF EACH THRESHOLD

level , an approximation for , denoted by is
given by

(5)

, the rate, is a sum of location, sign, and refinement bits.
The first component of (5) takes into account the reduction of
distortion after passes by decoding all the sign bits found
from significance level all the way down to significance level

and is given by (4) per sign bit. The second term is a result
of the number of sign bits decoded at the significance level .
The remaining two terms are the mse given by (2) for not yet
found nonzero coefficients. In order to have for every
obtainable , we need for every threshold level.

We have calculated some of the estimated values for
threshold levels 12 down to 3 ( to ) in Table I for
two popular images, Lena and Goldhill. These results verify that

is a good approximation for the actual in all cases.
We have also used the same approximation for 3-D SPIHT [2]
and Table I lists the same results obtained for the luminance Y
components of two video sequences, Football and Susie. Based
on these results of the model, we propose for a fast computa-
tion of the SPIHT D-R characteristic is a linear interpolation
between the ’s at each pass of the SPIHT algorithm. A
more exact model could have been obtained had we considered
the decrease in distortion due to each refinement bit. But this
would make our model too complex to be suitable for real-time
application.

III. APPLICATION TOWARDS JOINT SOURCE CHANNEL CODING

Using and (1), we have solved for the optimal un-
equal error protection using a gradient based algorithm. The
error correction code is Reed Solomon (RS) [9] (255, ), blocks
of size 255 bytes, where the number of information symbols
varies per block. Assuming independent symbol errors, where
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Fig. 1. EEP versus UEP for Lenna at transmission rate of .1089 bpp.

TABLE II
PSNR FOR AVERAGE MSE FOR LENA AND GOLDHILL IMAGES OVER

A MEMORYLESS BSC WITH BER 0.01

TABLE III
PSNR FOR AVERAGE MSE FOR SUSIE SEQUENCE OVER A MEMORYLESS

BSC WITH BER 0.01 USING 3-D SPIHT

a symbol is a byte, and 2 parity bytes for block , the number
of symbol errors is binomially distributed and the block’s error
probability is equal to the probability of more than byte errors.

We have assumed that we are operating over a binary sym-
metric channel with a cross-over probability of 0.01. We have
solved the algorithm for different transmission rate constraints
from 0.1089 bpp with 14 RS blocks to 0.755 bpp with 97 RS
blocks. In Fig. 1, we have plotted in the transform-domain peak
signal-to-noise ratio (PSNR) based on the expected mse given
by (1) for the UEP and EEP case. At the optimal tradeoff point

between the source rate and the channel rate, the UEP perfor-
mance at the transmission rate of 0.1089 bpp (bits per pixel)
is 0.17 dB better than the best value obtained using EEP. Only
when the average error correction capability per block is con-
strained, then UEP yields a significant improvement over EEP.
Fig. 1 illustrates that when the source rate and channel rate are
fixed and only the parity allocation per block is allowed to vary,
UEP allows for graceful degradation when the average number
of parity bits per block is reduced. In Tables II and III, we have
listed the PSNR based on the expected mse for the optimal UEP
and the optimal EEP for the Lena and Goldhill images and Susie
image sequence at various rates. In these two tables the entries
UEP and EEP signify the optimal UEP and EEP when the exact
D-R function is used and the entries UEP- and EEP-
signify the optimal parity allocation achieved via (5) and subse-
quently then applied to (1) with the estimated D-R curve. Note
that there is no more than 0.01 dB difference between PSNRs of
the exact and estimated functions. Furthermore, the max-
imum difference between the optimal UEP and the optimal EEP
is 0.24 dB and the minimum difference is .03 dB. We conclude
that is as good as the estimated in solving for the
optimal parity allocation and that optimal EEP attains almost as
good performance as the optimal UEP.

Using our simple D-R estimator, we can always obtain the
optimal EEP at any transmission rate. Chande and Farvardin [7]
used rate-compatible convolutional codes. They noticed that for
some transmission rates, one of their EEP schemes, which may
not necessarily be the optimal EEP, has a small performance loss
relative to the optimal UEP. Our results not only confirm this
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fact, but our method provides the optimal EEP at every trans-
mission rate. All we have to do is to evaluate (1) via (5) at sev-
eral equal code rates and get the minimum value.

Despite the slight performance loss, the optimal EEP has
some advantages over the optimal UEP. First, it does not require
any extra header information pertaining to the D-R estimation
for the receiver. For the optimal UEP, there exist two options
for the receiver to have the necessary header information.
Option one is to code and transmit the parity allocation per
block. This can potentially be a large amount of information
at high transmission rates. Option two entails sending the side
information that is needed to calculate at the receiver.
This is the number of total bits and sign bits at the end of each
SPIHT pass. Considering that without the header information
the decoding of the image can not correctly occur, the header
information must be extremely well protected. On the other
hand, for the optimal EEP the receiver just needs to know a
single number that achieves the optimal EEP for a large group
of blocks. The second advantage of the optimal EEP is that it
does not require optimization techniques like those that employ
gradient-based methods or dynamic programming to obtain
the optimal or near optimal UEP. For real-time applications,
the time delay to run such programs for every image or video
sequence may be intolerable. For systems with power con-
straints like mobile phones, the use of an optimization program
for every image or image sequences could potentially be an
obstacle for the system designer. Finally, the optimal EEP is
simpler to implement since the code rate is the same for each
block over a large group of blocks whereas for an UEP scheme
the parity per each block may vary.

IV. CONCLUSION AND DISCUSSION

We have introduced a new method to estimate the D-R
characteristics of image and video SPIHT accurately at a very
small computational cost. Our method, which is particularized
for individual image and image sequences does not require
any decoding at the receiver in order to estimate the D-R.
Although the source-coding algorithm used is SPIHT, the
D-R estimation method is easily generalizable to any modern
progressive coder that employs progressive bit-plane coding.

The match between the estimated D-R function and the actual
D-R function for both 2-D and 3-D SPIHT verifies that our
estimate is an excellent approximation. For the optimal UEP
we used a gradient based method to solve for the optimal parity
allocation. For the EEP case, we did not need an optimization
technique, and evaluating (1) at several points was sufficient
to obtain the optimal EEP. The new accurate D-R estimation
proposed in this letter can bridge the gap between theory and
actual real-time implementation of joint source channel coding
for image and video transmission systems. Finally, another
major result is that the optimum UEP is only slightly superior
to the optimum EEP. It was also mentioned that the optimum
EEP offers some substantial practical advantages for real-time
applications over the optimum UEP. The major advantages
are simpler implementation, a significantly smaller header
information and independence from any type of optimization
procedure as a consequence of our fast D-R estimation.
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