IEEE TRANSACTIONS ON IMAGE PROCESSING
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Abstract— In this paper, we present a two-stage near-lossless
compression scheme. It belongs to the class of “lossy plus residual
coding” and consists of a wavelet-based lossy layer followed by
arithmetic coding of the quantized residual to guarantee a given
L°° error bound in the pixel domain. We focus on the selection of
the optimum bit rate for the lossy layer to achieve the minimum
total bit rate. Unlike other similar lossy plus lossless approaches
using a wavelet-based lossy layer, the proposed method does not
require iteration of decoding and IDWT (Inverse Discrete Wavelet
Transform) in succession to locate the optimum bit rate. We
propose a simple method to estimate the optimal bit rate, with a
theoretical justification based on the critical rate argument from
the rate-distortion theory and the independence of the residual
error.

EDICS Category: COD-OTHR, COD-LSSI, MOD-SRCE

I. INTRODUCTION

Image compression techniques are usually classified into
two categories—Ilossy and lossless. The former achieves
high compression ratios by virtue of various strategies
effectively retaining visually relevant information, while
the latter achieves rather modest compression ratios as a
result of conservatively maintaining all the information. In
some applications such as medical and scientific imaging,
lossless compression is traditionally used for fear of losing
critical information. It is often argued that loss of seemingly
minor details subject to a subsequent medical diagnosis
or scientific postprocessing can lead to significant legal
liabilities or incorrect diagnoses. On the other hand, many in
the medical image compression community argue that lossy
compression of medical images is necessary and helpful in
the long run [6]. They argue that technology itself must be
considered because the overwhelming quantity of medical
data requires the remote storage of hard-copy films, which
frequently results in loss or damage and always requires
significant time to locate and transfer. Thus, one may well
argue that, rather than thinking in terms of the dichotomy
between lossless and lossy, we must seek out alternative ways
to effectively compromise the conflicting requirements. In
the face of this reality, more and more users in medical and
scientific communities are accepting “near-lossless” methods
as a means of trading off between compression ratios and
distortion so that higher compression ratios can be achieved
with small enough distortion to ensure sufficient accuracy for
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specific purposes.

There are many excellent wavelet-based lossy image com-
pression schemes under L2 norm in the literature [1], [3],
[14], [15], [16]. However, none of these coders which are
L? approximation schemes can offer a tight bound on the
maximum reconstruction error of each pixel due to the global
nature of the L2 norm which averages the reconstruction error
over the entire image. High enough PSNR may mean that
the reconstructed image is visually indistinguishable from the
original. But for many applications, high image fidelity means
more than satisfying the eyes, as discussed above. Specifying
how much and what type of “near-lossless” distortion can
be allowed for a specific purpose is a largely open problem
and varies from application to application. The most popular
definition of “near-losslessness” is that no pixel is changed
in magnitude by more than § gray levels compared with
the original, where ¢ is a nonnegative integer indicating the
error tolerance. Let us denote an N, x NV, gray scale image
by a two-dimensional array I(z,y) of integers, where 0 <
x < Nyand 0 < y < N,, and a compressed version (an
approximation) of it by f(amy). Then the purpose of near-
lossless compression is to obtain an I(x,y) such that the
following relation is guaranteed.

max

0<z<N,,0<y<N,
where ¢ is the error tolerance. We consider a near-lossless
coding problem with a two-stage coder [7], where the amount
of distortion, as defined by (1), is guaranteed quantitatively.
The first stage consists of a wavelet-based progressive lossy
coder such as SPIHT or JPEG-2000. For the second stage,
we use an arithmetic coder to encode the residual.

Since it is difficult to derive a meaningful relation between
distortions in the wavelet domain and in the pixel domain in
the L°° error sense, pixel domain techniques such as predictive
coding have been the most popular choice in practice [11],
[13]. Furthermore, since prediction-based coders are very
competitive in lossless and high bit-rate coding, it is expected
to be so in many near-lossless coding scenarios, when ¢ is
small (typically 1 or 2). Unfortunately, this is no longer true
as d gets larger since the quality of prediction deteriorates as
will be discussed in Section 11-A. Also, predictive coders do
not offer the advantage of progressive transmission as with
wavelet-based coders. Thus it is highly desirable to combine
the advantages of both worlds to provide the convenience of
embedded bit-stream along with the guaranteed maximum
distortion in the L°° sense in the pixel domain. Indeed, there
have been various attempts at achieving such a goal in the
near-lossless/lossless coding problem. In [7], the authors



compare various near-lossless schemes with a focus on the
wavelet-based two-stage scheme. A similar approach is taken
in [9] with a focus on L°° error scalability. Marpe et al. [8]
also propose to use a two-stage wavelet-packet based approach
to lossy/lossless coding. However, none of the aforementioned
works addresses the problem of bit rate assignment between
the two encoding stages except through exhaustive search by
repeatedly encoding the residuals generated by subtracting
lossy reconstruction images at various lossy layer coding
rates from the original.

In this paper, we elaborate on the choice of efficient bit rate
assignment for the wavelet-based first-stage lossy-layer coder
in the two-stage near-lossless setting. It does not directly rely
on any analytical model for the source, yet works reasonably
well for most real sources. In Section II, we give a review
of relevant approaches proposed in the literature. Section IlI
describes the proposed near-lossless coding method, followed
by discussions in Section IV on some key observations un-
derlying our proposed approach. Then we proceed to show
experimental results in Section VI and conclude the paper in
Section VII.

Il. REVIEW OF LITERATURE

In this section, we provide an overview of relevant litera-
tures in near-lossless compression.

A. Predictive-Coding Based Approach

The early work of Chen and Ramabadran [5] makes use
of differential pulse code modulation (DPCM) and a uniform
scalar quantizer to ensure the maximum error of +1. Ke
and Marcellin [4] generalized it to any discrete L error of
+0. The authors used a DPCM coding scheme incorporat-
ing entropy-minimization of the quantized prediction errors.
Figure 1 shows a schematic diagram of a DPCM coder. The
residual error e is obtained from the predicted image I as :

e=1-1, 2

and quantized to é providing a near-lossless reconstruction
image I:

I=1I+e. (3)
Thus, we have
-1 I-1-¢
e—é. 4

In other words, the reconstruction error is equal to the
quantization error introduced by the quantizer in the feedback
loop. We would like to mention two things. One is that it is
trivial to upper bound the maximum reconstruction error in
the framework of DPCM as obvious from (4). The other is
that as the maximum error 6 becomes larger, the performance
of the DPCM-based near-lossless scheme will, in general,
deteriorate since a larger & means a coarser quantization
which will lead to degraded predictor performance.
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On the other hand, Wu et al. [11] proposed the near-lossless
CALIC (Context-based, Adaptive Lossless-Image Codec)
which could support L°° error-constrained compression. They
extended their state-of-the-art nonlinear-predictive lossless
coding scheme to near-lossless cases and achieved a very
competitive bit rate performance given an L°° bound. They
even incorporated a bias-cancellation technique to compensate
for the degraded prediction with a large value of 4.

Finally, we have to mention JPEG-LS [13], the new
ISO/ITU standard for lossless and near-lossless compression
of continuous-tone images. It is based on the LOCO-I
algorithm developed at HP Labs and has low computational
complexity and memory requirements. It also uses context-
based entropy coding (Golomb coding) of the quantized
prediction residuals. It shows a competitive performance with
other near-lossless coders especially at very high bit rates
corresponding to small §’s.

However, the aforementioned predictive coding techniques
are non-scalable. Thus, in many practical scenarios where
progressive reconstruction of images is regarded as necessary,
they are of limited utility.

B. Wavelet Based Approach

Since there is no simple relationship between the
quantization error in the wavelet domain and the L error
in the pixel domain, it is generally presumptuous to expect
that an L2-oriented wavelet coder will also perform well in
terms of the L°° error. In fact, there is a rather complicated
relationship between the quantization step-size for the
wavelet coefficients and the bound on L°° error in the pixel
domain [10], [12]. However, it is a very conservative one. For
example, choosing the quantization step-size for the wavelet
coefficient as predicted by the formula targeting the L°°
error of 3 would usually result in the L error of 1 or 2. In
other words, it leads to a significant “over-encoding”— use
of unnecessarily high bit rate — for a given maximum error.

We will discuss three approaches to L°° error-constrained
compression based on wavelet coders. The first approach
centers on reducing the aforementioned conservatism in
the derived relationship between quantization errors in the
two domains. Karry et al. [10] proposed a filterbank-based
image coding technique where at least a given percentage
of the reconstruction errors are below the required L°°
error. Their algorithm is based on the argument that the
reconstruction error distribution resulting from encoding the
wavelet coefficients tends to behave as a Gaussian. Alecu et
al. [12] also relied on similar assumptions and proposed a
lifting-based implementation to realize an L°° error scalable
wavelet coder. However, judging from the experimental
results they show in the papers, both of these approaches still
tend to highly “over-encode” to achieve a certain L°° error
bound.

Next, a very simple way to attaining near-lossless compres-
sion, especially with a small ¢, is that of prequantization [7].
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Fig. 1. Block diagram of a DPCM coder

At the encoder, the quantization index is generated as follows

for each pixel:
x+9
I= L25 + 7] ®)

where x is a pixel value and |-| denotes the integer part of
the argument. At the decoder, the pixel value is reconstructed
as:

F=1x(26+1) (6)

In this scheme, the quantization indices are losslessly
compressed using an integer-to-integer wavelet coding
scheme such as SPIHT with S+P filters [2] and JPEG-2000
with integer filters [17]. Obviously, it will lead to an embedded
bitstream which incrementally refines in the L? sense up to
the lossless reconstruction of the prequantized image. Two
problems with this method can be pointed out. One is that, as
with the predictive coding schemes, its performance degrades
rapidly as § becomes larger [7]. The other is that use of
an integer wavelet usually implies somewhat compromised
PSNR performance at lossy bit rates [19], [20], [21].

Finally, another way to reach the goal of near-lossless
compression via wavelet is based on the so-called “lossy-plus-
lossless™ approach [7], [8], [9]. It is composed of a wavelet-
based lossy coder in the first stage followed by a residual
encoder in the second stage. In this approach, one usually
quantizes the residual layer with a step size of 26 and encode
the quantization indices losslessly [7], [8]. Indeed, this is the
one we chose to follow in this paper. In [7], Ansari et al.
compare various near-lossless compression schemes with a
special attention to wavelet-based schemes. Their work makes
use of the lossy reconstruction for context-based entropy
coding of the quantized residual layer. It was observed that
a too low or high lossy layer bit rate leads to non-minimal
total bit rate, suggesting the existence of optimal lossy rate.
However, they had to iterate encoding at various lossy bit rates
in order to find such an optimal lossy bit rate, because the
bit rate of the context-based entropy coding of the residual
could be, in general, known only after the actual coding on the
pixel-domain residual is performed. Marpe et al. [8] proposed
to use different wavelet-packets for the first or second stage
in order to better fit the characteristics of the source or the
residual to be compressed. Their method needs an exhaustive
search for the best wavelet-packet basis for the lossy or the
residual layer. Besides, it was limited only to lossless cases and

\/

"] decoder

Predictor

its potential effectiveness in a near-lossless scenario remains
to be seen. Certainly, all of the above-mentioned schemes
may be useful when users specify the lossy layer encoding
rate up to which they want to have a progressive (in L2
error sense) bitstream and later want to receive the residual
layer with as little bit rate as possible utilizing the correlation
between the residual and the lossy layer (scenario ). However,
there are situations where users have no a priori idea of an
appropriate bit rate for the lossy layer. All that they need
might be a reasonably good scalable (in L? error sense) lossy
reconstruction, with an optional near-lossless residual layer
with the minimum total bit rate (scenario 11). The proposed
scheme is the only one in the literature that attempts to
meet the need of scenario Il efficiently, as well as being a
computationally very economical alternative with comparable
performance to the above-mentioned schemes.

I11. PROPOSED METHOD
A. Structure of the Two-Stage Near-Lossless Coder

Figure 2 shows a schematic block diagram of the two-stage
near-lossless coder used in this work. In the figure, we assume
any (bi-)orthogonal wavelet encoder based on successive bit-
plane encoding. Let 7 and I represent the original image and
the lossy reconstruction, respectively. At the encoder, the lossy
reconstruction is subtracted from the original input image to
form a residual e. It is readily confirmed from the figure that
the following relations hold:

I =

I =

I+e (7)
I+eé (8)
where I is the near-lossless reconstruction and ¢é is the
quantized residual. Therefore, it follows that |le — é|| < 4 is

equivalent to || — I||lo < 4 and the residual e is uniformly
quantized as follows to guarantee the maximum error no larger

than 4: s
eu={ ] 20 ©
LWJ , e<0

where |-] denotes the integer part of the argument. The
generated quantization index é;4 is then losslessly encoded by
a simple arithmetic coder without incorporating any context
model. Hence, I., is transmitted as the lossy layer and
losslessly coded quantization index, é;q—.n, IS Sent as the
residual layer. At the decoder, we decode é;4_.,, by arithmetic



decoding to yield é;4 followed by a dequantizer defined as
follows in order to guarantee ||e — é||oo < 4.

€= (20+1)éiq (10)
By adding the lossy reconstruction / and the dequantized
residual €, we obtain the final near-lossless reconstruction 7
which guarantees |1 — I||o < 4.

As already mentioned in Section II, in a two-stage near-
lossless coding scheme, efficient encoding of the given quan-
tization indices could be performed, for example, by building
an efficient context model exploiting the correlation between
the lossy reconstruction and the quantized residual indices [7],
[9] or performing a search for a wavelet packet basis for the
residual [8]. However, if we want the total (lossy plus residual)
bit rate to be minimized for any given 9, then such approaches
will not achieve this goal without exhaustive iteration with
various lossy reconstruction bit rates. The method to be
presented is the only one that determines this optimal first
stage lossy rate during encoding without exhaustive iteration.

B. Critical Rate in Source Coding

Figure 3 shows the central idea of our method to determine
the optimal first-stage bit rate. It is well-known from rate-
distortion theory that when the bit rate (R) for the lossy
reconstruction (I) becomes larger than the “critical rate’ (R.),
the so-called ‘backward test-channel’ model holds and the
encoding residual of a source becomes i.i.d. Gaussian [22],
[24] under the MSE (mean squared error) distortion measure.
Stated in a different way, when the encoding MSE distortion
becomes smaller than the ‘critical distortion (D.)’ for a
given source, the source can be represented as a sum of two
independent terms, one of which being an i.i.d. Gaussian noise,
thereby rendering the sub-critical distortion-rate function to
coincide with the Shannon Lower Bound (SLB). Now note
that the wavelet domain residuals can be regarded as the
wavelet transform of the pixel domain residual. Since the pixel
domain encoding residual is i.i.d. when the lossy rate is above
R, wavelet transforming it does not change its first order
entropy [28]. This means that the first-order entropy H;(Y")
of the wavelet-domain residual and that of its inverse, i.e. the
pixel-domain residual’s entropy H;(X) are equal beyond R..
Above this critical rate R.., the i.i.d. residual lacks the structure
that a good lossy encoder (e.g., SPIHT) can take advantage
of, so the coding efficiency of such a coder tends to become
at most as good as and usually worse than that of first-order
entropy coding. Thus, if we assume the use of a first-order
entropy coder for the pixel-domain residual as was described
in Section I11-A, the total bit rate curve will have a lossy layer
bit rate or a small flat region of bit rates where it attains its
minimum.

For example, Figure 4(a) compares, with the Lena image,
the first-order entropies H, (X) (bit rate of an actual first-order
arithmetic coder for the pixel-domain residual X) and H,(Y")
(the first-order entropy of the corresponding wavelet-domain
residual Y calculated by the Algorithm 1 to be described in
Section V) of the residuals in both domains as well as the
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IDWT
Y: Encoding residual X: Encoding residual
represented in represented in
the wavelet-domain the pixel-domain
DWT
H;(Y) = Hi(X)

with equality when X is white
(i.e.when R=R,)

Fig. 3. First-order entropies in the two domains

corresponding total bit rates obtained by adding the lossy layer
bit rate R on each of them. When R is below R. ~ 0.61 bpp,
the actual total bit rate curve (H;(X) + R) moves downward
as R increases since the use of SPIHT is more efficient than
switching to a first-order pixel-domain residual coder in those
bit rate regions due to the remaining memory in the source.
However, as R approaches R., it reaches its minimum (or
minima) and starts to increase when SPIHT becomes less
efficient than the first-order entropy coder beyond R.. Now, it
is important to realize that it is also beyond this critical rate
R, that the residual rates (i.e. H1(X) and H1(Y)) as well
as the corresponding total bit rates in both domains start to
coincide. In other words, the two total bit rate curves (i.e.
‘actual’ and ‘estimate”) as illustrated in Figure 4(a) start to
coincide and move upward at the optimal lossy bit rate —
ideally R.. This phenomenon forms the basis of our method
of identifying the optimal lossy rate point and, interestingly,
holds similarly when we quantize the residual according to (9)
for a non-zero L°° error §. In the sequel, we will refer to the
critical lossy bit rate either as R. or R. for lossless (§=0) or
near-lossless (6 > 0) coding, respectively.

Finally, observe that our method can be seen as a way of
finding out the ‘critical rate’ for practical sources. Although
the notion of SLB has been proved to be useful and applicable
to quite a general class of sources and problem settings [25],
[26], [27], finding out the “critical rate (R.)’ of a practical
encoder achieving the ‘critical distortion (D.)’ for a given
practical source has been somewhat elusive. In this regard,
our observations underlying the proposed method may shed
some light from a practical viewpoint.

IV. ANALYSIS OF THE KEY OBSERVATIONS

In this section, an analysis is presented of the convergence
phenomena regarding the probability distribution of encoding
residuals in both the wavelet and the pixel domains. This
will provide us with an ‘under-the-hood’ understanding of the
key observations made in the previous section as well as a
theoretical ground for the algorithm we propose in the next
section.

A. Encoding Residual of Wavelet Coders

It is well-known that wavelet coefficients are well-modelled
by a Generalized Gaussian Distribution (GGD) [29]. Since
large coefficients are encoded first in typical wavelet coders,
it is expected that the distribution of the encoding residual in
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the wavelet domain will still fit well into a GGD (usually with
a shorter tail than the distribution of the wavelet coefficients
itself). Indeed, it was observed through numerous experiments
that the residual distributions both in the pixel and the wavelet
domains could be reasonably well-modelled by GGD’s.

A GGD f(«) for a random variable X is defined as follows:

f(x) = e, (11)
_ b _ I'(3/v .
where a = 5y b = 2 % I'() is the Gamma

function defined as I'(z) = [~ t*~'e~'dt, v is the shape
parameter and o is the standard deviation of the source
X. Thus a GGD is completely specified by o and v. Here
the shape parameter v can be estimated using the following
equation [29].

v=G"(n),

where G(z) = L) n= EUXD js a normalized

T(1/2)T(3/x) o
mean absolute value. Here, v = 1 and v = 2 correspond
to Laplacian and Gaussian distributions, respectively. Also
note that a Gaussian attains the maximum differential entropy
among all special cases of GGD’s given a variance. In general,
as v becomes large, it approaches the uniform distribution,
while it becomes a sharply-peaked distribution as v becomes
small.

(12)

B. Convergence of Residual Distributions

Recall from Section I11-B that the first-order entropies of the
encoding residuals in both the pixel and the wavelet domains
become the same when the encoding rate of the lossy layer
(R) is above a certain “critical’ bit rate R.. Now, notice from
Figure 5(a) that, given a variance, the shape parameter (v)
of a GGD is related to its first-order entropy in a one-to-
one manner when c is over the range of 0 to 2, which could
cover practically all the possible shape parameter values for
the encoding residual distributions in our experiments. This
implies the shape parameters of the residuals in both domains
will actually converge when R is above R. ~ 0.61 bpp,
assuming the variances are the same in both domains. Indeed,
when we use the 9/7 biorthogonal filter for the SPIHT as a
first-stage encoder, the variances of the residuals in the two
domains are not exactly the same, but they are close enough to
be regarded as the same, as illustrated in Figure 4(b) for Lena
(see also [18] for a relevant discussion). Now, since a GGD is
completely specified by its variance o2 and shape parameter v,
it follows from the convergence of ¢ that the encoding residuals
in both domains converge in probability distribution when
the lossy layer encoding rate R is above R.. Also observe
that, as the function G(-) in (12) relating the shape parameter
v and the ratio n (the normalized mean absolute value) is
one-to-one as shown in Figure 5(b), the values of » in both
domains should also approach each other, as should the mean
absolute values (E(] X)) as a consequence. Figures 4(c) and
4(d) illustrate such a situation with the Lena image, where the
shape parameters and the corresponding ratios (Figure 4(c)) as
well as the mean absolute values (Figure 4(d)) of the residuals
of both domains indeed converge when R is above R. ~ 0.61
bpp. Finally, notice from Figure 5(b) that as n approaches
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0.8, the corresponding value of the shape parameter © changes
abruptly beyond 2.0, although the corresponding change in its
first-order entropy is very small as shown in Figure 5(a). This
explains the poor match of the shape parameters around 1.41
bpp in Figure 4(c) as compared with the decent matches of
corresponding ‘ratios’ around the same bit rate.

C. Convergence of Quantized Residual Distributions

Now that we have discussed the convergence phenomena
of the first-order entropies (Section 111-B) and the residual
probability distributions themselves (Section IV-B) when § =
0, it would be natural to ask if the same or similar results
apply to the cases with 6 > 0. In other words, one may
ask the following two questions: (In the sequel, the term
‘quantized residual’ and ‘quantization indices’ will be used
interchangeably, since they are related in a one-to-one manner

by (10).)
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1) Suppose the pixel-domain residual X needs to be quan-
tized according to (9) for the case of § > 0 to yield the
quantization indices X and we do the same quantization on
the wavelet-domain residual Y to obtain Y, will H,(X) and
H,(Y) be the same beyond a certain rate R, ?

2) Will the ‘quantized’ residuals in both domains converge
in probability distribution beyond a certain rate R, ?

(b) Mean absolute values of pixel & wavelet domain quantized
residuals

First, observe that the answer to 1) is not obvious because
the quantized residual indices in one domain can no longer
be seen as a DWT (or IDWT) of those in the other due
to the presence of quantization. Hence we cannot directly
apply the ‘critical rate’ argument used in Section 1l1-B for
the case with 6 = 0. However, note that if the answer to
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Fig. 8. Convergence of residual distributions for Lena (6=0)

2) is ‘yes’, it follows that the answer to 1) will be also
in the affirmative since the identical probability distributions
will have the same entropy. Therefore, we will try to address
the second question, thereby drawing an answer to the first
one as well. To begin with, we will show some experimental
evidences suggesting the answer to 2) is in the affirmative.
For example, plots of the shape parameter v, the variance, the
ratio n and the mean-absolute-value each against the lossy
bit rate R are shown in Figures 6(a), 6(b), 7(a) and 7(b),
respectively in the case of the Lena image with different §’s.
Evidently, the ‘quantized” (§ > 0) residuals also converge
in probability distribution at different R.’s depending on 4&’s
since the variances are almost the same in both domains
and the shape parameters converge as the lossy bit rate R
increases just like the case with § = 0. However, the reason
for such a convergence is not obvious. One may argue that the
‘quantized’ residual distributions will also converge since the
underlying ‘unquantized’ distributions already did. However,
this is usually not the case since the quantized (6 > 0)
residual distributions in the two domains usually converge
in probability distribution before the unquantized (§ = 0)
counterparts do. In other words, R. < R, in general, as can
be readily checked from Figures 6(a) and 7(a).

To illustrate this point more clearly, Figures 8, 9 and 10
show pmf’s (probability mass functions) of the quantized
residuals of Lena for the cases of § =0, 2 and 7, respectively.
We can confirm faster convergence of the residual distributions
with a larger §.

Next, we present a theorem to explain why the ‘quantized’
versions of the encoding residuals in both domains converge
in probability distribution, with a faster speed than their
‘unquantized’ counterparts.

Definition 4.1 (Refinement/processing of a distribution):

Given a probability distribution Px on X, divide X into k
mutually disjoint sets X1, Xa, ..., X;, satisfying
X = Uf:lxi-
Define a new distribution Py as
Py ()73 e5, Px (@),
f(x), € X;, and f is a many-to-one mapping

where ;

0

Residual index

(b) 6=0, lossy layer rate=0.31

0—60 -40 -20 0 20 40 60
Residual index

20 40 60

(c) 6=0, lossy layer rate=0.51

such as a uniform quantizer defined in (9). Then Px is called
a refinement of Py and Py is called a processing of Px.

Now, we need a lemma regarding the divergence
D(Px||Py) of the distributions Px and Py of two random
variables X and Y, respectively.

Lemma 4.2: Let Py and Py be the processing of Px and
Py, respectively. Then

D(Px||Py) > D(Px||Py)
Proof: See the Appendix (also see, for example, p.300
of [23]).

Theorem 4.3: Let Y and X be the quantization indices
obtained from uniformly quantizing the random variables Y
and X, respectively (Y: wavelet-domain error residual, X:
pixel-domain error residual). Then Py converges to Py at
least as fast as Py does to Px.

Proof: Observe that quantization partitions the event space
of the original random variable. Thus the distribution of the
quantization indices is nothing but a processing of the original
distribution. Since D(Py||Px) > 0 with equality iff Py (y) =
Px () and we have Py (y)— Px/(x), it follows from lemma
4.2 that Py (y) — Py (Z) at least as fast as its unquantized
counterpart.

V. ON THE FLY PROCEDURE FOR OPTIMAL LOSSY LAYER
BIT RATE

In this section, based on the observations and the analyses
in previous sections, we present an ‘on-the-fly’ algorithm to
locate the optimal lossy layer bit rate. Recall from Sections I11-
B and IV-C that the first-order entropy of the quantized pixel-
domain encoding residual (H1 (X)) is the same as that of the
quantized wavelet-domain counterpart (H; (Y)) when the first-
stage encoding rate R is above a certain rate R.. (Assume
hereafter the term ‘quantized’ includes the case with 6 = 0 as
a special case.) Thus we only need to know H,(Y) + R in
order to estimate the actual total bit rate H;(X)+ R when R
is above R,. Since we have the wavelet domain residual (V)
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Fig. 10. Convergence of residua distributions for Lena (6=7)

in the memory of the first-stage encoder while progressively
encoding the source, we can calculate its first-order entropy
(H1(Y)) ‘on the fly’. This implies we do not need to generate
lossy reconstructions at various bit rates in order to get the
quantized pixel-domain residuals (X) at corresponding bit
rates. Thus, potential savings in computation obtained thereby
can turn out to be significant and it is indeed one of the
most important advantages of our scheme. In other wavelet-
based two-stage schemes mentioned in previous sections, one
first needs to encode a source at a sufficiently high bit rate,
and then decode the compressed bitstream at various bit rates
to generate the lossy layers and their corresponding residual
layers. This means one needs to take the inverse wavelet
transforms to generate the lossy reconstructions at various bit
rates and also actually perform the (context-based) entropy
coding of the corresponding residual possibly with trial and
error. Obviously such a process will be quite time-consuming
especially for 3D data sets such as medical or motion video
sequences.

Algorithm 1 describes an ‘on-the-fly’ estimation procedure
of the first-order entropy of the quantized wavelet domain

Residual index

(b) 6=7 , lossy layer rate=0.31

Residual index

(c) 6=7 , lossy layer rate=0.51

residual (H,(Y)) as we successively encode a source with
SPIHT. The idea of the algorithm is that only two symbol
probabilities (P;’s) of the quantized wavelet-domain residual
need to be updated at any particular moment of successive
bit-plane encoding in order to keep track of the corresponding
change in the first-order entropy (H1 (17)), where P; is given
as the frequency count (F'R;) of the corresponding quantized
wavelet-domain residual value divided by the total number (V)
of the wavelet coefficients. Thus, it is readily understood that
the proposed estimation algorithm requires almost negligible
computational effort.

A few comments are in order regarding the implementation
of the algorithm. First, note that the uniform quantization
rule given by (9) (i.e., the near-lossless quantization formula)
does not work if ¢ is non-integer. For example, if ¢ =1.3
and § =1, we get é;4 =0 and é =0. But this leads to
|le—é]| = 1.3 > § = 1. In fact, when estimating the first-order
entropy Hl(f/) in Algorithm 1, we found it necessary to round
the floating point value of the wavelet domain residual to the
nearest integer before applying the uniform quantization rule

given by (9). Second, when it comes to evaluating the first-



10 IEEE TRANSACTIONS ON IMAGE PROCESSING

Algorithm 1 Iterative First-Order Residual-Entropy Estimation ‘on the fly’
Step 1: Given a maximume-error bound 4, initialize the first-order entropy of the quantized wavelet coefficients as follows:
Hy\(Y)=—Y,PlogP,
, where P; is the probability of the i-th symbol for the quantized wavelet coefficients.
Step 2: Everytime a wavelet coefficient is further encoded via updating the significance/refinement information inside
the SPIHT, save the symbol index of the quantized value of that wavelet coefficient before updating as old and find the

corresponding one after updating as new.

Step 3: Subtract the contribution of the above symbols from the first-order entropy estimate as follows:
H1(Y) <= Hi(Y) + Poiq10g Potg + Prew 10g Preuw
Step 4: Update the symbol probabilities of the symbols old and new as follows:
FRyg=FRyqg—1, FRpew = FRpew +1
Poia = FRo1a/N |, Prew = FRpew/N
\where F'R; is the frequency count of the i-th symbol and NV is the total number of the wavelet coefficients.
Step 5: Add the new contribution of the updated symbol probabilities to the first-order entropy estimate as follows:

H(Y) <= Hy(Y) — Pyqlog Pog —

Pnew log Pnew

Step 6: Repeat steps 2 through 5 everytime a wavelet coefficient is further encoded.
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Estimated vs. actual total bltrate

6 —— actual(plxel domaln) H
-o- estimate | (wavelet domain, non-weighted )

= = estimate Il (wavelet domain, weighted )
a

=h

57

g

o

£h

k<]

o]

Sar

[

>

S

K]

Q

14

w
T

—— actual (‘pixel domaln )
-o- estimate | ( wavelet domain, non-weighted ) ||
= estimate Il (wavelet domain, weighted )

(2]

(Iossy+res(j1dual) [bpp]
(5] 3,1

Total bitrate
b
o

0.01 5 1
Lossy bitrate [bpp]

(a) Residual layer rate when § = 0 and R, ~
0.61 bpp

Fig. 11. Comparison of fi rst-order entropy calculation methods for Lena

order entropy of a wavelet transformed image, one may think
of a weighted sum of the first-order entropy of each subband
defined as Z Hlj( ), where H ; is the first-order
entropy of the j- th subband N is the total number of subbands
and M, = 4! is the decimation factor when the j-th subband
belongs to the [-th decomposition level in a typical dyadic
wavelet transform. This means we need to keep N separate
pmf’s (probability mass functions) — equivalently, sets of
symbol counts — in Algorithm 1, given N subbands. However,
we chose to use only a single pmf for the entire subbands.
This way we can not only save memory and further reduce
the already trivial computational burden but also better detect
the optimal lossy bit rate as will be illustrated in the following.
Figure 11 compares two methods of calculating the first-order
entropy of the wavelet domain residual for Lena. ‘Estimate
I” in the figure corresponds to the method we chose (i.e.
use of only one pmf), while ‘Estimate Il corresponds to the

5 1
Lossy bitrate [bpp]

(b) Total bit rate when § = 0 and R. = 0.61
bpp

weighted first-order entropy described above. Note the first-
order entropy of ‘Estimate I’ is larger than that of ‘Estimate
11" when the first-stage bit rate (R) is below the ‘critical’ rate
R.. In fact, this is true regardless of the image and can be
easily understood by the following inequality:

N N

1 1
—H;(Y) = — H,(Y'|Y € j-th subband)
AN
< _
= Z M, (y)

|
3 (13)
where the inequality comes from the fact conditioning re-

duces entropy. Considering that the first-order entropy of the
pixel-domain residual is (significantly) larger than that of the
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wavelet-domain counterpart when R is below R., use of a
single pmf for the wavelet-domain residual always helps better
detect the optimal lossy bit rate as it makes the curve more
convex by slightly ‘lifting up’ the total bit rate estimation
curve toward the actual one as shown in Figure 11(b). Also
notice that as the residual becomes i.i.d., the two methods
of calculating the first-order entropy yield the same value
since conditioning does not reduce the entropy of an i.i.d.
distribution.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

This section shows the results of experiments to demonstrate
the validity of our approach. First, the effectiveness of our ‘on-
the-fly’ algorithm to locate the optimal lossy rate is shown
and some issues are discussed. Next, we compare its near-
lossless/lossless compression performance with other schemes
in the literature. To facilitate comparison with the results of
other coders available in the literature, we chose to use two
representative natural images (Lena and Barbara). However,
keep in mind that the observations and conclusions drawn here
apply to most real sources. We used SPIHT as the first-stage
coder and an adaptive arithmetic encoder [30] as the residual
coder. Here ‘adaptive’ means the symbol probabilities are
adjusted on the fly when encoding the residual. We used only
one probability model within the adaptive arithmetic coder for
all the pixels in a given residual layer and the typical encoding
rate was very close to its first-order entropy.

A. Determination of Optimal Lossy Layer Bit Rate

In Figure 12(a), we have plotted the residual coding rates
(H1(-)) versus the lossy bit rates (R) for the lossless (§ =

0) and the near-lossless (6 = 2,5 = 7) cases. Figure 12(b)
shows its corresponding total bit rate (H;(-) + R) versus the
lossy bit rate (R) curves. To be more precise, H; (X) is the
actual coding rate of the quantized pixel-domain residual by
the arithmetic coder which always was virtually the same as
its first-order entropy, while Hl(Y) is the first-order entropy
of the quantized wavelet-domain residual calculated ‘on the
fly’ according to Algorithm 1. We can see the convergences
of the residual (Figure 12(a)) and total (Figure 12(b)) coding
rates in both domains above the rate R, (lossless) or R, (near-

lossless).

Recall from Section 111-B that it is more efficient to keep
successively encoding the source by SPIHT than switching
to a first-order entropy coder for the pixel domain residual
while it has memory (i.e. not i.i.d.). However, beyond R, the
encoding residual has almost no structure as exemplified in
Figures 13 and 14, which show the lossy reconstructions and
the corresponding residuals of Lena and Barbara at the optimal
lossy bit rates, respectively. Therefore, attempting to further
refine the source beyond rate R. with SPIHT, which is not
efficient for encoding small, independent random variables,
leads to at least as large as and usually larger (thus, sub-
optimal) total bit rates than those obtained by switching to
a first-order residual coder. This explains why there exists a
lossy bit rate or a small flat region of lossy bit rates around
R, where a minimum total bit rate (lossy plus residual bit
rates) is achieved by the proposed two-stage scheme. Indeed
we could confirm this with Lena for the case of 6 = 0 from
Figure 12(b). The same observations basically apply to the
case when § > 0. However, there is a subtle difference in this
case. Although the quantized residuals X and Y converge in
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Fig. 13. Lossy-layer reconstruction and the corresponding residual of Lena at optimal rate

probability distribution beyond the critical lossy bit rate R, it
is not obvious whether they necessarily become independent
thereafter, since our argument regarding the convergence of X
and Y in Section IV-C did not rely upon the independence of
the quantized (6 > 0) residual. In fact, by comparing Figure
12(a) with Figure 12(b) for the case of § = 7, we can see
the critical rate . is 0.31 bpp, while the minimum total bit
rate is achieved at the lossy bit rate R of 0.51 bpp. Since it
would be still reasonable to expect the optimal lossy bit rate
in the proposed method to correspond to the point where the
pixel domain quantized residual X is independent, this result
means that the critical rate 2. (, where the convergence of
X and Y occurs) preceded the actual optimal lossy bit rate,
when ¢ > 0. This was a general tendency especially with a
large 6, but poses no problem with detecting the optimal lossy
bit rate anyway as we have the convergence of bit rate curves
well before the optimal point is reached.

Next, Table | shows the accuracy of the method presented
to locate the optimal lossy layer bit rate. In the table, the
rows with ‘Actual rate by iteration’ correspond to the rates
obtained by iteratively decoding the given image at every
increment of 0.1 bpp starting from 0.01 bpp to find the optimal
lossy bit rate (the 1st column for each image) and the actual
minimum total (lossy plus residual) rate (the 2nd column
for each image) obtained at the chosen optimal lossy rate.
Also, the rows with ‘Estimated rate on the fly’ correspond
to the estimated optimal lossy rates (estimation step size :
0.01 bpp) and the corresponding estimated total rates obtained
using the proposed ‘on-the-fly’ algorithm. The total rates in
the parentheses of these rows refer to the actual total rates
obtained by stopping the SPIHT encoding at the estimated
optimal lossy rate and encoding the quantized residual with
an arithmetic coder. Note no iteration is needed in this case
and the actual total bit rates thus obtained (i.e. the numbers
in the parentheses) are very close to the actual minimum total
bit rates obtained through iteration.

Image name Lena Barbara
Tolr. Method bpp | PSNR | bpp | PSNR
JPEG-LS 425 00 4.86 00
CALIC 4.10 00 4.59 )
6=0 Prequant. S+P [7] 4.20 ) 4.71 oo
Iter. SPIHT + context-AC [7] | N/A 00 N/A 00
SPIHT + AC (proposed) 4.30 00 4.90 00
JPEG-LS 272 | 49.90 | 3.30 | 49.89
CALIC 259 | 49.89 | 3.07 | 49.89
6=1 Prequant. S+P 278 | 49.90 | 3.27 | 49.89
Iter. SPIHT + context-AC 269 | 49.89 | 331 | 49.89
SPIHT + AC 277 | 49.89 | 3.38 | 49.90
JPEG-LS 209 | 4515 | 265 | 4514
CALIC 195 | 4516 | 242 | 4514
6=2 Prequant. S+P 225 | 4511 | 272 | 4512
Iter. SPIHT + context-AC 202 | 4516 | 265 | 4517
SPIHT + AC 212 | 4517 | 272 | 4516
JPEG-LS 154 | 4011 | 2.02 | 40.04
CALIC 129 | 4027 | 1.77 | 4011
6=4 Prequant. S+P 174 | 39.89 | 217 | 39.89
Iter. SPIHT + Context-AC 128 | 4059 | 191 | 40.54
SPIHT + AC 136 | 4065 | 1.97 | 40.52
JPEG-LS 124 | 3717 | 167 | 36.99
CALIC 096 | 3757 | 140 | 37.21
6=6 Prequant. S+P 148 | 3660 | 1.86 | 36.68
Iter. SPIHT + Context-AC 0.86 | 3854 | 148 | 3859
SPIHT + AC 092 | 3876 | 1.52 | 3856
JPEG-LS 114 | 3599 | 154 | 35.82
CALIC 085 | 36.56 | 1.28 | 36.10
6="7 Prequant. S+P 140 | 3534 | 1.76 | 3543
Iter. SPIHT + Context-AC 0.73 | 3795 | 1.35 | 38.10
SPIHT + AC 0.79 | 3827 | 137 | 3807

TABLE Il
COMPARISON WITH OTHER CODERS FOR LENA & BARBARA

B. Near-Lossless Compression Performance

Table 11 compares the performance of the proposed
coder with JPEG-LS [13], CALIC [11], prequant. S+P [7]
(prequantization followed by lossless compression of
guantization indices as explained in Section 11-B) and
‘Iter. SPIHT + Context-AC’ [7] (a wavelet-based two-stage
near-lossless coder that needs iteration to find the optimal
first-stage bit rate and uses a context-based entropy coding
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Fig. 14. Lossy-layer reconstruction and the corresponding residua of Barbara at optimal rate

Test conditions Lena Barbara
Tolerance Method Optimal lossy | Total at optima | Optimal lossy | Total at optimal
6=0 Actud rate by iteration 0.71 4.30 161 4.90
Estimated rate on the fly 0.71 4.27 (act:4.30) 151 4.87 (act:4.90)
6=1 Actua rate by iteration 0.71 277 131 3.38
Estimated rate on the fly 0.71 2.75 (act:2.77) 129 3.35 (act:3.38)
6=2 Actud rate by iteration 0.61 212 111 272
Estimated rate on the fly 0.61 2.07 (act:2.12) 111 2.67 (act:2.72)
6=4 Actud rate by iteration 0.51 1.36 111 197
Estimated rate on the fly 0.43 1.33 (act:1.37) 0.95 1.97 (act:1.98)
6=26 Actua rate by iteration 051 0.92 111 152
Estimated rate on the fly 0.43 0.91 (act:0.94) 0.89 1.51 (act:1.55)
6="7 Actud rate by iteration 0.51 0.79 111 137
Estimated rate on the fly 0.51 0.77 (act:0.79) 1.15 1.33 (act:1.38)
TABLE |

ACCURACY OF OPTIMAL RATE ESTIMATION FOR

for residuals) for Lena and Barbara images. In terms of both
PSNR and the total bit rate, the wavelet-based two-stage
coders including our proposed one were always comparable
(with small ¢’s) or better (with large 6’s) compared with
JPEG-LS or the prequant. S+P scheme. It is encouraging to
see that the two-stage wavelet coders were quite comparable
to JPEG-LS even at the high bit rates (i.e. small §’s), since
they provide (partially) L2 error scalable bitstream unlike
JPEG-LS. Similar observations apply when comparing against
CALIC, although CALIC outperforms all the other coders
in the table in terms of the bit rate for the Barbara image
regardless of 4. Note the extra savings in total bit rates
achieved by the ‘lter. SPIHT + Context-AC’ come at the
expense of high-complexity context-based entropy coding
of the residual, which requires exhaustive iteration to locate
the optimal lossy bit rate. Alternatively, one can use our
algorithm to locate a starting lossy layer bit rate in order to
reduce the number of iterations needed when ‘Iter. SPIHT +
Context-AC’ is adopted to achieve better compression.

Lastly, observe that it is reasonable to expect the i.i.d.
residual to be obtained at a lower lossy bit rate if the lossy

LENA & BARBARA, ALL NUMBERSARE IN [BPP]

layer coder is improved. In other words, by improving the
lossy coder’s R-D performance, we would be able to achieve
the same “critical distortion’ at a lower rate, thereby reducing
the total bit rate. As an illustration, Table 11l shows a result
of incorporating JPEG-2000 style context models [17] to
improve the sign/refinement coding within SPIHT (see the
rows ‘SPIHT (with sign/rfn) + AC’). Especially with Barbara
image, we could see noticeable improvement in total bit rates.
This demonstrates a possible way of further improving the
performance of the proposed method, which is quite flexible
in the sense that incorporating any improvement into the lossy
layer codec (e.g. better transform, novel context-modelling for
entropy coding, motion-compensation for motion video etc.) to
achieve better performance in the lossy layer usually translates
into improved near-lossless/lossless performance.

VI1l. CONCLUSION

In this paper, we presented a practical method of choosing
the lossy layer bit rate so that the sum of lossy and resid-
ual coding rate is minimized in a wavelet-based two-stage
near-lossless coding scheme. We proposed to use a simple
arithmetic coding of the quantized residual to meet an L*°
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Image name Lena Barbara
Tolerance Method bpp | PSNR | bpp | PSNR
JPEG-LS 4.25 S 4.86 S
6=0 SPIHT + AC 4.30 00 4.90 00
SPIHT (with sign/rfn) + AC | 4.29 S) 4.84 00
JPEG-LS 209 | 4515 | 265 | 45.14
6=2 SPIHT + AC 212 | 4517 | 272 | 4516
SPIHT (with sign/rfn)+ AC | 2.10 | 4518 | 267 | 4517

TABLE Il

USE OF CONTEXT-MODELSFOR IMPROVED SIGN & REFINEMENT CODING

WITHIN SPIHT

error requirement, following the lossy reconstruction layer
consisting of a wavelet-based successive bit-plane encoder,
such as SPIHT, SPECK [16], or JPEG-2000. The method
capitalizes upon the notion of ‘critical rate’ well-known from
rate-distortion theory as well as the ‘entropy reduction’ prop-
erty of subband decomposition, and works reasonably well for
most real sources. The most notable advantage of the proposed
scheme is its simplicity compared with its predecessors in the
literature. We introduced a very simple algorithm that allows
one to locate the optimum lossy reconstruction bit rate on-the-
fly without any time-consuming iteration of decoding, IDWT,
and actual residual encoding for a given L°° error bound. Its
performance in terms of bit rates in near-lossless and lossless
coding was comparable to that of other state-of-the-art near-
lossless coders proposed in the literature.

APPENDIX

Proof of Lemma 4.2: By log-sum inequality,

(1

(2

(3]

(4

D(Px||Py) =

PX (.%')
PY (I)

Z Px (x)log

wEXi

(Y Px(a))log

IGXi ¢

Y]

k (5
> Y Pyl log 2
Y

i=1

= D(Pgl|Py)
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