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Capacity of Steganographic Channels

Jeremiah J. HarmseMember, |IEEE, William A. Pearlman Fellow, |EEE,

Abstract—This work investigates a central problem in Somewhat less work exists exploring capacity with arbi-
st_?ﬁanfggaphy, dthtat tiSid?"'0¥V much dat% can Sai?')’ be fhiddeln trary detection functions. These works are written from a
without being detected? To answer this question a forma ; ; ; ;
definition of s%eganographic capacity is prese?ned. Once this has stege_malys_ls perSpeC“@MD [] anq accordingly give heavy
been defined a general formula for the capacity is developed. The cons!deratlon t(_) the detection fgncnon. )
formula is applicable to a very broad spectrum of channels due ~ This work differs from previous work in a number of
to the use of an information-spectrum approach. This approach aspects. Most notable is the use of information-spectrum meth-
allows for the analysis of arbitrary steganalyzers as well as non- ods that allow for the analysis of arbitrary detection algorithms
stationary, non-ergodic encoder and attack channels. and channels. This eliminates the need to restrict interest

After the general formula is presented, various simplifications . .
are applied to gain insight into example hiding and detection to detection _algonthms that operate On_ sample_averages or
methodologies. Finally, the context and applications of the work P€have consistently. Instead the detection functions may be
are summarized in a general discussion. instantaneous, that is, the properties of a detectas &amples

Index Terms—Steganographic capacity, stego-channel, ste-N€€d not havg' any relation to the same detectornfer 1
ganalysis, steganography, information theory, information spec- Samples. Addltlonally, the typlcal restriction that the channel
trum under consideration be consistent, ergodic or stationary is also
lifted.

Another substantial difference is the presence of noise
before the detector. This placement enables the modeling of
common signal processing distortions such as compression,

HANNON'S pioneering work provides bounds on theguantization, etc. The location of the noise adds complexity
amount of information that can be transmitted over a noigyot only because of confusion at the decoder, but also a signal,
channel. His results show that capacity is an intrinsic propertarefully crafted to avoid detection, may be corrupted into one
of the channel itself. This work takes a similar viewpointhat will trigger the detector.
in seeking to find the amount of information that may be Finally, the consideration of a cover-signal and distortion
transferred over a stego-channel as seen in Figlire 1. constraint in the encoding function is omitted. This is due

The stego-channel is equivalent to the classic channel wiih the view that steganographic capacity is a property of the
the addition of the detection function and attack channel. Fehannel and the detection function. This viewpoint, along with
the classic channel, a transmission is considered successfuh# above differences, make a direct comparison to previous
the decoder properly determines which message the encoderk somewhat difficult, although possible with a number of
has sent. In the stego-channel a transmission is successful siotplifications explored in Sectidnl V.
only if the decoder properly determines the sent message, but
if the detection function is not triggered as well. C. Groundwork

This additional constraint on the channel use leads to the
fundamental view thathe capacity of a stego-channel is  This chapter lays the groundwork for determining the
an intrinsic property of both the channel and the detection ~amount of information that may be transferred over the chan-
function. That is, the properties of the detection functiomel shown in Figur&ll. Here, the adversary’s goal is to disrupt

influence the capacity just as much as the noise in the chanrfély steganographic communication between the encoder and
decoder. To accomplish this a steganalyzer is used to intercept

. steganographic messages, and an attack function may alter the
B. Previous Work signal

There have been a number of applications of information We now formally define each of the components in the
theory to the steganographic capacity problem[], [2], [3bystem, beginning with the random variable notation.
These works give capacity results under distortion constraints1) Random Variables: Random variables are denoted by
on the hider as well as active adversary. The additionghpital letters, e.gX. Realizations of these random variables
constraint that the stego-signal retain the same distribution & denoted as lowercase letters, e.geach random variable
the cover-signal serves as the steganalysis detection functigndefined over a domain denoted with a sciptA sequence

) ) ) ) of n random variables is denoted witki” = (X1,...,X,).

This work was carried out at Rensselaer Polytechnic Institute and vgls ilarl | th f d iabl l
supported by the Air Force Research Laboratory, Rome, NY. _'m' a}r y, ann-length sequence or random varia e”rea 1za-

J. Harmsen is now with Google Inc. in Mountain View, CA 94043, USAtions is denoteck = (x1,...,z,) € X™. The probability of

E-mail: jeremiah@google.com. _ _ X taking valuer € X is px ().
W. Pearlman is with the Elec. Comp. and Syst. Engineering Dept.

Rensselaer Polytechnic Institute, Troy, NY 12180-3500, USA; E-mail: FOllowing a signal through Figui€ 1 we begin in the space of
pearlw@ecse.rpi.edu. n-length stego-signals denotéd®. The signal then undergoes

|. INTRODUCTION
A. Background
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Fig. 2. Permissible and Impermissible Sets

4) Impermissible Set: The impermissible set 7, C V" is
the inverse image of underg,,. That is,

1, = 9771 {1 ={yed":g.(y) =1} (4)

For a giveng,, the impermissible set is the set of all signals
in Y™ that g,, will classify as steganographic.

Example 1. Consider the illustrative sum steganalyzer de-
fined for the binary channel outputyy (= {0,1}). The
steganalyzer is defined for = (y1,...,yn) as,

i n ) n
some distortion as it travels through the encoder-channel. This gn (y) = { Lot 3o v > [ 3] (5)

results in an element from the corrupted stego-signal space of

0, else

V™. Finally, the signal is attacked to produce the attackethe permissible sets for = 1,2, 3,4 are shown in Tablgl I.

stego-signal in spacg”.
2) Seganalyzer: The steganalyzer is a functiong,, : V" —
{0, 1} that classifies a sequence of signals fi@thinto one of

two categories: containing steganographic information, and not
containing steganographic information. The function is defined

as follows for ally € Y~,

1, if y is steganographic

gn (y) = { 0, if y is not steganographic @)

TABLE |
SUM STEGANALYZER PERMISSIBLESETS
P1= {0}
Pa=_ {0,0,01.L0)

Ps = {(0,0,0),(1,0,0),(0,1,0),(0,0,1)
Pa {(0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),
(1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(0,01,1)

5) Memoryless Steganalyzers: A memoryless steganalyzer,

The specific type of function may be that of support vectag = {g,1°° , is one where eacly, is defined fory =

machine or a Bayesian classifier, etc.
A steganalyzer sequence is denoted as,

g = {91;927937~-~}7 (2)

whereg,, : Y — {0, 1}.
The set of alln length steganalyzers is denotéd.

(ylay27 .- -;yn) as,

(y) = 1, if 3ie{1,2,...,n} such thatg(y;) = 1
In\Y) =0, ifgly)=0Vie{l,2,....n}
(6)

whereg € G; is said to specifyg,, (and g). To denote a
steganalyzer sequence is memoryless the following notation

3) Permissible Set: For any steganalyzay,, the space of Will be usedg = {g}. . _
signals)™ is split into the permissible set and the impermis- The analysis of the memoryless steganalyzer is motivated

sible set, defined below.
The permissible set P,, € Y™ is the inverse image of
underg,,. That is,

Po =00 {0 ={yed 9. (y) =0}  (3)

The permissible set is the set of all signals Yt that the
given steganalyzeg,, will classify as non-steganographic.

by the current real world implementation of detection systems.
As an example we may consider eaghto be a digital image
sent via email. When sendingemails, the hider attaches one

of the y,;'s to each message. The entire sequence of images
is considered to be. Typically steganalyzers do not make
use of entire sequenge Instead each image is sequentially
processed by a given steganalyzerwhere if any of they;
trigger the detector the entire sequence of emails is treated as

Since each steganalyzer has a binary range, a steganalygteganographic.
sequence may be completely described by a sequence oClearly for a memoryless steganalyzgy, defined byg we
permissible sets. To denote a steganalyzer sequence in shabe that,

a way the following notation is used,
g = {P17P27P37 .- '}7

whereP,, C Y™ is the permissible set fqy,,.

Py, =Py X Py x -+ X Py @)

That is, the permissible set qof, is defined by then-
dimensional product oP,,.




SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 3

D. Channels E. Encoder and Decoder

We now define two channels. The first models inherent The purpose of the encoder and decoder is to transmit
distortions occurring between the encoder and detection furfd receive information across a channel. The information to
tion, such as the compression of the stego-signal. The sechiggtransferred is assumed to be from a uniformly distributed
models a malicious attack by an active adversary such @$ssage set denoted,, with a cardinality of),.

a cropping or additive noise. Both of these distortions are The encoding function maps a message to a stegosignal,

considered to be outside the control of the encoder. i.e. fn: My, — A" The element oft’™ to which theith
1) Encoder-Noise Channel: The encoder-noise channel is Message maps is called tbadeword for 7 and is denotedy ;.
denoted agV” where " : Y x X" — [0,1] and has the The collection of codewordg;,, = {91, . ,uMn}_ is galled
following property for allx € X", the code. Therate, R,, of an encoding function is given as
%log M,,.
W™ (y|x) :=Pr{Y" =y| X" =x}. The decoding function, ¢,, : Z™ — M,,, maps a corrupted

stegosignal to a message. The decoder is defined by the set of
The channel represents the conditional probabilities of thiecoding regions for the each message. The decoding regions,
steganalyzer receiving € Y™ whenx € X is sent. D1, ..., Dy, are disjoint sets that covet™ and defined such
The random variableY resulting from transmittingX that,
through the channél/ will be denoted asX Wy,
We denote arerbitrary encoder-noise channel as the se-
guence of transition probabilities,

n?

¢n' ({m}) = D
={FCZ":¢,(z)=m, VzeF},

form=1,..., M,.

Next, two important terms are presented that allow for the
analysis of steganographic systems. The first is the probability
the decoder makes a mistake, called the probability of error.
The second is the probability the steganalyzer is triggered,
A" (zly) =Pr{Z" =2|Y" =y}. (8) called the probability of detection. In both cases they are

o L calculated for a given codé = {ui,...,uy, }, encoder-
The attack channel may be deterministic or probabilistic. channel V™, attack-channed™ and impermissible sef,_

Similarly to the encoder-noise channel, we denoteudoi- (corresponding to some,).
trary attack channel as the sequence of transition probabilities, The probability of error in decoding the message can be

A= [A A2 A3, ) found as, AL

= > Q" (D). (12)
" oi=1

W= {WH w2 w3, ..}

2) Attack Channel: The attack function mapd™ : Y" —
Z" as,

3) Encoder-Attack Channel: Theencoder-attack channel or
channel is a functionQ™ : X" — 2", defined to model the

. whereQ" = A" ",
effect of both the encoder-noise and attack channel. Thus, ereq) oW

Similarly theprobability of detection for the steganalyzer is

Q" (z|x) = }: A" (2ly) W (y]x) . 9) calculated as,
y w — 0 _7\1{ % W (Zg, [u:) (13)
v T nWi) .
The specification of™ by A™ and W" is denoted@™ " g

An o Wn.
The arbitrary encoder-attack channel is a sequence of F. Sego-Channel

transition probabilities, A steganographic channel or stego-channel is a triple
Q=1{0",Q% Q"% ..} (10) (W,g, A), whereW is an arbitrary encoder-noise channel,

g is a steganalyzer sequence, aAdis an arbitrary attack
We will express the dependence between the arbitrary encoddannel. To reinforcg the notion that.a stego—.channel is defined
noise and attack channels and the arbitrary encoder-attddk?@ Sequence of triples we will typically writeW, g, A) =
channel ag) = A o W. {V", gy AM)J324 . _

4) Memoryless Channels: In the case where channel dis- 1) Discrete Stego-Channel: A d|.screte stego-channel i one
tortions act independently and identically on each input IettéfYhere at least one of the following holds:
x;, we say it is amemoryless channel. In this instance the |X| < o0, |V <oo, |Z|<oo, or|P,|<occVn.
n-length transition probabilities can be written as,

2) Discrete Memoryless Sego-Channel: A discrete memo-
. n ryless stego-channel (DMSC) is a stego-channel where,
W (ylx) = HW(QM%); (11) 1) (W,g, A) is discrete
=1 .
2) W is memoryless
where W is said to define the channel. To denote a channel3) g is memoryless
is memoryless and defined By we will write W = {IV}. 4) A is memoryless
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A DMSC is said to be defined by the trip[&V, g, A) and Similarly, theliminf in probability of a sequence of random
will be denoted W, g, A) = {(W,g, A)}. variables {Z,,}2°  is,

p-liminf Z,, := sup {ﬁ : lim Pr{Z, < g} = O} )
G. Steganographic Capacity n—oo
] ) ) The spectral sup-entropy rate of a general sourc& =
The secure capacity tells us how much information caan}oo is defined as

be transferred with arbitrarily low probabilities of error and n=t 1
detection. H(X) := p-limsup — log .
An (n, M,, e,, 6, )-code (for a given stego-channel) consists n—oo 1 pxn (X™)
of an encoder and decoder. The encoder and decoder arénalogously, thespectral inf-entropy rate of a general
capable of transferring one dff,, messages im uses of the sourceX = {X"}7 , is defined as,
channel with an average probability of error of less than (or o1 1
equal to)e,, and a probability of detection of less than (or H(X) = p-lim inf n logm'
equal 10)d,. ) ) ) ) The spectral entropy rate has a number of natural properties
1) Secure Capacity: A rate R is said to besecurely ach|ey— such as for anyX, H (X) > H(X) > 0 [6, Thm. 1.7.2].
able for a stego-channdW, g, A) = {(W", gn, A") 1721, if The gpectral sup-mutual information rate for the pair of
there exists a sequence (@f, M,,, €,,, J,,)-codes such that: general sequenceX,Y) = {(X",Y")}, is defined as,
1) limpy_oo €p = 0

(15)

(16)

= . 1.
2) limy, o0 0 =0 I(X;Y) := p-limsup EZ(X”; Y™, 17)
3) liminf, .o 2 log M, > R ) n—o0
The secure capacity of a stego-channglW, g, A) is de- where, . Pywxn (Y7 X™)
noted asC'(W, g, A). This is defined as the supremum of all i(X™Y™) = log ) (18)

securely achievable rates fOW, g, A). . . . . .
y OW. g, A) Likewise the spectral inf-mutual information rate for the

pair of general sequenceSX,Y) = {(X™ Y™}, is

H. (¢, 0)-Secure Capacity defined as,
Arate R is said to be(e, §)-securely achievable for a stego- I(X;Y) := p-liminf li(Xn. ™). (19)
channel(W, g, A) = {(W",g,, A")}>,, if there exists a - n—oo ’

sequence ofn, M, e,, 6, )-codes such that: B. Information-Spectrum Results

This section lists some of the fundamental results from
information-spectrum theory[ [6] that will be used in the
remainder of the paper.

1) limsup,,_ . €, <€
2) limsup,,_ o, 0n <6
3) liminf, .o 2 log M, > R

el n
Il. SECURE CAPACITY FORMULA H(X) < lim inf EH(X ) (20)
A. Information-Spectrum Methods I(X;Y) < H(Y)- H(Y|X) (21)
The information-spectrum methdd[6]] [7]11[8]1[9][_[10] I(X;Y) > H(X) — H(Y|X) (22)

is a generalization of information theory created to apply

to systems where either the channel or its inputs are rfet Secure Sequences

necessarily ergodic or stationary. Its use is required in this1) Secure Input Sequences. For a given stegochannel
work because the steganalyzer is not assumed to have @W, g A), a general sourcK = {X "}, is calledj-secure

ergodic or stationary properties. if the resultingY = {Y "}, satisfies,
The information-spectrum method uses tigmeral source . ny

(also calledgeneral sequence) defined as, hﬂsolip Prign(Y") =1} <9, (23)

o0 or either of the following equivalent conditions,
X = {X” - (X§">,X2<">,...,Xf,”>)} . (14) ! Wwing equi "

n=1 lim sup py= (Z,, ) < 6, (24)

where eachY " is a random variable defined over alphabet, e

X. It is important to note that the general source makes no lim inf py« (Py,) > 1 — 4. (25)

assumptions about consistency, ergodicity, or stationarity.
The information-spectrum method also uses two novel quan-The set, S5, of all general sources that aesecure is

tities defined for sequences of random variables, called tHefined as,

limsup andliminf in probability. {

Thelimsup in probability of a sequence of random variables, Ss :=
{Z,}52, is defined as,

X : limsup Z W™ (I, 1x) pxn (x) < 5} , (26)
T xean
} whereX = {X"}>2,.

p-limsup Z,, := inf {04 t lim Pr{Z, >a}=0 The set for§ = 0 is calledsecure input set and denoted,.

n—00
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2) Secure Output Sequences: For a given steganalyzer with J (R + v|X) < e shows thalimsup,, . €, <e.

sequencg = {g,}>2,, a general sequend® = {Y"}52, is
called §-secure if,

limsup Pr{g,(Y"™) =1} <9,

n—oo

(27)

Finally sinceX € S5 we have that,

limsup pzn (Z,, ) < 0. (35)

n—oo

Converse Let R > C, and choosey > 0 such thatR —

The set 75, of all §-secure general output sequences is defined > C. Assume that is (e, §)-achievable, so there exists

as,
Ts = {Y ={Y"},2, limsuppyn(Z,,) < (5} . (28)

The set for§ = 0 is calledsecure output set and denoted.

D. (¢, 0)-Secure Capacity

We are now prepared to derive the first fundamental result-
the (¢, §)-Secure Capacity. This capacity will make use of the

following definition,

J(R|X) := limsup Pr {li(X"; z") < R}
n

1 m(zZmXm
= limsupPr{—logM < R} .
n—oo n pZn(Z")

The proof is the generatcapacity proof given by Haf[ 6],

[7], with the restriction to the secure input set.
Theorem 2.1 ((e, 6)-Secure Capacity): The
capacity C'(¢,0|W,g, A) of a stegochanne(W,g, A) is
given by,
Cle,6|W, g, A) = sup sup {R: J (R|X) < ¢},
XeSs
forany0 <e<1and0 <4 < 1.
Proof: This proof is based on[]6],[[7]. LelC =
Supxes, SUp {1 : J (R|X) < ¢}, andQ™ = A" o W™,
Achievability: Choose any > 0 andd§ > 0.
Let R = C — 3, for any~ > 0. By the definition ofC’ we
have that there exists al € Ss such that,

sup{R: J(R|X) <e} >C—~v=R+27.

Similarly we may find ankR’ > R+~ such that/ (R'|X) <.
As J (R|X) is monotonically increasing,

J(R+~[X) <.

(29)

(30)

(31)
Next by letting M,, = e™® we have that,

1
liminf — log M,, > R.

n—oo M

(e,9)-secure

an (n, M, e,, 6,,)-code such that,

1
liminf — log M,, > R,

(36)
n—oo mn
limsup e, <e, (37)
n—o0
and
limsup 6, < 6. (38)

n—oo

LetX = {X"}2° , where eachX ™ is a uniform distribution
over codeword®’,,, and letZ be the corresponding channel
output. SinceR — 2y > C > sup{R : J (R|X) < ¢},

J(R—29|X) > e. (39)

The Feinstein Dual[]6],[]7] states that for a uniformly
distributed inputX™ over a(n, M,, €,)-code and outpug™
corresponding to channé€), the following holds for alln,

Q" (z"|X") < llogMn — 'y} —e
pZn(Zn) n
(40)

Using the property ofim inf we have that for allh > ng
that,

1
€, > Pr {ﬁ log

1
- log M,, > R — . (41)

Thus forn > ng we have,

L. Q"(Z"X")
€n > Pri{—log—m——-—>
{n & (27

Taking thelim sup of both sides, and considering{39), we
see that,

<R- 27} —e ™. (42)

limsupe, > €. (43)

n—oo
[ ]

A fundimental assumption in the above proof is that the
encoder has a knowledge of the detection function. From
a steganalysis perspective this allows one to determine the
“worst-case scenario” for the amount of information that may
be sent through a channel.

Using Feinstein’s Lemma[11] we have that there exists an

(na M, Gn)'COde with,

o <Pr{1logw

1
< —log M,, -,
0 pzny Sa 't ”}”

(32)
As Llog M, = R for all n we have,

1 Qn (Z"’|Xn)

€n < Prq—log ——m=
{n & pze (27

Taking thelim sup of each side we have,

<R+ 7} +e ™. (33)

limsupe, < J(R+vX),

n—00

(34)

E. Secure Capacity

The next result deals with a special case(afd)-secure
capacity, namely the one wherke = § = 0. The secure
capacity is the maximum amount of information that may be
sent over a channel with arbitrarily small probabilities of error
and detection.

The four potential formulations for our model are shown
in Figure[3. The capacity of the stego-chanfi&,g, A) is
shown in Theorerh 212 to follow and specialized to the other
cases in Theorenis 2[3,P.4 dnd]2.5.

The results of these capacities are summarized in Table II.
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(W.g,A) TABLE 1l
xn yn z SECURE CAPACITY FORMULAS
\ \ \ \ 4 (vl |
W (ylx) 9n(y) A" (y|z)
e | Secure Capacity | Noise [ Attack | Thm. |
g
Xr—y \ \ ‘ A C(W,g,A) = sup I[(X;Z) w A 22
gn(y) A" (ylz) XeSo
C(,g,A) = sup I(Y;Z) Noiseless| A B3
(W.g,) o YeTo
AN BN \ \ C(W,g) = sup I(X;Y) w Passive| 24
W (ylx) 9n(y) XeSy
C(-,g) = sup H(Y) Noiseless| Passive| [Z3
(&) == YeTp
gn(y)

Fig. 3. Stegochannels

Theorem 2.2 (Secure Capacity): The
C(W,g, A) of a stegochanndlW, g, A) is given by,

F. Strong Converse

A stego-channe(W, g, A) is said to satisfy the-strong
converse property if for any? > C(0,6|W,g, A), every

(n, M, €5, 0,,)-code with,

secure  capacity

1
liminf — log M,, > R,

C(Wag;A) = Sup l(){7 Z) (44) n—oo N
X&So and
Proof: We apply Theoreni 2]1 with = 0 andé = 0. hrrlrisolipén <5
This gives,
we have,
C(W,g,A)
= C(0,0/W, g, A) (45a) Tim e =1,

= sup sup{R:J(R|X) <0}

XeSy

1
= sup sup [R : hmsupPr{Ei(X";Z") < R} <0

XeSy

n—oo

(45) Thus if a channel satisfies thestrong converse,
C(e,0|W.g,A) =C(0,0|W,g,A), (49)

(45c) foranyec [0,1).
stego-channel

= sup I(X;Z) (45d) Theorem 2.6 (e-_Strong Converse): A
XeS, (W,g,A) satisfies thee-strong converse property (for
Here the last line is due to the definition oflpn inf. m @ fixedo) if and only if,
Theorem 2.3 (Noiseless Encoder, Active Adversary): The sup I(X;Z) = sup 1(X;Z). (50)
secure capacity of a stego-chanrelg, A), with a noiseless- XeSs XeSs

encoder and active adversary, denoted, g, A), is given This proof is essentially the-strong conversé]6][]7] with a

by,

restriction to the secure input set. See details in Appehdix A

C(,g,A) = sup I(Y;Z). (46)

YeTo

Proof: Apply Theoren 2P withiX =Y andS; = 7;. m

G. Bounds

Theorem 2.4 (Passive Adversary): The secure channel ca- We now derive a number of useful bounds on the spectral-
pacity with a passive adversary, denot&(W, g) of a stego- entropy of an output sequence in relation to the permissible

channel(W, g, ) is given by,

C(W,g) = sup [(X;Y). (47)
XeSy

Proof: Since the adversary is passive, we have #hat

Y

Theorem 2.5 (Noiseless Encoder, Passive Adversary):
The secure capacity of a stego-chanrielg,-), with a
noiseless-encoder and passive adversary, der@ed), is

set. These bounds will then be used to prove general bounds

for steganographic systems, and see further application in

ChapteifT1.

Theorem 2.7 (Spectral inf-entropy bound): For a discrete

g = {P,}52, with corresponding secure output S&f,

[ |
sup H(Y) = liminf 1 log | Py (51)

YeTo n—oo T

See Appendix B for proof.

given by, Theorem 2.8 (Spectral sup-entropy bound): For  discrete
C(-,g) = sup I(X;Y). (48) g ={P,}>, with corresponding secure output S&f,
XeSy
— . 1
Proof: Since the adversary is passive, we have that sup H(Y) = limsup — log |P| (52)

Y, and since there is no encoder noise we have Xhat Y

andSy = 7p.

YeT, n—oo N

m See AppendiX[C for proof.



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 7

H. Capacity Bounds Here the final line follows since K € Sy andX W'y then
This section present a number of fundamental bounds onh € To. o u
the secure capacity of a stego-channel based on the propertiesh€ next corollary specializes the above theorem when the
of that channel. permissible set is finite.
We make use of the following lemma, Corallary 2.1 (Discrete Permissible Set Bound):
Lemma 2.1: For a stego-channéW, g, A) the following For a given discrete stego-channelW,g,A) =
hold, {(W", Py, ,A")}, the secure capacity is bounded
from above as,
[(X;Z) < [(X: ), (53) ' )
I(X;Z) < I(Y; Z). (54) C(W.g,A) < limsup — log [Py, (61)

Proof: We note that the general distributions form a

Proof: Combining Theore 8 and lin 9b) of Theo-
Markov chain,X — Y — ZH A property of the inf- ining 2l | m )

it . . rem[2.10 gives the desired result. [ |
information rate[7] is, The next theorem provides an intuitive result dealing with
I(X;Z) <I(X;Y), (55) the capacity of two stego-channels having related steganalyz-
ers.
whenX —-Y — Z. . Lo
SinceX — Y — Z impliesZ — Y — X we also have, Theorem 2.11 (Permissible Set Relat.lon). For two stego-
channels,(W.g,A) and (W,v,A) if P, C P, for all
I(X;Z) < I(Y; Z). (56)  put finitely manyn, then,
. . . " C(W,g,A) < C(W,v,A). (62)
The first capacity bound gives an upperbound based on the
sup-entropy of the secure input set. Proof: Let {f.}n2, and {¢,};2, be a sequence of
Theorem 2.9 (Input Sup-Entropy Bound): For a stego- encoding and decoding functions that achie¢&dV, g, A).
channel(W, g, A) the secure capacity is bounded as, Such a sequence exists by the definition of secure capacity.
C(W,g, A) < sup H(X) (57) The following definitions will be used for=1,..., M,,
| - w = fuli),
Proof: Using (21) and the property thaf(X|Z) > 0 we D, = o' ({i})
have, R '
C(W,g, A) 2 gup 1(X:Z) The probability of error for this sequence is given hyl(12),
XeSo 1 M,
&z — — _ n(PC|yy .
< sup {H(X) - H(X|Z)} en = 37 2 Q" (Dflu),
XeSy i=1
< sup H(X) whereQ" = A" o W™,
XeSo Clearly, this value is independent of the permissible sets and

B if ¢, — 0 for the stego-chann€lW, g, A) then it also goes
The next theorem gives two upper bounds on the capacty zero for(W, v, A).

based on the sup-entropy of the secure input and output sets.Next we know that the probability of detection for
Theorem 2.10 (Output Sup-Entropy Bounds): For a stego- (w, g, A) is given by [I3),
channel(W, g, A) the secure capacity is bounded as,

M,
— 1 n
C(W,g,A) < sup H(Y 59a & =-—S"W"(Z, lu),
( g ) Xego ( ) ( ) n M, ; ( In uz)
< e H(Y) (590)  and thatse — 0.
0 n
. — Since C P, forall N, we have tha o7
Proof: Using (21) and the property th&f(Z|X) > 0 we " Npgﬁd_trﬁj; "= oo 2 Lo
have, '
n n n
XGS“ Using this we may bound the probability of detection for
? sup 1(X;Y) (W,v,A) andn > N as,
XeSy M
Dy (7FY) - L
sup {H(Y)—- H(Y|X oy =—o W™ (Zy, |u;
—Xego{ ( ) ( | )} n Mn; ( 1n| 7/)
< sup H(Y) ] Mo
XESQ_ S_ Wn (I u;)
< sup H(Y) M"; e
YeTo _58

1X — Y — Zis said to hold when for alh, X™ andZ™ are conditionall .
independent givelt™. Y Sinceds — 0 we see that, — 0 as well. [ |
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fum) =W o % o o(y)

Encoder Noise Decoder

Fig. 4. Composite steganalyzer Fig. 6. Noiseless Stego-Channel

Noise A

|Blely) | < To see this consider the two steganalyzeendv. Assume

Noise 3 that g classifies signals with positive means as stegano-
graphic, while v classifies signals with negative means as
steganographic. If these detection functions were in series, the
permissible set (of the composite detection function) is empty
as a signal cannot have a positive and negative mean. Now
Fig. 5. Two Noise Channel consider a specific, deterministic distortid (—y|y) = 1.

Now we may send any signal we wish, as long as its mean is

positive. So in some instances, it is possible for the addition
I. Applications of a distortion to actually increase the capacity.

1) Composite steganalyzers: This final theorem of the pre-
vious section is intuitively pleasing and leads to some imme- I11. NOISELESSCHANNELS

diate results. An example of this is the composite steganalyzer o _ ) )
pictured in Figurd 1. This section investigates the capacity of the noiseless stego-

In this system two steganalyzegsandv are used sequen- channel shown in Figui@ 6. In this system there is no encoder-
tially on the corrupted stego-signal. If either of these stegan@0ise and the adversary is passive. This means that not only
lyzers are triggered, the message is considered steganografi€S the decoder receive exactly what the encoder sends, but
We will denote the composite stego-channel of this system {i¢ Steganalyzer does as well.

(W,h,A). This section finds the secure capacity of this system, and

As one would expect the capacity of the composite chafen Qerives a number of intuitive bounds relating to this
nel, C(W,h,A), is smaller than eitherC(W, g A) or capacity.

C(W,v,A). This is shown in the next theorem.

Theorem 2.12 (Composite Sego-Channel): For a compos-
ite stego-channéW, h, A) defined byg andv, the following
inequality holds, Theorem 3.1 (Secure Noiseless Capacity): For a discrete

C(W.h,A) < min {C(W.g A).C(W.v.A)}.  (65) noiseless channgl, g, -) the secure capacity is given by,

A. Secure Noiseless Capacity

Proof: We first show thatC(W,h, A) < C(W,g, A). C(-,g) = liminf 1 log |P (67)
The permissible set of the composite is equal to the inter- Lt
section of the base detection functions, Proof: The proof follows directly from Theoref 2.5 and
P, = Py, NPy, ¥, (66) Theoren 2J7. ]

Example 2 (Capacity of the Sum Seganalyzer): We now
thus we have thap;,, C P,, and we may apply Theorem2l11use this result to find the secure noiseless capacity of the
to state, parity steganalyzer of Examplé 1. The size of the permissible

C(W,h,A) <C(W,g,A). set forn is equal to the number of different ways we may

The above argument may be applied usihg, C P, to arrange up tdn/2] 1s inton positions.

showC(W,h, A) < C(W,v,A). [ | n
2) Two Noise Systems. We briefly present and discuss an [Py, | = Z ( ; > (68)
interesting case that is somewhat counter-intuitive. Consider #0<i<| 2|

the channel shown in Figutd 5. In this case there is distortion
A after the encoder and a second distortiéh,before the n
second steganalyzer. In the previous section it was shown n/2
that in the composite steganalyzer the addition of a secofid, | = 2"~'. Applying the noiseless Theorem,
steganalyzer (Figuré]5) lowers the capacity of the stego-

channel. A surprising result for the two noise system is that C(-,g) = liminf 1 log|P,, | = lim 1 log 2" 1

this may not be the case- in fact, the addition of a second noee oo n

distortion may increase the capacity of a stego-channel! = lbit/use (692)

For n even|P,,

=214 2 and for n odd,
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B. e-Strong Converse for Noiseless Channels

We now present a fundamental result for discrete noiseless
channels regarding the-strong converse property. It gives
the necessary and sufficient conditions for a noiseless stego-

channel to satisfy the-strong converse property.

Theorem 3.2 (Noiseless e-Srong Converse): A discrete
noiseless stego-channglg, -) satisfies the:-strong converse
property if and only if,

1
C(,g) = lim Elog [Py, |- (70)

Proof: Since the channel is noiselesk, =Y = Z we
have,

sup I(X;Z) = sup H(Y), (71)
XeSy YeTy
sup I1(X;Z) = sup H(Y). (72)
XeSo YeTy

First assume that the stego-channel satisfiesethgong
converse property. This gives,

sup H(Y) @ sup I(X;Z) (73a)
YcTo XeSo
& gup T(X; Z) (73b)
XeSo
sup H(Y) (73¢)
YeTo

The capacity is then,

C(,g) = sup H(Y)

YeTo

= hm mf log|P

= sup H(Y)
YeTo

= im sup — log|P
= lim —1og|77
n—oo

Here the final line results as thien inf andlim sup coincide.
For the other direction assume thaf'(.,g) =
lim, . 1 log|Py, | thus we have,

C(-,g) = sup I(X;Z)
XeSy

= sup H(Y)
YeT,

1
= lim — log|77

=limsup — log [Py,
n—oo
T2 sup H(Y)
YeT,
B sup 7(X;Z)
XeSy

Thus, supxcs, 1(X; Z) = supxes, [(X;Z) and by The-
orem[Z.6 the stego-channel satisfies thetrong-converse
property. [ |

Example 3 (Sum Steganalyzer): We now determine if the
sum steganalyzer satisfies thstrong converse.

From ExampldR the size of the permissible set is,

1 1 n
_ on +§(n/2>, for evenn

|Pg7z (75)
on—1, for odd n
We will make use of Stirling’s approximation,
n!l =+ 27m"+%e*”+*”, (76)
wherel/(12n+1) < A\, < 1/(12n).
Forn even,
1 n!
Pyl =2""1+ = 77
Pl =2 S e TGy 0
1 9 nt+s —nt+A,
=ty s il > (79)
<\/27r(n/2)§+5e’%+)‘”/2)
2e
<o i1+ ) 79
: ( Vamn (79)
This gives
lim sup — 1og [Py, |
n—oo
<limsu lo <2”1 (1 + 2 )> (80)
nAMmp & VQWn
=1 (81)
This shows,
lim inf — 10g|73g | =12> limsup — 10g|73 |- (82)

n—00 n—00

Since the liminf and limsup coincide the limit is indeed a true
one. Thus, this stego-channel satisfies ¢fstrong converse.

C. Properties of the Noiseless DMSC

In this section we briefly investigate the secure capacity of
the discrete memoryless stego-channel[(cf]I-F2).

Theorem 3.3 (Noiseless DMSC Secure Capacity): For the
stego-channe(-, g, ) with g = {g}, the secure capacity is
given by,

C(Wg)

and furthermore this stego-channel satisfies the strong
converse.

= log|P,|, (83)

Proof: As the channel is noiseless and the input alphabet
is finite we may use Theorem B.1,

1
C(-,g) = liminf — log | Py,
n—oo n

(84)
Note that by [(¥) we have for ait,

1 1
1 21
n0g|7)n nOg Pg x Pg % X Pg

n

1

~1 n
n 0g |Py|
=log Py .
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xn Yr= X" N]

fu(m) on(y)

Encoder Decoder

fu(m)

Encoder

Fig. 7. Additive Noise Channel Active Adversary Fig. 8. AWGN Channel Active Adversary

Proof: First we find a lower bound as,

Thus,
C(-,g) =log [Pyl . (85) C(W,g, A) ;u}s) (H(Z)-H(ZX)}  (91)
[S)
We also have thzit 1 ;ug (H(Z)) - F(N) 92)
O(-,g) = liminf = log [P, | = log |P,| = lim — log|P,,|, <
n—oo n n—0oo n (86) Next we upperbound the capacity as,
thus by Theoreni 3]2 the stego-channel satisfies the strong C(W,g,A)% sup {H(Z) — H(Z|X)} (93)
converse. [ | XeSo
D sup {H(2Z)} - H(N) (94)
IV. ADDITIVE NOISE STEGO-CHANNELS XESo
In this section we evaluate the capacity of particular stego-BY assumption H(N) = H(IN) and combining [(92)
channel, shown in Figurid 7. In this channel both the encod&@?d [9%4) we have the desired result. u
noise and attack-noise are additive and independent from the
channel input. B. AWGN Example
The general formula of the previous section is now ap-
A Additive Noise plied to the commonly found additive white Gaussian noise

channel. The detector is motivated by the use of spread

Denote the sum of two general sequenc® = g o.0um steganography]12] or more generally stochastic

{)((;L) = (()5)1 e X, and Y = {Y" = odulation[I3]
(Y77, Y 7)1, as, The encoder-noise and attack-channel to be considered are
oty v _ (y(n) (n) (n) (n)\y00 additive white Gaussian noise (AWGN). Thus for a stego-
XAV = YT = (T KT )}ng% signal,x = (z1,...,,), the corrupted stego-signal is given
by,

Letting the encoder-noise be denotedMs = {N[}>

and the attack-noise denotedIs, = { N>, we have the y =@ n ot ),

following relations, where each; ~ N(0,02), and all are independent.
The transition probabilities of the encoder-noise are given
Y =X+ N, by,
Z=Y+N,=X+N.+N,=X+N 1 1 n
n _ _ )2
whereN = {N"}22, = N, + N,. W™ (ylx) = (271'03)% exp{ 202 ;(yz ;) } . (99)
As noises are independent from the stego-signal we may =
use the following simplifications, Similarly, the attack-channel is AWGN a¥/(0, c2) so the

transition probabilities are,
pznix» (X" + N"X") = pyn(N"),

n 1 1 <
leading to the following simplifications in spectral-entropies, 4" (zly) = (2702)3 exp {_T,Q Z(zi - yi)Q} . (96)
@ @ i=1
H(Z|X) = H(N), (88) 1) variance Steganalyzer: In stochastic modulation, a
H(Z|X) = H(N). (89) pseudo-noise is modulated by a message and added to the

S cover signal. This is done, as the presence of noise in signal
We now use these simplifications to present a useful capggocessing applications is a common occurrence.

ity result for additive noise channels. If the passive adversary has knowledge of the distribution of
Theorem 4.1: For additive noise stego-channel defined withhe coversignal and suspects that the hider is using stochastic

N.+N, = N, if N satisfies the strong converse (&(N) = modulation, it expects the variance of a stegosignal will differ

H(N)) then the capacity is, from a coversignal. If the passive adversary knows the variance

_ B of the cover-distribution it could design a steganalyzer to
C(W. g A) = )E‘;EO {H(2)} - H(N) (%0) trigger if the variance of a test signal is higher than expected.
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For example when testing the signal= (y1,...,y») the This allows for a lower bound of,
variance steganalyzer operates as, o 1
C(W,g,A)'= sup H(Z) — = log (2me(c? + 02)) (103a)
gn(y) = { IR (97) o 2
! 0, else >H(Z) - 1 log (2me(a? + 02)) (103b)
Thus, if the empirical variance of a test signal is above a 1 . f o2
certain threshold, the signal is considered steganographic. =5 log ———% (103c)
2) Additive Gaussan Channel Active Adversary: In this 2 Toitog

section we derive the capacity under an active adversaGonverse:

Assume that the adversary uses an additive i.i.d. Gaussikm find the upperbound we will make use of a number of
noise with variancer? while the encoder noise is additivesimple lemmas:

i.i.d. Gaussian Wlth‘f2 Lemma 4.1: For a given stego-channel with secure input
Let N, = {N. ) whereN ~ N(0,02) andN, = {N,} distribution setS, and secure output distribution s&, the
where N, ~ N(0,02). following holds,
Let N = N, + N, {N"—N”+N"}n 1- Since both
N, andN, are i.i.d. as\'(0,02) and N (0, 02), respectively, Sup H(Z) < sup H(Z). (104)
their sum is i.i.d. as\V'(0,02 +02), i.e. N = {N} with N ~ ’ ’
N(0,02 +02). Proof: By definition for anyX € Sy andX Yy, we
SinceN = {N} with N ~ N(0,07 + 07) we have the havey e 7;. -
following relations, Lemma 4.2: For Y — (Y(") Y("),...,Yé")) let Kz(]n)

H(N) =H(N) = H(N) = 11og ame (o +0?). (98) be the covariance betwedn™ and "™, that is K" =
E Y(")Y(”) For the stego-channel defined aboveYif=

Since H(N) = H(N) we see that the noise sequenc?yn}oo € 7, we have for anyy > 0 there exists somé/
satisfies the strong converse property. such that for alln > N,

3) Active Adversary Capacity: We now derive the secure
capacity of the above stego-channel. Since the noises are
i.i.d. the general sequendé will satisfy the strong converse
and allow the use of Theorem %.1.

The formal proof is then followed by a discussion of the  proof: It suffices to show,
results and a description using the classic sphere packing Lo
intuition. (n) .

Theorem 4.2: For the stego-channel(W,g,A) = n ZK“‘ <erT (106)
{(W™, gn, A™)}22, with W™ and A™ defined by [[(9b)
and [96) respectively, ang,, defined by [[9F7) the secure

1<~ .(n
EZKZ-(Z-)+02<0+02+7. (105)

for all n greater than somé&/.
To show this, assume that no sudhexists, thus we have

capacity is,
. e a subsequencey, such that,
& g
C(Wv g, A) =35 log oL (99)
2 Toi+og Z KT > ¢y, (107)
Proof: From Theoreni 411 and (®8) we have,
C(W.g,A) = sup {H(Z)} - H(N) (100)  This means that,
XeSy
Nk Nk
1 n
= sup {H(Z)} — = log2me (o7 + 02) . (101) _ZK1(1 Y= Zyz >c+7,
XeSy 2 Tk
Achievability: which in turn implies that,
LetX = {X} whereX ~ N (0,c—02). ThusY = X+N, = .
{Y'} with Y = X+ N.. By addition of independent Gaussians, Pr{gn, (Y"*) =0} — 0.
Y ~ N(0,c). This gives, This is a contradiction as it shows = {Y"}2°, ¢ 7,. W
1 ()2 . Lemma 4.3: For any Z" = (Zi,...,%,) with C;; =
Pr{gzgofi ) >c}—>0 (102) p{z,2,}.
and we see thaK € S;. Similarly, Z = N, + Y = {Z} H(Z") < Ly g(2me)" ZC“ . (108)
with Z = X + N, + N,. Again by addition of independent 2

. = s
Gaussians we havé ~ N(0,¢ + ;). Proof: From [14, Chap. 9.6] we have,

2Recall that for a general sequenge,= {X™ = (X\™, ..., x (™)}

identically distributed asx.

n=1 1 n
when X = {X} is written it means that eact\™ is independent and H(Z") < 5 g(2me)" H (109)
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The result follows from application of the arithmetic-geometric

inequality. ]
Lemma 4.4: For the above stego-channel, aliye 7, and
anye > 0 we have,

lim inf lH(Z") < (110)

n—oo n,

1
3 log 2me(c + 02) +

whereZ = {Z™}52, andY A7z
Proof: Let anye > 0 be given and choose > 0 such
that,
1),

v < (c+o7)(e* -

this gives,
1 2
5 log2me(c+ o) + €.

() g () _ [y my )
z! }andK E{Yi Y, }
=y, + N This gives,

1
5 log 2me (c+o2+7) < (1112)

LettingC" =
we note thatZ, (")

oM =K 402 (112)

This gives,
1 N (n)
EH(Z) <2—log27re ( ZC )
1 n
1“%1 g(2me)" < ZKfZ") + ag> (114)

1 n
@% log(2me)"™ (¢ + a2 +7)"

(113)

(115)

E%% log 2me(c + 02) + ¢ (116)
The inequality of [2T5) holds for all but a finite numbersof
by Lemma4.R. [ |
We now show the upperbound:
Beginning with the specialization of Theordm 14.1,

1
C(W.g, A) T sup {H(Z)} — 7 log2re(o? +07) (117a)
XeSo
1
< sup {H(Z)} - 5 log2me(o? + 02)
YeTy 2
(117b)
1
%] sup liminf —H(Z")
YeTyp " N
1
~5 log 2me(0? 4 o2) (117c)
1 c+ o2
—1 e 117d
@2 og o +e ( )
Combining [103k) and(11¥d) we have for any 0,
1 c+ 0’ c+ 0’
5 log e 2SC(W,g,A) log 2+02+6
and we see thaf'(W, g, A) = L log C;j:’az ]

12

TABLE Il
GAUSSIANADDITIVE NOISE CAPACITIES

[ Channel [ Secure Capacity | Encoder Noise] Attack Noise|
C(W,g, A) Llog ;gffg o2 o2
C(W,g) % log g—cg o2 0
C(,g A) 1log Cf;;;i 0 o2
Cc(,g) limdzﬁoé log C;g’;z 0
fu(m) ‘ Du(y)

Encoder Decoder

N(0.0%)

Noise

Fig. 9. AWGN Channel Passive Adversary

5) Large Attack Case: We first consider the case wherg
is much larger than both ando 2. This gives,
c+ 0’ 1 o2
7107 zilog—“zo.
Thus when the attack noise is large enough the capacity of
the stego-channel goes to zero. Intuitively this is due to the
fact that the variance steganalyzer places a power constraint
(of ¢) on any signals it allows to pass. If the attack noise is
much larger tharz, a message simply cannot be transmitted
with enough power to overcome that noise and — 0 is
impossible.

6) Large Encoder-Noise Case: Next we consider the case
whereo? > .

Since -5

C(W,g,A) =

lg

2
04

c+a§
o2 Fo2

c—l—a
1 <0
& o2+02 =

< 1, we havelog < 0. This gives,

2+2

C(W,g,A) =

As capacity is always greater or equal to zero we see that
the capacity of this system is indeed zero. This is because no
matter what codeword is sent, the encoder-noise will corrupt
it into the impermissible set and the steganalyzer will be
triggered, that i),/ 0.

This case illuminates the importance of the additional
constraint in communication over a stego-channel, as even if
e — 0 the capacity of the stego-channel is still zero.

7) Noiseless Case: Consider the noiseless case whefe=
02 = 0% ando? — 0. This gives,

¢+ o2
0111110 C(W,g,A) = hmO 5 log o 00
Thus we see that since the channel is noiseless, and the
permissible set size (as well as input and output alphabets)
is uncountable (thus infinite) and the capacity is unbounded.

8) Geometric Intuition: In this section we present some
geometric intuition to the previous results, similar to the case
of the classic additive Gaussian noise[14].1[15].

4) Noise Cases. We now use this  theorem to investigate We will consider the case of only an encoder-noiser6f
the behavior of the capacity under different noise conditionshown in Figurd19.
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From the above theorem we see that, Thus using the center of each sphere as a codeword, we
1 B have M,, codewords wheré/,, = (5)?.
C(W,g) = g log 5 (118)  If we consider the capacity as(W,g) = lim L log M,
) ] we have,
The most basic element will be the volume of an 1 n
dimensional sphere of radius In this case the volume is C(W,g) = lim — log (%) : (120a)
equal toA,r™ where A,, is a constant dependent only on the 1 n . g
dimensionn. =3 log —, (120b)
g

The fundamental question is what is the capacity of the . .
stego-channel, or how many codewords can we reliably udihich agrees with the result of Theordm14.2.
To answer this, we must consider the two constraints on a
secure systenerror probability and detection probability. V. PREVIOUS WORK REVISITED

9) Error Probability: Since we have that™ = Y = %", A. Cachin Perfect Security

we may view each codeword as a point #T'. When we |n Cachin’s definition of perfect securify[116] the cover-

transmit a given codeword we may think of the addition o&ignal distribution and the stego-signal distribution are each

noise as moving the point around in that space. Since thequired to be independent and identically distributed. This

power of the noise isr?, the probability that the received gives the following secure-input set,

codeword has moved more tharno? away from where it 1

started goes to zero as — oo. Thus we know that if we So = {X ={X}: lim —D(S"|X") = 0}. (121)

transmit a codeword, it will likely be contained in a sphere noeen

(centered on the codeword) of radiv&o2. The i.i.d. property means thdd (S™||X") = nD (S||X)
This means that if we receive a signal inside such a sphese, we see that the above is equivalent to,

e o e e s s g e S=X-pDE0-0 022
We know that for secure capacity the probability of error ={X={X}:ps=px} (123)

must go to zero. We also know that each codeword has ansjnce Cachin’s definition does not model noise, we may

associated sphere that the received signal will fall insidggnsider it as noiseless and apply Theofem 3.1,

Thus if we choose the codewords such that their spheres do

not overlap, there will be no confusion in decoding and the C(W,g) = sup H(X) = H(S). (124)

probability of error will go to zero. XeSo

10) Detection Probability: We begin by looking at the This result states that in a system that is perfectly secure (in
permissible set. The permissible set for guris given by. Cachin’s definition) the limit on the amount of information that

may be transferred each channel use is equal to the entropy of
- the source. This is intuitive because in Cachin’s definition the
_ n . 2
P, ={y €Y": qu <nc}. (119) output distribution of the encoder is constrained to be equal
=t to the cover distribution.
Clearly the permissible set is a sphere of radjsc centered
at the origin. If a test signal falls inside this sphere it i Empirical Distribution Steganalyzer
classified as non-steganographic, whereas if it is outside it iSThe empirical distribution steganalyzer is motivated by the
Co‘?ﬁfzéii:;egﬁgggr%eg(;ec re svstem is that the robab.Ifact that the empirical distribution from a stationary memory-
el ure sy : P 'lgss source converges to the actual distribution of that source.

of detection go to zero. If we were to place each codewoy ccordingly, if the empirical distribution of the test signal

such that its sp.h'ere was |n§|de the permissible set, we kn%’nverges to the cover-signal distribution it is considered to
that the probability of detection will go to zero. dbe non-steganographic

11) Capacity: From the above we know that the codeword \sqime ‘thatps is a discrete distribution over the finite
spheres cannot overlap (to ensure no errors), and we also kNgW -bis | et a sequencels™ )22, with eachs”™ € S™ be
. 4 n=1

that all the codeword spheres mus_t fit inside the permissi ed to specify the steganalyzer for a test signak,
set (to ensure no detection). Thus if we calculate the number

of non-overlapping spheres we may pack into the permissible gn(x) = { 0 ?f Pign) = Pys (125)
set, we will have a general idea of the number of codewords ’ Lif Pgny 7# Plx)-
we can use. where P, is the empirical distribution ok.

Since the volume of the permissible set#li;(nc)% andthe  The permissible set fay, is equal to the type class B gn1,
volume of each codeword sphereds,(no?)* we can place je.

approximately, n
" Pgn = T(P[Sn]) = {X e x": P[x] = P[Sn]} . (126)
Ap(nc)z ( c )5

A,(no?)s ~ \o2

non-overlapping sphere inside the permissible set. C(W,g)=H(9). (127)

Theorem 5.1 (Empircal Distribution Steganalyzer Capacity):
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Ps

| Detection |~ X~ s Proof: Theoren{ 5l show€' (W, g) = H (S).
We now show Moulin’s capacity is equal to this value. In
the case of a passive adverséfy, = 0), the following is the

@Ms:) e ‘Tﬁm(y‘x) . M capacity of the stego-chanri€l[2],
D D,

Q/EQ/
where ap € Q' is feasible if,
Fig. 10. Moulin Stego-channel Zp(x|s)ps(s)d(3, x) < Dy, (131)
ps : and
Detection
= S plafs)ps(s) = ps(a). (132)
X s
The capacity can be found for unbound®d as,

M —— N

Encoder Decoder CSTEG (OO7 0) = sup H(X|S) (133a)
p(z]s)€Q’
Fig. 11. Equivalent Stego-channel _ H(S) —  min I(S' X) (133b)
palsie
= H(S) (133c)

Proof: Since the channel is noiseless we may applynhere the final line comes from choosipgr) = ps(z). m
Theoreni31L.

1 VI. CONCLUSIONS
C(W,g) = liminf —log|Py, | (128a) i ) )
n—oo 1 A framework for evaluating the capacity of steganographic
— liminf 1 log |T(s™)| (128b) Channels under an activg adversary has beep introduced. The
n—oo N system considers a noise corrupting the signal before the
= H(S) (128c) detection function in order to model real-world distortions

Here we have used the fact that the permissible set f%?g:r(])r?sstr;ci):t]sp rgr?stlgg,g:ggélez:i ttlj?argliﬁtcwith distortion and a
the empirical distribution detection function is the type g

class in [128b). Additionally, by Varadarjan's Theorém[17 over-signal are not considered. Instead, the focus is to develop
Pii(z) — ps ('x) almost SL,JI’e|y (here the convergence i]Zhe theory necessary to analyze the interplay between the chan-

uniform in = as well). This allows for the use of the typenel and detection function that results in the steganographic

. ; ._capacity.
;:éasisltentropy bound from Theordm D.1 that provides the fm%?The method uses an information-spectrum approach that

allows for the analysis of arbitrary detection functions and
channels. This provides machinery necessary to analyze a very
C. Moulin Seganographic Capacity broad range of steganographic channels.

Moulin’s formulation[2], [3] of the stego-channel is shown [N addition to offering insight into the limits of performance
in Figure[TD. This is somewhat different than the formulatiofPr Steganographic algorithms, this formulation of capacity can

shown in FiguréL; most notable is the presence of distorti®¢ Used to analyze a different, and fundamentally important,
constraints and an absence of a distortion function prior {8cet of steganalysis. While false alarms and missed signals

the steganalyzer. Additionally, an explicit steganalyzer is nd@Ve rightfully dominated the steganalysis literature, very little
defined and a hypotheticA ~ ps is used. In order to have IS known about the amount of information that can be sent past

the two formulations coincide a number of simplifications ard'€se algorithms. This work presents a theory to shed light
needed for each model. onto this important quantity called steganographic capacity.

For our model,

o The stego-channel is noiseless
o The steganalyzer is the empirical distribution

For Moulin’s model,
o Passive adversary), = 0)

APPENDIXA
€-STRONG CONVERSEPROOF

A stego-channe[(W, g, A) satisfies the:-strong converse
property (for a fixed)) if and only if,

« No distortion constraint on encodeP( = o) Sup I(X;Z) = Sup 1(X;Z). (A.134)
5 5
These changes produce the stego-channel shown in Fig- .
ure[T1 ges produ g Wn in g Proof:  First —assume supxcs, L(X;Z) =

PSUPX s, I(X;Z). Let R = C(0,6|W,g,A) + 3v with

Theorem 5.2: For the stego-channel shown in Fi 1 ; >
J gurel ~ > 0. Consider ann, M, €,, §,,)-code with,

the capacities of this work and Moulin’s agree. That is,

.|
C(W,g) = C5TEC(00,0) = H (). (129) liminf —log M, > R,

n—oo n
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and
limsup 6, < 4.

n—oo

Let X represent the uniform input due to this code @the

output after the chann&) = AX. From the Feinstein Dual

[6], [[7] we know,

1
€n > Pr{—i

1
n (Xn§Zn) < ElogMn - 7} —e " (A135)

We also know there exists, such that for alln > nq that,
1
- log M,, > R — , (A.136)

so forn > ng,
1
€, > Pr {—i(X”; Z")<R- 27} —e ", (A.137)
n

We now show that the probability term above tendd to
Using Theoreni 2]2 we have,

R =C(0,6/W,g, A) + 3y (A.138)
= supxcs, L(X;Z) + 3y (A.139)
= supxes, 1(X;Z) + 3y (A.140)
Rewriting gives,
R—2y= sup I[(X;Z)+7. (A.141)
XeSs
By the definition of/(X; Z) we finally have,
lim Pr{li(xn; Z") <R - 27} =1, (A.142)
n—oo n

which together with_ A-137 shows that thain,, . €, = 1.
For the other direction assume,

lim e, =1, (A.143)
and,
limsupd,, < 9. (A.144)

n—oo
SetR = C(0,0|W, g, A)+~ for anyy > 0 and setM,, =
e, Clearly,

1
lim inf - log M,, = R > C(0,0|W,g, A).

n—oo

For anyX € S5 (and its corresponding), using Feinstein’s
Lemma [T1] we have afn, M, €,)-code satisfying,

1
en < Pr{—z’(X";Z") < R+7} +e ™. (A.145)
n
From the error assumption we see that,
1
lim Pr {—i(X”; Z") <R+ 7} =1 (A.146)
n— o0 n
This means that,
R4+~ >1(X;2Z), (A.147)
and sinceX € S; is arbitrary we have,
R+~ > sup I(X;Z). (A.148)

XeSs

15

Substituting we have that,

sup 1(X;Z) < R+~ (A.149)
XeSs
C(0,0|W,g,A)+2v (A.150)
= supxes, L(X;Z) +2y  (A.151)
As ~ is arbitrarily close ta) we have,
sup 1(X;Z) < sup I[(X;Z). (A.152)
XEeSs XEeSs
Also, by definition,
sup I1(X;Z) > sup I[(X;Z), (A.153)
XeSs XEeSs
showing equality and completing the proof. [ |

APPENDIXB
SPECTRAL INFENTROPY BOUND

For a discreteg = {P,}>2, with corresponding secure
output set7y,

1
sup H(Y) = liminf — log |P,,|
YeT, n—oo N
Proof: Let 2/(A) represent the uniform distribution on a
set A.
SinceY* = {U(P,)}2, € 7o we have,

sup H(Y) > H(Y™)
YeT,

1
= lim inf = log |P,| (B.154)
n—oo M
Now assume there exis® € 7, with Y = {Y"}>,, such
that,

H(Y)=H(Y") + 3, (B.155)

for any~ > 0.
This means that,
lim P L log ————
w8 pen (V)
By (B:154) we havef(Y*) = liminf, . 1 log|P,| and
from the definition ofliminf we may find a subsequence
indexed byk,, such that,

< H(Y*) + 27} =0 (B.156)

1
H(Y")+2y> 7 log Pk,

+. (B.157)

For anyk, (B.157) holds and we have,

1 1 1
Pr{—log————— < —log|Py, | +7 <
r{kn ngwn(Yk") o og | Pk, 7} <
1 1
Prq{—log————— < H(Y" 2v ¢ . (B.158
r{kn 8 ey <Y V} (B.158)
Applying this result to[[B.156) we have,
1 1
lim Pr¢ —log—— < —1 =0.
i Pe{ o < g on P+
(B.159)
For anye > 0 andn greater than some,
_ e kny
Pr {pyk,, (YFkn) > 5 }<e. (B.160)
K,
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Let, For n > ng the probability of the permissible set (in this
- e—kn7 subsequence) is,
Ag, = {y eV Dyhn (Yk’”) > —} , (B.161)
’ (P . C.170a
and for alln > ng, we havepy., (Ag,) < ¢ Pyin (P ) x»;m Py ( )
For n > no we may calculate the probability of the "
permissible set (for the subsequence) as, = > pye(y)
ye?’knﬂAzn
n (Pr,.) . B.162a
Pyt y; by ( ) + > e (C.170b)
o YEPL, NAy,
= D et D pre(y) P
yEPy, NAL YEPk, NAk, < |P— Z 1
(B.162b) Fnl yepy,nag,
ey + Z Dykn (¥) (C.170c)
< _ n
<Y ° ot S pye(y)  (B.162c) vera
e o —hny c.170d
<ehY g (B.162d) e e (C.170d)
This showspy«, (Pk, )#— 1 and we have a contradlctlonshowmg it is impossible folY € 7. -
asY ¢ 7. [ |
APPENDIXC
APPENDIXD

SPECTRAL SUPENTROPY BOUND

TYPE SET SIZE ENTROPY

For discretes = {P,,}22, with corresponding secure output

set7y,
sup H(Y) = lim sup — log [P
YeTy n—00
Proof: SinceY* = {U(P,,)}2, € Ty we have,
sup H(Y) > H(Y*") (C.163a)
YeTy
= limsup — 1og [Py (C.163b)
n—oo

Now assume there exis®® € 7,, with Y = {Y"}22, such
that,
HY)=H(Y") + %, (C.164)
for any~ > 0.
This means that,

. 1 1 = Y
lim Pr{—log—————>H(Y")+ -} = A
Jim r{n ngyn(Y”) >H(Y")+ 2} 0 (C.165)

By the definition oflim sup for some subsequende, we
have,

HY™) + (C.166)

o2

and

1 1
lim Pr{—log >—10g|77kn|+V}ZO-

1
k‘n Pykn (Yk") kn

n—oo
(C.167)
For anye > 0 letting,
. e~ kny
Ak’n = {y cx” I Dykn (Y ") < } (C168)
we may findng where forn > ng,
Pykn (Ak") < €. (C.169)

Theorem D.1: Let (pi1,po,...) be a sequence of types de-
fined over the finite alphabet wherep,, € P,,. Assume this
sequence satisfies the following:

1) Pn — P
2) pn <<p, Vn
Then,
nh—{r;o - IOg |T(pn)| - ( ) (Dl?l)
Proof: We first show,
lim mf — log T (pn)| > H(p). (D.172)

n—00

A sharpening of Stirling’s approximation states that for

<Ay <

12n+1 12 !

1
nl = V2mn"tze e,

Let the empirical distribution, p,, be specified by

(n1,...,nk,). That is, if we enumerate the outcomes as
(a1,...,ax,) we have that,
Uz
a;) = —.
Plai) = —

By definition El ' n; = n, and from the above condition
of absolute continuity we have that,, < s(p) for all n, where
s(p) is the support of the final distribution.
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log |T (pn)| = log (

[11] A. Feinstein, “A new basic theorem of information theotfgEE Trans.
| on Information Theory, vol. 4, no. 4, pp. 2-22, Sep. 1954.
n: [12] L. M. Marvel, C. G. Boncelet, Jr, and C. T. Retter, “Spread spectrum
) image steganography,EEE Trans. Image Processing, vol. 8, no. 8, pp.
1075-1083, Aug. 1999.

nil,ngl, .. .,nKn!

1

1 2mnnt2e et [13] J. Fridrich and M. Goljan, “Digital image steganography using stochastic

=108 K, nit+i s Ao modulation,” inProc. SPIE Electronic Imaging 5022, Santa Clara, CA,
L5 ( 2mn; " feT e ) Jan. 21-24, 2003.

P [14] T. M. Cover and J. A. Thomaglements of information theory. Wiley-
= N Interscience, 1991.
=nlogn — Z n; logn; + log v 2mne™ [15] C. E. Shannon, “Communication in the presence of noiBegteedings
i=1 of the .RE., vol. 37, pp. 10-21, Jan. 1949.
K, [16] C. Cachin, An Information-Theoretic Model for Steganog-
s raphy, ser. Lecture Notes in Computer Science. New
- Z log ( V2mnie ") York: Springer-Verlag, 1998, vol. 1525. [Online]. Available:
i=1 citeseer.nj.nec.com/article/cachinOlinformationtheoretic.html
iR [17] R. M. Dudley, Real Analysis and Probability. Cambridge, UK:
nH (pn) — Knlog ( 2mne 12) Cambridge University Press, 2002.

Y

This implies that,

Taking thelim inf of each side,

Now we have from the type class upper-boulind[14] that,

1
liminf —log|T (p,)| > liminf H (p,) = H(p). (D.173)
n—oo N n—oo

%log |T(pn)| > H (pn) — % log (\/ 27rne%) .
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