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Abstract

This monograph describes current-day wavelet transform image cod-
ing systems. As in the first part, steps of the algorithms are explained
thoroughly and set apart. An image coding system consists of several
stages: transformation, quantization, set partition or adaptive entropy
coding or both, decoding including rate control, inverse transforma-
tion, de-quantization, and optional processing (see Figure 1.6). Wavelet
transform systems can provide many desirable properties besides high
efficiency, such as scalability in quality, scalability in resolution, and
region-of-interest access to the coded bitstream. These properties are



built into the JPEG2000 standard, so its coding will be fully described.
Since JPEG2000 codes subblocks of subbands, other methods, such
as SBHP (Subband Block Hierarchical Partitioning) [3] and EZBC
(Embedded Zero Block Coder) [8], that code subbands or its subblocks
independently are also described. The emphasis in this part is the use
of the basic algorithms presented in the previous part in ways that
achieve these desirable bitstream properties. In this vein, we describe
a modification of the tree-based coding in SPIHT (Set Partitioning
In Hierarchical Trees) [15], whose output bitstream can be decoded
partially corresponding to a designated region of interest and is simul-
taneously quality and resolution scalable.

This monograph is extracted and adapted from the forthcoming
textbook entitled Digital Signal Compression: Principles and Practice
by William A. Pearlman and Amir Said, Cambridge University Press,
20009.
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Subband/Wavelet Coding Systems

1.1 Introduction

This monograph describes coding systems, primarily for images,
that use the principles and algorithms explained in the first part.
A complete coding system uses a conjunction of compression algo-
rithms, entropy coding methods, source transformations, statistical
estimation, and ingenuity to achieve the best result for the stated
objective. The obvious objective is compression efficiency, stated as
the smallest rate, in bits per sample, for a given distortion in lossy
coding or smallest rate or compressed file size in lossless coding.
However, other attributes may be even more important for a particular
scenario. For example, in medical diagnosis, decoding time may be the
primary concern. For mobile devices, small memory and low power
consumption are essential. For broadcasting over packet networks,
scalabilty in bit rate and/or resolution may take precedence. Usually
to obtain other attributes, some compression efficiency may need to be
sacrificed. Of course, one tries to obtain as much efficiency as possible
for the given set of attributes wanted for the system. Therefore, in
our description of systems, we shall also explain how to achieve other
attributes besides compression efficiency.
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1.2 Wavelet Transform Coding Systems

The wavelet transform consists of coefficients grouped into subbands
belonging to different resolutions or scales with octave frequency
separation. As such, it is a natural platform for producing streams
of code bits (hereinafter called codestreams) that can be decoded
at multiple resolutions. Furthermore, since the coefficients are the
result of short finite impulse response (FIR) filters acting upon the
input data, they retain local characteristics of the data.! Most natural
images show wavelet transforms with magnitudes of their coefficients
generally decreasing as the subband scale or resolution increases. In
other words, most of the energy of these images is packed into the lower
frequency subbands. Furthermore, there are intra-subband and inter-
scale statistical dependencies that can be exploited for compression.
A typical wavelet transform with three scales, that of the 512 x 512
Lena image, is displayed in Figure 1.1. The values of the coefficients
may be negative, except in the lowest frequency subband in the top left
corner, and require precision exceeding the eight bits of most displays.
Therefore, for display purposes, the coefficients in all subbands were
scaled to the range of 256 grey levels. In all but the lowest frequency
subband, the zero value corresponds to the middle grey level of 128.
One can clearly see the edge detail propagating across scales to the
same relative locations in the higher frequency subbands as one moves
from the top left to the top right, bottom left, or bottom right of
the transform. However, this detail becomes quite faint in the highest
frequency subbands, where the coefficients are predominantly middle
grey with actual values of zero. Notice also that within subbands, the
close neighbors of a coefficient do not change much in value, except
across edges. All these characteristics make the wavelet transform
an effective platform for efficient compression with the attributes of
resolution scalability and random access decoding. The arrangement
of the coefficients into subbands belonging to different scales or reso-
lutions makes possible encoding or decoding different scales. Random
access to selected regions of interest in the image is possible, because

L An introduction to wavelet transforms and the explanation of its implementation by two-
channel filter banks appear in Appendix A in Part I.
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Fig. 1.1 Display of image subbands of a 3-level, dyadic wavelet transform. Middle grey level
of 128 corresponds to 0 value of a coefficient in all subbands, excluding the lowest frequency
one in the top left corner.

of the local nature of the transform, since one can select regions
of subbands at different scales to decode a particular region of an
image.

The subband labeling diagram for the wavelet transform in
Figure 1.1 is depicted in Figure 1.2. This subband arrangement was
produced by three stages of alternate low and high pass horizontal and
vertical filterings of the resulting low horizontal and low vertical sub-
bands followed by 2:1 downsampling. (The first stage input is just the
source image itself.) We show the analysis and synthesis for two stages
explicitly in Figures 1.3 and 1.4. The LLy (low horizontal, low vertical,
2nd stage) subband is just a coarse, factor of 22 reduction (in both
dimensions) of the original image. Upsampling and filtering of LLo,
LHy, HLs, and H Hy subbands yields the LL; subband, which is two
times the scale of LLs, but still scaled down by a factor of 2! from
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Fig. 1.2 Subbands of a 3-level, dyadic wavelet transform.
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Fig. 1.3 Two-level recursive lowpass filter analysis of image I.

the original. And so it repeats on the LL; subband for one more stage
to obtain the full scale reconstruction of the original input. Therefore
at each synthesis stage, we can obtain a reduced scale version of the

original image.
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Fig. 1.4 Two-level recursive lowpass filter synthesis of image I.

In order to synthesize just any given (rectangular) region of an
image, one needs only to locate the coefficients in the corresponding
regions in the subbands of the wavelet transform and apply them to
the same synthesis filter bank. These regions are located in the sub-
bands in the same relative position as in the image, as illustrated in
Figure 1.5 for an image and its two-level wavelet transform. The frac-
tional area in these subbands is slightly larger than that in the image,
because coefficients outside the designated region result from filtering
of image samples inside the region only near the boundaries, due to
the finite length of the filters. That is why the rectangles in the sub-
bands that exactly correspond to the image rectangle are shown inside
larger rectangles. Again, the region can be reconstructed at different
resolutions, if desired.

The best filters to use from the standpoint of achieving the best
compression efficiency or highest coding gain have real number tap
values, represented as floating point numbers that are precise only
within the limits of the computer. These filters produce floating point
wavelet coefficients. Hence, the inverse transform, done again with
floating point filters, may not produce an exact replica of the source.
For example, if a filter tap value contains a factor of 1 + v/3, then
the floating point representation cannot be exact and all subsequent
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Fig. 1.5 Subband regions in the wavelet transform corresponding to an image region. The
inner rectangles correspond to the exact corresponding fractional area of the image region
of interest (ROI). The areas between the inner and outer rectangles contain coefficients
needed to reconstruct ROI exactly.

mathematical operations will propagate this inexactness. Coding the
wavelet coefficients means converting them to a compact integer
representation. Therefore, even if the coding is perfectly lossless, the
inverse wavelet transform may reconstruct the image with error from
the original and one cannot guarantee perfectly lossless image com-
pression in a wavelet transform system using floating point filters. One
achieves what is often called virtually lossless reconstruction. In most
practical applications, that is not a hindrance, but sometimes, often
for legal reasons that arise in certain fields such as diagnostic medicine,
it is crucial to achieve perfectly lossless compression. Therefore, for
perfectly lossless image compression in a wavelet-based coding system,
one must use filters that operate with integer arithmetic to produce
integer transform coefficients. This also assures that there are no errors
due to limited precision in the synthesis stage. There will be a small,
usually tolerable, reduction in potential coding gain from the use of
these integer-to-integer filters for wavelet transformation.

1.3 Generic Wavelet-based Coding Systems

The generic wavelet transform coding system, regardless of the source,
normally starts with subband/wavelet transformation of the source
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input. There is often then an optional pre-processing step that con-
sists of statistical estimation, segmentation, weighting, and/or classifi-
cation of the transform coefficients. Then the coefficients are subjected
to quantization and/or set partitioning, usually followed by entropy
coding, such as Huffman or arithmetic coding. Along with overhead
information generated by the pre-processor, the encoded transform
coefficients are written to the output codestream. The block diagram
of this generic system is shown in Figure 1.6.

The decoding system, also shown in Figure 1.6, reverses the process
by decoding the codestream to reconstruct the wavelet transform, post-
processing this transform, according to the pre-processor’s actions, and
then inverting the wavelet transform to reconstruct the source. One
simple example of pre-processing is weighting transform coefficients to
affect the distribution of code bits, in order to enhance visual quality of
an image or aural quality of audio. The post-processing step must do
inverse weighting, or the reconstruction will be distorted. The pairs of
the pre- and post-processors and the entropy encoder and decoder are
optional for some coding systems, so are depicted in dashed line boxes
in Figure 1.6.
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Fig. 1.6 Encoder and decoder of subband/wavelet transform coding system. The boxes with
dashed lines denote optional actions.
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1.4 Compression Methods in Wavelet-based Systems

We now describe various methods to compress and de-compress coef-
ficients of a wavelet transform of a source, such as the image shown
in Figure 1.1. We shall describe methods referring specifically to
images, although these methods can almost always be applied to one-
dimensional or higher-dimensional wavelet transforms with obvious
modifications. We shall start with some of the set-partition coding
methods of the previous section.

Within the Quantization/Set Partitioning system block in Fig-
ure 1.6, the quantization is necessary for floating point transform coef-
ficients and optional for integer ones. Any quantization will result in
reconstruction error, which is unavoidable for floating point coefficients.
For embedded coding enabled through coding of bit planes, the quanti-
zation may be just a mere truncation of every coeflicient to the nearest
integer. Deeper quantization is implicit when the coding stops above the
least significant n = 0 bit plane. Suppose coding stops just after com-
pleting bit plane n. Then every coefficient has an indeterminate added
value between 0 and 2" — 1, corresponding to a quantizer interval. The
decoder then assigns a reconstruction point within this interval.

For explicit quantization, the coefficients are quantized with a par-
ticular type of uniform quantizer, called a uniform, dead-zone quan-
tizer. For this quantizer, thresholds are uniformly spaced by step size
A, except for the interval containing zero, called the dead-zone, which
extends from —A to +A. Figure 1.7 illustrates the input—output char-
acteristic of a uniform dead-zone quantizer with 7 quantizer levels and
mid-point reconstruction values. This quantization is enacted by scal-
ing by the step size and truncating to integers to produce the indices of
the quantization intervals (often called quantization bins). The math-
ematical operation upon the input x to produce a bin index ¢, given a
quantizer step size A is

q = sign(z)[|z[/A]. (1.1)
The reconstruction (de-quantization) & is given by
(¢+8A, ¢>0
t=q(@—-8A, ¢<0 (1.2)
0, q=0
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Fig. 1.7 Input—output characteristic of a 7 level, uniform dead-zone quantizer.

where 0 < £ < 1. Heretofore, the bin index ¢ will be called the quantizer
level. The parameter £ is often set to place the reconstruction value at
the centroid of the quantization interval. It has been derived through
a model and confirmed in practice that & ~ 0.38 usually works well.
In many cases, £ = 0.5 is used, which places the reconstruction at the
interval’s midpoint. It is important to realize that when —A <z < A,
the quantizer level and reconstruction value are both 0. For a subband
or linear transform, there may be many coefficients, belonging espe-
cially to higher frequencies, that are set to 0. The array of quantizer
levels (bin indices) ¢ are further encoded losslessly. As we have seen,
clusters of zeros can be represented with very few bits.

For optimal coding that minimizes mean squared error for a
given number of bits, statistically independent subbands encoded with
nonzero rate should exhibit the same mean squared error. Although
not statistically independent, the subbands are often modeled as inde-
pendent and are encoded independently. In such circumstances, use
of the same step size for all subbands minimizes the mean-squared
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reconstruction error for high rates and orthonormal synthesis filters. In
accordance with this usual model, notwithstanding less than optimal
coding, all subbands encoded with non zero rates are quantized with
the same step size A.

Often, the pre-processor function of weighting subbands to enhance
perceptual quality or to compensate for scaling of non-orthonormal
synthesis filters is combined with quantization by using different step
sizes among the subbands. In this case, there is posited a set of step
sizes, {Ap}, m=1,2,..., M, with A,, being the step size for subband
m. The quantization follows the same formulas as (1.1) and (1.2).

In almost all wavelet transform coding methods, the quantizer levels
are represented by their sign and magnitude. In the sections that follow,
we shall describe specifically some of the many methods used to code
the quantizer levels of wavelet transform of images. For images that are
represented by 8 bits per pixel per color, the quality criterion is peak
signal-to-noise ratio (PSNR), defined by

9 2
PSNR — gl , (1.3)

i M S (ali,g] — 26, 4))2

where z[i,j| and Z[i,j] denote the original and reconstructed image
values, respectively, at coordinates (i,7), and M and N the total row
and column elements, respectively. The denominator is just the mean
squared error per pixel. Usually PSNR is expressed in dB, so that it
expresses the dB difference between the peak value and RMS (root
mean squared) error. We remind that mean-squared error is exactly
the same whether calculated in the source or transform domain, if the
transform or filters are orthonormal.

1.5 Block-based Wavelet Transform Set Partition Coding

In this section, we shall describe block-based techniques, presented in
detail in Section 2 of Part I, for set partition coding of the quan-
tizer levels. The principles of providing resolution and quality scalable
coding are explained first, followed by the descriptions of the specific
techniques of SBHP (Subband Block Hierarchical Partitioning) [3],
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the JPEG2000 Standard, Part 1 [10], and EZBC (Embedded Zero-
Block Coder) [7, 8].

The quantizer levels are represented in sign-magnitude format and
tests for significance are enacted on the magnitudes. There are various
choices for setting the order of coding of the subbands, coding and/or
partitioning within subbands, setting the thresholds for significance,
coding the results of significance tests, and coding the coefficient values.
We shall describe coding systems that utilize some of these possible
combinations of choices.

First, we consider the subbands as the blocks to be coded. The order
in which the subbands are coded follows the indicated zigzag path from
lowest to highest frequency subband, as illustrated in Figure 1.8. The
advantages of following this particular path is that the image is encoded
and decoded progressively in resolution or in scale. For example, refer-
ring to Figure 1.8, decoding just the LLs (denoted LL in the figure)
subband produces just a 1/8 scale reconstruction. Decoding LL3, H L3,
LH3, and HHj produces a 1/4 scale reconstruction, and so forth. One
also follows this path in the search related to quality progressive coding,

Lo AL |
‘/ " HLZ
LH, | HH, o
S HL
_
LH, HH,
LH, HH,

Fig. 1.8 Scanning order of subbands in a 3-level wavelet decomposition. Subbands formed
are named for horizontal and vertical low- or high-passband and level of decomposition,
e.g., LHo is horizontal low passband and vertical high passband at second recursion
level.
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because the subband energy tends to decrease along this path for most
natural images. The general framework is delineated in Algorithm 1.1.

Algorithm 1.1. Framework for progressive-resolution wavelet trans-
form coding.

(1) Start with M subbands {SBj} having quantization levels of
their coefficients denoted by ¢; ;.

(2) Calculate top threshold in each subband, i.e., calculate
ng = logy|sk|, sk = max(; jyesp, 1¢i ;|- Order subbands SB,
according to the progressive-resolution zigzag scan, as shown
in Figure 1.8.

(3) Encode ni,na,...,na.

(4) For k=1,2,..., M, if ny > 0, encode S Bj.

Any one of the methods described in the previous part can be used
for coding of the subbands in Step 4 of Algorithm 1.1. We shall describe
below how some of these methods fit in this framework.

1.5.1 Progressive Resolution Coding

First, we consider the (quantized) subbands to be coded progressively
from lower to higher resolution by the fixed-threshold, recursive quadri-
section procedure in Algorithm 2.1 in Part I. Recall that this algorithm
produces (approximate) value-embedded code, but not bit-embedded
code. The thresholds are fixed to be successive integer powers of two and
tests for significance are enacted on the magnitudes of the coefficients,
as defined in Equation (2.9) in Part I. The maximum threshold, 2™max
is calculated for each subband. We deposit these thresholds into the
header of the codestream. We scan the subbands in order from lowest
to highest as illustrated in Figure 1.8 and partition each one in turn by
the recursive quadri-section procedure of Algorithm 2.1, Part I. Briefly,
we start with an LIS (List of Insignificant Sets) for each subband, each
initialized with the coordinates of its top left corner. Each LIS set of a
subband is tested at the current threshold, say 2", and if not significant,
a “0” is sent to the codestream. But, if significant, the set is split
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into four equal quadrants,? each of which is tested at threshold 2" for
significance. Significant quadrants are labeled with “1” and insignificant
ones are labeled with “0”, thereby creating a 4-bit binary mask that is
encoded and sent to the codestream. The insignificant quadrants are
appended to the bottom of their subband LIS, represented by their top
left corner coordinates. Significant sets continue to be split and labeled
in the same way until all significant single elements are located and
encoded. Then we lower the threshold from 2" to 2"~! and test the
LIS sets in order of increasing size. For each subband, we start with
its initial threshold 2™max lower it by a factor of 2 in each succeeding
pass, and continue through the last pass at threshold 2°. This coding
method, which follows Algorithm 2.1, Part I, would be used to encode
S By, in Step 4 of Algorithm 1.1, the general framework of progressive
(scalable) resolution coding. The following example illustrates its use
and displays coding results.

Example 1.1 Resolution Scalable Coding. The source image is
the 512 x 512, 8 bits per pixel, grey Goldhill image, shown in Fig-
ure 1.9. This image is then wavelet transformed and its wavelet coeffi-
cients are then quantized through scaling by a factor of 0.31 (step size
of 1/0.31) and truncating to integers. The resolution scalable coding
algorithm described above encodes the wavelet transform’s quantiza-
tion bin indices losslessly to a rate of 1.329bpp (codestream size of
43,538 bytes). Portions of this codestream corresponding to the desired
resolution are then decoded, de-quantized, and inverse wavelet trans-
formed, to produce the reconstructed images. Figure 1.10 shows the
reconstructed images for full, one-half, and one-quarter resolutions.

The aggregate of 4-bit binary masks corresponds to a quadtree
code, as noted in Section 2, Part 1. It is advantageous to entropy code
these 4-bit masks instead of sending the raw quadri-section codes to
the codestreams (see Table 2.3, Part I). Even a simple fixed Huffman
code of 15 symbols (0000 cannot occur) shows improvement. A more

2For nonsquare images, the splitting is into quadrants as nearly equal in size as possible.
At the last splitting stages, when a single row or column with more than one element is
reached, binary splitting is employed.
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Fig. 1.10 Reconstructions from codestream of Goldhill coded to rate 1.329 bpp, quantizer
step size = 1/0.31 at full, 1/2, and 1/4 resolutions.

sophisticated fixed Huffman code can be conditioned on the size of the
block and/or the particular subband. Another level of sophistication
is to adapt the code by estimating and updating the significance state
probabilities as coding proceeds. Certainly, arithmetic coding may be
substituted for Huffman coding in the above scenarios for entropy
coding.
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The decoder has prior knowledge of the wavelet transform decom-
position and scanning order of its subbands, and receives the image
storage parameters and subbands’ maximal thresholds from the header
of the incoming codestream. It therefore knows which subbands to skip
in every scan corresponding to the current threshold. It initializes the
LIS of every subband with its corner coordinates. It reads the signifi-
cance decisions, so is able to build the same LIS populations. It will
then know when it is reading the code of significant coefficients and
will decode them.

1.5.2 Quality-Progressive Coding

Encoding every subband completely in the zig—zag order above pro-
duces a resolution-progressive codestream. Furthermore, each sub-
band’s codestream is approximately progressive in quality or value,
because coefficients with larger most significant bits (MSB’s) precede
those with smaller MSB’s. Figure 1.11 illustrates the coding order of
the magnitude bits of coefficients in a value-progressive scan. The coeffi-
cients are ordered by the level of their MSB’s and every coefficient’s bits
are coded from its MSB to its LSB (least significant bit). Although the
subbands individually are progressive in quality, the composite code-
stream is not. Bits from larger coefficients in a subband scanned later
will follow those of smaller coefficients from a subband scanned earlier.
One can re-organize this codestream to be progressive in value, if we

WSE 1] [ ][4
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Progressive Value Scan

Fig. 1.11 Coding order for a progressive value codestream.
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insert indicators® to separate the bits from coding passes at differ-
ent thresholds. The code bits of coefficients significant for the same
threshold are kept together in the codestream. With the aid of these
indicators, we can gather together from different subbands the code
bits of coefficients significant for the same threshold. Therefore, in the
decoder, the coefficients with larger significance are decoded before
those of lesser significance. This re-organization scheme does not order
the values within the same threshold, so is only partially progressive
in value. Furthermore, this re-organization may vitiate the progressive-
ness in resolution. One or more lower resolution subbands may not have
significant coefficients at the current threshold, while higher resolution
ones do. If we continue to collect the bits from these higher resolution
significant coefficients at the current threshold, then we will not be
keeping together code bits from the same resolution.

One can re-organize this codestream not only to be partially value-
progressive, but also to be bit-embedded. Again note that bits belong-
ing to the same threshold (with same MSB) are kept together in the
codestream. The value-progressive scan reads code bits from the most
significant bit downward to the least significant before proceeding to
the next coefficient with the same most significant bit. We can produce
a bit-embedded codestream, if starting with the largest most significant
bit plane, we always move to the same bit plane of the next coefficient
in the scan, whether in the same or a different subband. Referring
to Figure 1.12, this path corresponds to scanning a bit plane from
extreme left to extreme right at the same horizontal (bit plane) level,
dropping down one level, and returning to the extreme left to repeat
the rightward scan holding the same level. The general framework for
value-progressive coding is delineated in Algorithm 1.2.

Algorithm 1.2. Framework for value-progressive wavelet transform
coding.

(1) Start with M subbands {SBy} having quantization levels of
their coefficients denoted by ¢; ;.

3 Indicators are markers or counts of bits inserted into the codestream header.
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Fig. 1.12 Coding order for a bit embedded codestream.

(2) Calculate top threshold in each subband, i.e., calculate
ng = logy|sk|, sk = max(; jyesp, 1¢i,j|- Order subbands SB,
according to the progressive-resolution zig—zag scan, as
shown in Figure 1.8.

(3) Encode ny,na,...,na;.

(4) Initialize LIS with top left corner coordinates of subbands in
order of SB1,SBs,...,5B)y.

(5) Let k=1.

(a) Let n=ny. If n >0,

i. Do single pass of set partition coding of SBy
at threshold 2™ until all single significant ele-
ments are located.

ii. Encode significant single elements with (no
more than) n + 1 bits.

(b) Move to next subband, i.e., let k =k + 1.
(c) If K < M, go to Step ba.

d) If k> M, decrement n, i.e., let n=n — 1 and reset
(
k=1.

(e) if n > 0, return to Step 5(a)i; if n =0, stop.

The coding passes in Step 5(a)i may be accomplished either by
direct recursive quadrature splitting (Step 2, Algorithm 2.1, Part I)
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or octave band partitioning and recursive quadrature splitting of the
SPECK (Set Partitioning Embedded bloCK) Algorithm [9] (Algorithm
2.6, Part I). The initial S sets for the subbands would be the 2 x 2
blocks in their top left corners. Instead of maintaining an LSP (List of
Significant Points) and executing a refinement pass, the single elements
are encoded immediately and written to the codestream when found to
be significant, as in Step 5(a)ii in Algorithm 1.2.

As before, if there are one or more subbands with empty layers
at the given bit plane, the codestream will lose its progressiveness in
resolution. Then higher bit plane bits from higher resolution subbands
will reside among those from the lower resolution ones. Therefore a
truncated codestream cannot contain purely bits from a certain scale.

Another way to obtain a bit-embedded codestream is to keep the
same threshold in the zig—zag scan across the subbands and maintain a
list of significant elements, called the List of Significant Points (LSP),
initially empty. The starting threshold is the largest among all the
subbands and is almost always that of the lowest frequency subband.
When the current threshold exceeds the maximal threshold of a given
subband, that subband is skipped. For the threshold 2", we code a
subband by the same quadri-section procedure described above until
all the single elements are located. The coordinates of the significant
single elements are added to the LSP. The next subband in the scan
order is visited and encoded in the same way, until all the subbands have
been visited at the threshold 2". The bits in the same bit plane n from
coefficients found significant at higher thresholds are then read from
the LSP and written to the codestream. The threshold is then lowered
by a factor of 2 to 27! and the scan returns to its first subband to
test its sets in the LIS left after the just-completed threshold pass. The
LIS sets within a subband decrease in size from top to bottom and
are visited in reverse order from bottom to top, so that the smallest
sets are tested first. In this way, we obtain a bit-embedded codestream,
because code bits from the higher bit planes always precede those from
the lower bit planes.

Example 1.2 Reconstructions of different quality from a
bit-embedded codestream. The wavelet transform of the Goldhill
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image is encoded, but this time using a quality scalable algorithm giving
a bit-embedded codestream of size 65,536 bytes (rate of 2.00 bits/pixel).
(The transform coefficients are not scaled and are truncated to integers,
if necessary.) The full codestream and its truncation to sizes of 32,768
bytes (1.00bpp), 16,384 bytes (0.50 bpp), and 8,192 bytes (0.25bpp)
are then decoded, de-quantized, and inverse wavelet transformed. The
reconstructions and their PSNR’s are shown in Figure 1.13.

Fig. 1.13 Reconstructions of Goldhill from same codestream by a quality scalable coding
method.

(a) 2.00 bpp, 42.02 dB | (b) 1.00 bpp, 36.55 dB
(c) 0.50 bpp, 33.13 dB | (d) 0.25 bpp, 30.56 dB
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1.5.3 Octave Band Partitioning

Instead of a predetermined scan order of subbands, we could use octave
band partitioning of the wavelet transform, as is done in conjunction
with the SPECK algorithm described in the last section. We would
need only to calculate and send the maximum threshold for the entire
transform and have the potential to locate larger insignificant sets.
Recalling briefly this procedure, the initial S set is the lowest frequency
subband and the remainder of the transform comprises the initial 7
set. These sets are depicted in Figure 1.14. The set S is tested for
significance at the current threshold, and if significant, is coded as
above using recursive quadrisection. If not significant, the Z set is then
tested for significance, and, if significant, it is partitioned into three
S sets and an S set, as shown in Figure 1.14. These three S sets are
exactly the three subbands that complete the next higher resolution
scale. If 7 is not significant, then the threshold is lowered by a factor
of 2, the octave band partitioning is re-initialized, and only the resident
LIS entries left from the last threshold are tested when the S set for
a subband becomes significant. As the threshold becomes lower, more
sets of three subbands that comprise the next higher resolution are
encoded. Therefore, this scheme of octave band partitioning is naturally
progressive in resolution.

A binary digit is sent to the codestream after every significance
test. An insignificant subband then is indicated by a single “0”
at the given threshold. So the maximal threshold of a subband is
conveyed by a succession of “0”s and a single “1” when it becomes
significant. Sometimes, a “0” indicating insignificance is shared among
insignificant subbands, as in an Z set. The previous method sent the

g 8? 5
volo] 2 o o

S | S

Fig. 1.14 Partitioning of image X into sets S and Z, and subsequent partitioning of set Z.
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maximal threshold of every subband to the codestream. Although it
did not require another bit to skip insignificant subbands, more bits
are needed for conveying the maximal threshold of every subband than
in the method of octave band partitioning.

Example 1.3 Effect of Mask Coding. As an example, we per-
formed one experiment to compare an uncoded and coded same step
size quantization of the wavelet transform (4 levels, 9/7 biorthogo-
nal filters) of the Lena (512 x 512) image. The quantization was done
according to Equation (1.1) with the same step size (A) for all subbands
and the coded one used fixed Huffman coding of the masks only. We
used octave band partitioning for determining the scanning order of the
subbands. No overhead marker bits were in the codestream, as there
was no attempt to produce progressiveness in quality. As expected, the
identical uncoded and coded reconstructions showed the same PSNR
of 37.07dB. However, coding the masks resulted in an average bit
rate of 0.500bpp, whereas without coding the average bit rate was
0.531 bpp, an increase of 6%. These reconstructions are displayed in
Figure 1.15.

Fig. 1.15 Uncoded (left) and coded (right) reconstructions of 512 X 512 lena image with
identical quantizer step sizes. Both have PSNR = 37.07dB; rate of uncoded (left) =
0.531 bpp and rate of coded (right) is 0.500 bpp.
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1.5.4 Direct Bit-embedded Coding Methods

The utilization of SPECK just described achieves complete coding of a
lower resolution level before the next higher one. As explained in Part
I, SPECK realizes bit-embedded coding when the threshold is held
at the same value across subbands and through all resolution levels
before it is lowered by a factor of 2 for the next pass through the
LIS. Such a procedure violates resolution progressiveness, because bits
from different resolution levels are intermingled in the codestream. The
benefit is the approximate realization of the optimal rate allocation
that prescribes that the most important of the code bits, that is, the
ones contributing to the largest reduction in distortion, are sent to the
codestream. The coding can then be terminated when the bit budget
is reached with the confidence the lowest distortion for this budget is
achieved for the corresponding reconstruction. One does not need to do
any codestream re-organization or Lagrangian optimization, as required
when certain portions of the wavelet transform are independently and
completely coded.

The coding procedure of SPECK (or SPIHT (Set Partitioning in
Hierarchical Trees [15]) will produce optimal rate allocation. The cod-
ing order is from highest to lowest bit plane and significance bits before
refinement bits in the same bit plane. Distortion reduction for bits
coded in the nth bit plane, being proportional to 2", decreases exponen-
tially with this order. Furthermore, the significance bits of coefficients
revealed significant first at bit plane n always reduces the distortion
more? than that of same bit plane refinement bits of previously signif-
icant coefficients.

1.5.5 Lossless Coding of Quantizer Levels with Adaptive
Thresholds

The coding paradigm remains the same, except now we decide to use
adaptive thresholds rather than fixed ones. The coding mechanism
using adaptive thresholds was described in the AGP (Alphabet and
Group Partitioning) method Part I. We take the subbands as the blocks

4The magnitude of the error decreases by a factor of 3 for midpoint reconstruction.
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to be coded and test them starting as usual with the lowest frequency
subband. Briefly, the alphabet is partitioned by symbol grouping and
representing each coefficient by its group index and symbol index. A
typical alphabet partitioning scheme appears in Table 2.5 of Part I.
The group indices are coded via set partitioning. The symbol indices
are represented by their magnitude range and sign in raw binary.

The subbands are now encoded by the adaptive-threshold, quadra-
ture splitting procedure described in Algorithm 2.5 of Part 1. The
values to be coded are the group indices. The initial thresholds of
the subbands are the maxima of their respective group indices. These
thresholds are encoded and written to the codestream. Briefly, start-
ing with the lowest frequency subband, the subband to be encoded
is split into four nearly equal size sets. The maxima of these sets are
compared to the subband maximum. Those with lower maxima are
labeled with “0” and those equal are labeled with “1”, thereby creat-
ing a four bit mask that is sent to the codestream. The “1”-labeled
(significant) sets are again split into four quadrants which are again
labeled with “0” or “1,” depending whether the quadrant maximum
is lower or equal to the subband maximum. This recursion of splitting
just the “1”-labeled sets continues until the quadrants become single
elements. Only the “0”-labeled elements are encoded and written to the
codestream, because the “1”-labeled elements are known to be equal to
the threshold. The maxima of the “0”-labeled (insignificant) quadrants
remaining comprise new lower testing thresholds. The new threshold
for the next pass is the maximum among these thresholds, which is
the largest group index magnitude among these remaining insignifi-
cant sets. These insignificant sets are now recursively split and tested
against this new lower threshold in the same way until all coefficients
in the subband are encoded. These insignificant sets are always visited
in order of smallest to largest, so that significant single elements are
located as early as possible. When “0”-labeled sets are 2 x 2 blocks
having small maxima, instead of splitting, they can be coded together
using an extension alphabet to obtain coding gains. Once a subband is
encoded, the same processing moves to the nonvisited subband with the
largest maximum group index magnitude greater than zero. A subband
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with such maximum equalling 0 has all its elements 0 in value. The 0
in the four-bit mask sent to the codestream conveys this information.

Algorithm 1.3. Wavelet transform coding by set partitioning with
adaptive thresholds.

(1) Start with M subbands {SB}} and represent quantized coef-
ficients ¢; ; with group index, symbol index pairs (g; j,7i ;).
where 7; ; includes sign.

(2) Calculate maximum group index in each subband and
order subbands by decreasing maxima. That is, let s =
max; )esB, 9ij- Order subbands SBj either by progressive
resolution zig—zag scan or by decreasing maxima, s; > So
> > 8.

(3) Encode s1,$2,...,5M-

(4) For k=1,2,...,M, if s; >0, do set partitioning coding of
S By, using Algorithm 2.5 in Part 1.

The steps of this coding procedure are delineated in Algorithm 1.3.
There, the subbands are ordered by decreasing maximum value (group
index). For images, SBj is almost always the lowest frequency subband
and the ordering by maximum decreasing value is often progressive in
resolution. But for other sources, such as audio, the largest maximum
may belong to another subband. This prior ordering, whether by max-
imum value or by increasing resolution, simplifies the step of moving
to the next subband to be coded. Moreover, for ordering by decreasing
maximum, once we come to a subband with maximum value of 0, we can
stop the coding. For some applications, it might be advantageous to pro-
duce a value-progressive codestream. Achieving such property requires
crossing subbands to code an LIS with the next lower threshold, instead
of executing the next pass at the threshold that is the largest maxi-
mum of the LIS sets of the current subband. This means that a separate
LIS must be maintained for every subband. Algorithm 1.4 presents the
steps of this value-progressive coding method.
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Algorithm 1.4. Value-progressive, wavelet transform coding by set
partitioning with adaptive thresholds.

(1) Start with M subbands {SBy} and represent quantized coef-
ficients ¢; ; with group index, symbol index pairs (g; ;,7i,;),
where 7; ; includes sign.

(2) Calculate maximum group index in each subband and
order subbands by decreasing maxima. That is, let s; =
max(; \esBy, Ji,j and order subbands SBj so that s; > s9
> > 5.

(3) For every k=1,2,..., M,

(a) Encode sy.
(b) Set initial thresholds ¢ = sy.

(c) Initialize a list LISy with top left corner coordinates
of subband {SBy}.
(4) Let k=1.
(a) If tx > 0, do single pass of set partition coding of S By,

in Step 2 of Algorithm 2.5, Part I.

(b) If tx > 0 and there are multiple element sets on LISk,
i. Reset t; equal to largest maximum among the
sets of LI1Sy;

ii. Encode .

iii. Move to subband with largest cur-
rent threshold, i.e., SByx, where k*=
argmaxy—12 . kk+1te-

iv. Set kK = k* and return to Step 4a.

(c) If tx >0 and all the LISy sets comprise single ele-

ments, encode them with no more than |logstx| + 1

bits, write to codestream buffer, and stop.

(d) If tx = 0, stop.

The new lower thresholds in either mode, value-progressive or not,
are encoded efficiently using differential coding. The thresholds are
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always decreasing and the successive differences are small. Recall that
these thresholds are group indices, the largest of which is under 32.
A unary code for these differences is a good choice.

Modest gains in coding efficiency may be obtained through entropy
coding of significant coefficients either singly or in 2 x 2 blocks when
the threshold is small. Recall that a small threshold allows extension
alphabets of small size. In the quadri-section steps (see Step 4a in
Algorithm 1.4), four-bit binary masks are generated to convey whether
the quadrant maxima are below or equal to the testing threshold. These
masks are encoded with a fixed 15-symbol Huffman code. We carried
out the experiment of encoding the same quantized wavelet transform
of the Lena image, but now used Algorithm 1.3 with entropy coding of
masks and small-threshold 2 x 2 blocks. The resulting code rate was
0.479 bits/pixel for the same 37.07 dB PSNR. Therefore, even with the
extra overhead of coding the thresholds, the combination of adaptive
thresholds and simple entropy coding of these blocks saved about 4%
in rate or file size.

1.5.6 Tree-Block Coding

In Section 2, Part I we introduced a partition of the wavelet trans-
form into spatial orientation trees (SOT’s) and formed these trees into
blocks, called tree-blocks, as depicted in Figure 1.16. We illustrated
the order of coding these tree-blocks (Algorithm 2.3, Part I) by the
fixed-threshold, quadrature splitting method (Algorithm 2.1, Part I).
However, any block coding method can be chosen to code the tree-
blocks. In fact, the adaptive-threshold set partition coding algorithms
can be used for coding the tree-blocks, instead of the subbands taken
as blocks. All it requires is the substitution of tree-blocks for subbands
in the input to these algorithms. More specifically, suppose we denote
the tree-blocks as S1,S55,...,57, where T is the number of these blocks,
which is usually equal to number of coefficients in the lowest frequency
subband. Then in Algorithms 1.3 and 1.4, we replace subband S By, with
Sy and subband count M with tree-block count T'. Again, we performed
the analogous experiment of coding the same quantized wavelet trans-
form of the Lena image, but now coded tree-blocks instead of subbands.
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tree tree-block

Fig. 1.16 Rearranging a spatial orientation tree into a tree-block placed in the position of
the image region it represents.

The code rate turned out to be 0.485 bpp, which is slightly higher than
the 0.479 bpp resulting from coding subbands as blocks. There are two
factors contributing to the superiority of the subband block coding.
First, the interdependence of coefficients in subbands may be stronger
than the interdependence in the SOT’s. Second, the subbands consti-
tute mainly bigger blocks, so that larger insignificant sets and zero
blocks are located. In a 5-level wavelet decomposition of a 512 x 512
image, there are 256 tree-blocks each with 1024 coefficients, but only
16 subbands having from 256 to 65,536 coefficients. However, coding
in tree-blocks provides natural random access to regions directly in
the codestream, since each tree-block corresponds to a different image
region.

1.5.7 Coding of Subband Subblocks

Coding blocks that are contained within subbands, unlike direct coding
of blocks of source samples, will not produce blocking artifacts at low
code rates, because the filtering in the inverse transform performs a
weighted average of the reconstructed coefficients that crosses block
boundaries.® This realization led to systems that divide the subbands

5 This phenomenon holds also for full-size subband blocks, because of the successive upsam-
pling, filtering, and combining needed to synthesize an image from its subbands.
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3-Level Wavelet Transform Encode

Fig. 1.17 Division of wavelet subbands into subblocks. Note subbands of coarsest level are
too small to be divided.

into square blocks, typically 32 x 32 or 64 x 64 in their dimensions,
and that code these blocks. The subbands of a 3-level wavelet transform
divided into these so-called subblocks are depicted in Figure 1.17. The
smallest subbands are not divided if their sizes are comparable to that
of the subblock. The figure therefore shows no division of the subbands
at the coarsest level.

These subblocks may be encoded by any of the means previously
presented for coding of blocks that are full subbands. All the subblocks
within a given subband will be encoded before transition to the next
subband. The order of encoding subblocks within a subband is pre-
determined. Usually it is raster scan order, that is, horizontal from
left to right and then vertical from top to bottom, but it could be the
zig—zag or some other space-filling scan. The advantages of coding sub-
blocks are small memory usage and random access or region-of-interest
(ROI) capability. The independent coding of subblocks allows the lat-
ter capability, because subblocks forming a group of spatial orientation
trees can be selected from the image or the codestream for encoding or
decoding, respectively, a certain spatial region of the image.

The coding of subblocks of subbands entails extra codestream over-
head in the form of the initial (largest) threshold for every subblock and
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markers to delineate boundaries between subblocks.® The thresholds
are either group indices or bit-plane maxima and can be compressed, if
necessary. For example, consider again the 5-level wavelet decomposi-
tion of a 512 x 512 image, for a subblock size of 32 x 32. There are 64
subblocks in each of the three level-1 subbands, 16 subblocks in each of
the three level-2 subbands, 4 subblocks in each of the level-3 subbands,
1 subblock in each of the three level-4 subbands, and 1 subblock mak-
ing up remaining subbands for a total of 256 blocks. Assuming that the
thresholds are maximal bit-plane levels, no threshold can exceed 13 for
an original 8-bit image. Therefore, four bits for each threshold gives
an overhead of 1024 bits or 0.004 bits per pixel. At very low bit rates,
such overhead may be problematical. These thresholds, especially those
associated with subblocks within a subband, are statistically dependent
and can be encoded together to save overhead rate.

1.5.8 Coding the Initial Thresholds

The initial thresholds that are bit-plane maxima of subblocks contained
within a subband are often not too different, especially for the lower
level, high frequency subbands. Therefore, it is often advantageous to
encode the initial thresholds in each level-1 subband separately and
group the initial thresholds in the remaining higher level subbands
together. For the 5-level wavelet decomposition of the 512 x 512 image,
there would be coded 4 8 x 8 arrays of initial thresholds, 3 belonging
to the level-1 subbands and 1 belonging to all the remaining subbands
of the higher levels.

Let us assume that these initial subblock thresholds are a square
array of integers nl[i,j|, 4,7 =1,2,..., K, representing the bit plane
maxima, the n,,,’s of these subblocks. Let nys = max; j—1 2 . xnl[i,J]
be the maximum of these integers. Because the thresholds within
a block are dependent, they are likely to be close in value to njs.
Because small values require fewer code bits than large ones, it will
be more efficient to encode the differences from the maximum, that
is, nli,j] = nar — nli,j]. In the array of numbers {n[i,j]}, the smaller

6 Often, instead of markers, the counts of code bytes representing the subblocks are written
to the codestream header.
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numbers are the most probable, so they fit the favorable scenario of
coding by recursive quadri-section procedure with adaptive thresholds,
which is Algorithm 2.5 in Part I. We give examples below to illustrate
this approach.

Example 1.4. Example of coding a 4 x 4 array of thresholds.
Suppose the initial bit-plane thresholds are held in the following array:

2 2 3 3
3 2 2 3
3 4 4 3
3 3 2 3
Subtracting each element from njy; = 4, the array to be coded is
2 211
1 2 21
1 0 01
11 21

The bits to represent the block maximum of nj; = 4 are not counted
here, because they are already sent as overhead anyway to assist
entropy coding of the coefficients in the block. The overall difference
array maximum figmax = 2. Splitting the array into four quadrants, the
quadrant maxima are 2, 2, 1, and 2 in raster order. The 4-bit signifi-
cance mask to be transmitted is therefore 1,1,0,1. Splitting the first “1”-
labeled quadrant gives 4 single elements with significance bits 1,1,0,1.
Likewise, splitting of the next two “1”-labeled quadrants gives signifi-
cance values of 0,0,1,0 and 0,0,1,0, respectively. A “1” bit conveys that
the element value is 7,2 = 2. The “0”-bits attached to the seven single
elements mean that their values are 0 or 1, so that they can each be
encoded naturally with a single bit.

Returning to the original split, the insignificant third quadrant has
its Mimax = 1. The quad-split yields the significance pattern 1,0,1,1,
whose bits are exactly its values, which is always the case when the
group maximum is 1.

The full array maximum 7,2 = 2 must also be encoded. Because it
cannot exceed njys = 4, 3 bits suffice to represent this value of 2. When
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split into four quadrants, only the maximum of the one “0”-labeled
quadrant is unknown to the decoder. Therefore, its maximum of 1 is
encoded with 1 bit, because it is known to be less than 2.

Counting the total number of code bits, we have 5 4-bit masks, 7
value bits, and 4 group maxima bits for a total of 31 bits. Compared
to raw coding of the array of 16 thresholds, which consumes 3 bits for
each, since we know the maximum is 4, we have saved 48—31=17 bits
or about 35%.

Another way to represent the original threshold array is by succes-
sive differences in a linear or zig—zag scan. For example, a zig—zag scan
from the top left corner produces the zig—zag and successive difference
sequences below:

2 3

2 32 332 433 4332 3
O -1ro01 -101-21T0 -1101 -1

Probably the simplest and most effective way to code the successive
difference sequence is by a unary (comma) code.” But now there are
negative integers, so we must map these numbers to positive ones. For

an integer k,

k= 2k if k>0
k—2kl—1 ifk<o0.

The successive difference sequence maps to
01 021023201220 21

The unary code for this sequence consumes only 32 bits. We also need
3 more bits to represent the leading 2 for a total of 35 bits, four more
than the recursive quadrature splitting method.

The recursive quadri-section method is especially efficient when all
the thresholds in an array are equal. For example, suppose now all
the elements in the initial 4 x 4 initial threshold array equal 4. The
difference from maximum array has all elements of 0. So the difference
array maximum of 0 represents the entire array. It requires only 3 bits to

7The unary code for a non-negative integer is the same number of Os followed by a 1, which
acts as a comma. For example, 0 — 1, 1 — 01, 2 — 001, and so forth.
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represent this 0 maximum and hence the original array of 16 thresholds
of 4.

The above recursive quadri-section procedure for coding the thresh-
olds usually consumes fewer bits than methods using a linear scan,
because it exploits better the two-dimensional statistical dependencies.
It also is quite simple, in that it requires just comparisons and set
splitting and does not use entropy coding. The masks when uncoded
account for more than one-half of the code bits. Simple entropy cod-
ing, e.g., fixed Huffman coding with 15 symbols, might be employed
beneficially to reduce the mask bit rate.

1.5.9 The SBHP Method

Now that we have described dividing subbands into subblocks and the
means to code their initial thresholds, we now explain two particular
methods to code the subblocks: SBHP and JPEG2000. First, we con-
sider the simpler of the two methods, called SBHP for Subband Block
Hierarchical Partitioning [3]. The coding method of SBHP is SPECK,
initialized by an S set consisting of the 2 x 2 array of coefficients in the
top left corner of the subblock and with the Z as the remainder of the
subblock, as illustrated in Figure 1.14. When the threshold is lowered
such that the Z set becomes significant, the Z set is split into three S
sets adjoining the existing S and another Z set for the remainder. Recall
that the S sets are encoded by recursive quadrature splitting according
to significance tests with fixed decreasing power of 2 thresholds. For
each subblock, the method uses an LIS list and an LSP list to store
coordinates of insignificant sets (including singleton sets) and signifi-
cant coefficients, respectively. However, the subblock is fully encoded
from the top threshold down to the threshold associated either with
some large bit rate for lossy coding or through the 2° bit plane for
lossless coding. The lists are then cleared and re-initialized for the next
subblock to be coded. All the subblocks in every subband are indepen-
dently coded to the same lossy bit rate or to its lossless bit rate in
the same way. We pass through the subbands in the progressive resolu-
tion order and through subblocks within a subband in raster order. We
obtain a sequence of codestreams, one for each subblock, where each
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codestream is bit-embedded, but when assembled together into one
composite codestream is not embedded in any sense. We may reorga-
nize this composite codestream by interleaving the subcodestreams at
the same bit-plane level to obtain an embedded codestream. The effect
is the same as holding the threshold in the current pass across the sub-
blocks and subbands, before lowering the threshold for the next pass.
We can exercise rate control by cutting the reorganized codestream at
the desired file size.

Another way to control the rate is the method to be described later
in more detail in Section 1.7. By this method, a series of increasing
slope parameters A1, Ao,...,A; are specified and every subcodestream
is cut, so that the magnitude of its distortion-rate slope matches each
parameter in turn until the desired total number of bits among the
codestreams is reached. Because SPECK codes subblocks in progres-
sive bit plane order, approximate, but fairly accurate calculations of
distortion changes with rate can be made very fast and in-line by count-
ing the number of newly significant bits at each threshold. Then the
codestream can be reorganized for quality and/or resolution scalability.

Entropy Coding in SBHP. The sign and refinement bits in SBHP are
not entropy coded. However, the 4-bit masks are encoded with a sim-
ple, fixed Huffman code for each of three contexts. These contexts are
defined in the following table.

Context Meaning

0 Sets with more than 4 pixels

1 Sets with 4 pixels revealed during a previous pass
2 Sets with 4 pixels revealed in the current pass

For each context, a simple, fixed Huffman code is used for coding the
15 possible mask patterns. Recall that all-zero cannot occur. The label
of a pattern is the decimal number corresponding to the four binary
symbols read in raster order, left-to-right and top-to-bottom. Table 1.1
contains Huffman codes for each context.

This entropy code having just three simple contexts, requiring no
calculation, and nonadaptive codes of only 15 symbols for each context,
adds very little complexity and is quite effective for natural, nonsyn-
thetic grey level images and leads to very fast encoding and decoding.
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Table 1.1 Huffman codes for 4-bit masks in SBHP.

Context
0 1 2
Symbol  Length  Codeword Length Codeword Length Codeword
1 3 000 3 000 2 00
2 3 001 3 001 3 010
3 4 1000 4 1000 4 1010
4 3 010 3 010 3 011
5 4 1001 4 1001 4 1011
6 5 11010 4 1010 5 11100
7 5 11011 5 11010 6 111010
8 3 011 3 011 3 100
9 5 11100 5 11011 6 111011
10 4 1010 4 1011 4 1100
11 5 11101 5 11100 6 111100
12 4 1011 4 1100 4 1101
13 5 11110 5 11101 6 111101
14 5 11111 5 11110 6 111110
15 4 1100 5 11111 6 111111

1.5.10 JPEG2000 Coding

The framework for the entropy coding engine of the JPEG2000 coding
system is the same as that of SBHP. JPEG2000 encodes subblocks of
subbands independently and visits the subbands and subblocks in the
same order as previously described. The entropy coding engine is called
EBCOT for Embedded Block Coding with Optimized Truncation and is
the brainchild of David S. Taubman [18]. In the parlance of JPEG2000,
the subblocks are called code-blocks. The method of coding is context-
based, binary arithmetic coding of bit planes from top (most significant)
to bottom (least significant), as will be described.

First of all, there is no sorting procedure, as in the set partitioning
coders, to partially order the coefficients’ quantizer values (indices) by
their most significant (highest nonzero) bit planes. Henceforth, we shall
call the locations of a coefficient a pizel and its quantizer level (index)
a pizel value. We start with the highest nonzero bit plane in the code-
block, i.e., having index ny.x. When encoding any given bit plane, we
execute three passes:

(1) The Significance Propagation Pass (SPP).
(2) The Magnitude Refinement Pass (MRP).
(3) The Clean Up Pass (CUP).
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Fig. 1.18 Eight pixel neighborhood of pixel y for context formation.

Each of these passes encodes a different set of bits and together these
passes encode the bits of all pixels in the bit plane. That is why these
passes are called fractional bit-plane coding. The specific order above
is chosen to code first those bits that are likely to give the greatest
distortion reductions. The first pass, the SPP, visits only (previously)
insignificant pixels with a “preferred” neighborhood, where at least
one of its eight nearest neighbors is (previously) significant. An 8-pixel
neighborhood of the current pixel y is depicted in Figure 1.18. If a
“1” is encountered, changing the state from insignificant to significant,
then its associated sign is encoded. The SPP pass is skipped for the
first (nmax) bit plane, because nothing is yet significant, meaning that
there is no preferred neighborhood.

The second pass, the MRP, is the same as the refinement pass for
the set partitioning coders. It visits only (previously) significant pixels
(those with their first “1” in a higher bit plane) and codes the associated
bits in the current bit plane. This pass is also skipped for the n.x bit
plane for the same reason.

The third pass (CUP) visits the locations not yet visited in the SPP
and MRP. Clearly, these locations store insignificant pixels without
preferred neighborhoods. Therefore, this pass is the only one for the
Nmax Dit plane.

We explain next how we encode the bits encountered in these three
passes. The short explanation is that each pass has associated with it
sets of contexts that are functions of significance patterns for the 8-pixel
neighborhood of the bit to be encoded. Probability estimates of the bit
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values (0 or 1) given each context are accumulated as encoding proceeds
and the bit is arithmetically encoded using these probability estimates.
Of course, the devil is in the details, on which we shall elaborate.

Significance Coding — Normal Mode. We now describe the normal
mode of significance coding that is used exclusively in the SPP and par-
tially in the CUP passes. As mentioned, the coding method is context-
based, adaptive arithmetic coding of the binary symbols within a bit
plane. The context template is the 8-pixel neighborhood of Figure 1.18,
where the number of possible (binary) significance patterns is 28 = 256.
So-called context quantization or reduction is necessary for reasons of
lowering computational complexity and collection of sufficient statisti-
cal data (to avoid so-called contezt dilution) for each pattern. A reduc-
tion to nine contexts is achieved by counting numbers of significant
pixels in the horizontal, vertical, and diagonal neighbors. Table 1.2
lists the nine contexts for code-blocks in LL and LH subbands.

The context label descends in value from strongest to weakest hori-
zontal neighbor significance. The HL subbands show strong depen-
dence in the vertical direction, so their contexts, shown in Table 1.3,
are numbered with the reversal of the Sum H and Sum V columns in
Table 1.2.

The H H subbands show diagonal dependencies, so the contexts for
code-blocks in these subbands are numbered by descending diagonal
significance, accordingly in Table 1.4.

Table 1.2 Contexts for Code-Blocks in LL and LH subbands.
Context label Sum H Sum V' Sum D

3 2
7 1 >1
6 1 0 >1
5 1 0 0
4 0 2
3 0 1
2 0 0 >2
1 0 0 1
0 0 0 0

Sum H — sum of significance states (0 or 1) of two horizontal neighbors.
Sum V — sum of significance states (0 or 1) of two vertical neighbors.
Sum D — sum of significance states (0 or 1) of four diagonal neighbors.
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Table 1.3 Contexts for code-blocks in H L subbands.

Context label Sum H Sum V  Sum D
8 2

7 >1 1

6 0 1 >1
5 0 1 0

4 2 0

3 1 0

2 0 0 >2

1 0 0 1

0 0 0 0

Sum H — sum of significance states (0 or 1) of two horizontal neighbors.
Sum V — sum of significance states (0 or 1) of two vertical neighbors.
Sum D — sum of significance states (0 or 1) of four diagonal neighbors.

Table 1.4 Contexts for code-blocks in HH subbands.

Context label Sum H + Sum V'

Sum D

=N Wk Ot

o

>3

O O = = NN

0

Sum H — sum of significance states (0 or 1) of two horizontal neighbors.
Sum V — sum of significance states (0 or 1) of two vertical neighbors.
Sum D — sum of significance states (0 or 1) of four diagonal neighbors.
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Sign Coding. In the SPP or CUP of a bit plane, whenever a “1” is
encountered, changing the state from insignificant (0) to significant (1),
the pixel value’s sign is also encoded. The context template for sign
coding consists just of the two horizontal and two vertical neighbors in
Figure 1.18. An intermediate value characterizes the significance and
sign pattern either of the horizontal or vertical neighbors. This inter-

mediate value, denoted as Yy, takes values as follows:

X = 1 when one neighbor is insignificant and the other significant and

positive, or both neighbors significant and positive;
X = —1 when one neighbor is insignificant and the other significant
and negative, or both neighbors significant and negative;
X = 0 when both neighbors are significant and opposite in sign, or

both neighbors insignificant.
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Table 1.5 Contexts for code-blocks for sign coding.

Context label xm xv  XIP
14 1 1 1
13 1 0 1
12 1 -1 1
11 0 1 1
10 0 0 1
11 0 -1 -1
12 —1 1 -1
13 —1 0 —1
14 —1 -1 -1

Xz — intermediate value for horizontal neighbors.

Xv — intermediate value for vertical neighbors.

Xp — intermediate value for diagonal neighbors.

Since the horizontal and vertical neighbor pairs have three intermediate
values each, there are 32 =9 possible patterns or context values. We
expect that the conditional distribution of the sign to be coded given
a particular pattern to be identical to the negative of that sign given
the sign complementary pattern. Therefore, we group a pattern and
its sign complementary pattern into a single context, thereby reducing
to 5 distinct sign contexts. A flipping factor 1P =1 or —1 is used
to change the sign of the bit to be coded according to the pattern or
its complement, respectively. The contexts, their labels, and flipping
factors are exhibited in Table 1.5. Denoting the sign to be coded as Y,
the coded binary symbol kgen for the given context is

Ksign = 0 if y-x"P=1
Feign = 1 if x-xMP=—1. (1.4)

Magnitude Refinement Coding. Only previously significant pixels are
visited in the MRP (Magnitude Refinement Pass) through a given bit
plane. The associated bits refine these pixel values. The coded bit equals
the actual bit of the pixel in the bit plane. We define three contexts
in the context template for magnitude refinement coding. The value of
each context is determined by whether or not the bit to be coded is
the first refinement bit and the sum of the significance states of the 8
pixels in the template. We distinguish three contexts as follows:

— Not the first refinement bit.
— First refinement bit and sum of 8-pixel significance states is 0
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Table 1.6 Contexts for magnitude refinement coding

Context label  Pixel’s first refinement bit? Sum H 4+ Sum V + Sum D

17 No
16 Yes >0
15 Yes 0

Sum H — sum of significance states (0 or 1) of two horizontal neighbors.
Sum V — sum of significance states (0 or 1) of two vertical neighbors.
Sum D — sum of significance states (0 or 1) of four diagonal neighbors.

— First refinement bit and sum of 8-pixel significance states is
nonzero.

We summarize the context definitions and labels in Table 1.6.

When a refinement bit is 0, the value of the associated coefficient is
in the lower half of the quantization interval. When it is 1, the value is in
the upper half. The typical probability density function of a coefficient
is peaked and steep near the origin for small magnitudes and much flat-
ter and shallower for high magnitudes. Therefore, when the coefficient
has small magnitude, the probability is higher for the lower part of the
interval. When the coefficient has large magnitude, the probability is
close to 1/2 for both the lower and upper half. That is the reason for
distinguishing between the first refinement bit, when the magnitude is
larger, and the subsequent refinement bits of a pixel when the mag-
nitude is smaller. Because of statistical dependence among immediate
neighbors, we distinguish whether or not there is at least one significant
neighbor when the first refinement bit of a pixel is being coded.

Run Mode Coding. The set partitioning coders employ a sorting pass
that locates significant pixels and insignificant sets of pixels for a given
threshold or bit plane. The insignificant sets are encoded with a single
0 symbol. The EBCOT method in JPEG2000 has no such sorting pass
and must visit and encode the bit of every pixel in the bit plane. The
pixels visited in the Clean Up Pass (CUP) are all previously insignifi-
cant with insignificant neighborhoods. These pixels are likely to remain
insignificant, especially for the higher bit planes, so we employ a run-
length coding mode in addition to the normal mode. This run mode is
entered when four consecutive pixels are insignificant with insignificant
neighborhoods. Therefore, the initial coding mode for the CUP is the
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run mode. However, when we encounter pixels with 1s in the scan of
the bit plane, they become significant and make the neighborhoods of
succeeding pixels “preferred,” thereby triggering normal mode coding.

The preceding coding modes were not dependent on the scan pattern
through the code-block. However, in order to describe the details of
run mode coding, we need to specify this scan pattern. The code-block
is divided into horizontal stripes of four rows per stripe. Within each
stripe, the scan proceeds down the four-pixel columns from the leftmost
to the rightmost column. After the last pixel of the rightmost column
is visited, the scan moves to the leftmost column of the next stripe
below.® This scan pattern is illustrated in Figure 1.19.

The run mode is entered when all three of the following conditions
are met.

(1) Four consecutive pixels in the scan shown in Figure 1.19 must
currently be insignificant.

Fig. 1.19 Column-wise scan pattern of stripes within a code-block.

8 We are assuming that code-block dimensions are multiples of four. For nonsquare images,
some code-blocks may not have such dimensions, leaving stripes with fewer than four rows.
Run mode is not invoked for stripes with fewer than four rows.
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(2) All four of these pixels must have insignificant neighbor-
hoods.

(3) The four consecutive pixels must be aligned with a column
of a stripe.

In run mode, a binary “run interruption” symbol is coded to indicate
whether (0) or not (1) all four pixels remain insignificant in the cur-
rent bit plane. This symbol is coded using its natural context of four
consecutive pixels remaining insignificant or not. JPEG2000 labels this
context of four consecutive pixels as number 9.7 A pixel becomes signifi-
cant when a “1” is read in the current bit plane. We count the number
r of “0”s until a “1” is reached and encode this run number followed by
the sign of the pixel associated with the “1” terminating the run. The
run-length r ranges from 0 to 3, because it has already been signified
that there is at least one “1”. The run-length 7 is close to uniform in
distribution, so its values are encoded with 2 bits, the most significant
one sent first to the codestream.'® The significances of the remaining
samples of the four, if any, are encoded using the normal mode. Coding
continues in normal mode until conditions to enter run mode are again
encountered.

Example 1.5 (Run Mode Coding Example). Suppose we are in
run mode and the run interruption symbol “1” signifies that one or
more of the four pixels in a column has become significant. Let the
bit-plane bits of the four pixels be 0010. Since r = 2, 1 and then 0 are
sent to the codestream. Furthermore, the sign associated with the 1
following 00 is coded in the usual way and sent to the codestream. The
next bit of 0 is then coded using the normal mode.

The operation of JPEG2000’s arithmetic coder, which is the MQ-
Coder, has purposely not been described here. We refer the reader
to JPEG2000 textbooks [1, 19] for such material. Clearly, JPEG2000

9 Some textbooks count this context as two states, significant and insignificant four consec-
utive pixels.
101n the standard, the MQ-coder is set to a nonadaptive mode with a fixed uniform prob-
ability distribution to code the run lengths.
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coding is heavily dependent on arithmetic coding, much more so than
set partitioning coders, and for that reason is considered to be com-
putationally complex. The payoff is excellent compression efficiency.
Due to its bit-plane coding from most to least significant, the result-
ing codestream of every code-block is bit-embedded. Also, the coding
of subblocks of subbands independently allows resolution scalability
and random access to spatial regions directly within the codestream.
Despite its excellent performance and range of scalability options, some
applications, especially those involving hardware implementation con-
strained in size and power consumption, cannot tolerate the high com-
plexity. This complexity is one of the reasons that JPEG2000 has not
seen such wide adoption thus far.

Scalable Lossy Coding in JPEG2000. The JPEG2000 method of cod-
ing of subblocks produces bit-embedded subcodestreams. Each sub-
codestream has a distortion versus rate characteristic, because it is
associated with a different part of the wavelet transform. In order to
achieve the best lossy reconstruction at a given rate, each subcode-
stream must be cut to its optimal size, so that the total of the sizes
equals the size corresponding to the given rate as closely as possible.
Sets of subcodestream sizes or cutting points corresponding to a num-
ber of rates can be calculated during encoding. The codestream is then
considered to be built up in layers. A method to determine the opti-
mal cutting points for a number of layers will be described later in
Section 1.7. Briefly, according to this method, a series of increasing
slope parameters Ai,Ao,..., Ay are specified and every subcodestream
is cut, so that the magnitude of its distortion-rate slope matches each
parameter in turn until the desired total number of bits among the
codestreams is reached.

1.5.11 The Embedded Zero-Block Coder (EZBC)

The arithmetic coding that is mandatory in JPEG2000 can be applied
optionally in the embedded block coders, such as SPECK and SBHP,
to encode sign and refinement bits. Furthermore, both SPECK and
SBHP used simple, fixed Huffman coding of the 4-bit masks that sig-
nify the significance state of the four quadrants obtained in splitting
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a significant set. Adaptive versions of Huffman or arithmetic coding,
either unconditioned or conditioned on context, can also be used for
coding these masks. Another method called EZBC (Embedded Zero
Block Coder) [7, 8] that we describe now does use these more complex
forms of entropy coding.

The EZBC coder utilizes SPECK’s quadri-section coding of full
wavelet subbands and visits them in the zig—zag order as shown in
Figure 1.8. The transition from one subband to the next can be either
at the same threshold or after passing through all thresholds from top
to bottom. The former produces a bit-embedded composite codestream
and the latter a resolution-progressive one with separate bit-embedded
subband codestreams. What distinguishes EZBC from normal SPECK
is the entropy coding of the significance map, sign bits, and refinement
bits. The original SPECK used arithmetic coding of the 4-bit masks,
but did no entropy coding of sign and refinement bits. EZBC entropy
encodes the sign and refinement bits in the manner of JPEG2000. It
also performs entropy coding of the significance decision bits in the
masks adaptively using a context template consisting of significance
bits in neighboring masks and parent subbands. We shall describe next
this coding in more detail.

The coding of bits in the masks is best illustrated by an example.
Consider the case shown in Figure 1.20 of two levels of splitting of a
4 x 4 block of wavelet coefficients. (In Part I is a figure of three levels
of splitting of an 8 x 8 block of wavelet coefficients.) Shown are the
successively smaller quadrants created by the splittings and the asso-
ciated quadtree and its code. We have created virtual splits, marked
by dashed lines, of the insignificant quadrants 2 and 3 resulting from
the first level split. Likewise, in the quadtree, we have created corre-
sponding virtual nodes. The four “0”s in these quadrants are associated
with these virtual nodes and are not part of the significance map code,
because they are redundant. Once a set is deemed insignificant, all its
subsets are known to be insignificant. However, the inclusion of these
virtual splits allow us to define a context template of the 8 nearest
neighbor quadtree nodes. The context is the significance bit pattern of
these eight nodes. We show in Figure 1.20 a node or significance bit
to be coded in solid shading of its set and its 8-neighbor context in
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Fig. 1.20 Two levels of quadrisection of 4 x 4 block and associated quadtree, including
virtual nodes.

lighter pattern shading. Every nonvirtual node at this second level of
the quadtree is coded in this manner. In fact, the (nonvirtual) nodes
in each level of the quadtree, corresponding to the significance decision
bits in each level of quadrisection, are coded in this manner. Nodes
associated with sets near edges of the block will have some nearest
neighbors outside the subband. Such external neighbor nodes are con-
sidered always to be “0”. Subband sizes are usually much larger than
4 x 4, so nodes associated with edges will be relatively few in most
levels of the quadtree.

Actually, the context just described applies only to the bottom or
last level of the quadtree, where the nodes correspond to individual pix-
els. It was chosen to account for strong dependence among neighboring
quadtree nodes (sets) within a subband. For the other levels of the
quadtree, we add to this context the parent in the spatial orientation
tree (SOT), in order to exploit dependence across scales of a wavelet
transform. It is mainly beneficial at low bit rates where relatively few
coefficients and hence nodes have become significant. However, this
parent is associated with a quadtree node at the next higher splitting
level. The reason is that the current node to be coded is a fusion of the
four nodes in its subband that are the children of this particular parent
node in the SOT. These associations are depicted in Figure 1.21.
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Fig. 1.21 Two successive levels of quadtree with nodes located in wavelet transform and
dependency relationships.

Tables similar to those for JPEG2000 define the context labels.
For those readers interested, these tables may be found in Hsiang’s
doctoral thesis [7]. The number of labels is about the same as that
for JPEG2000. Probability estimates are gathered for each context
as coding proceeds in order for the arithmetic coder to compute the
length and bits of the codeword that specifies a corresponding location
in the [0,1) unit interval.

Conditional De-Quantization. EZBC also utilizes conditional
de-quantization to reduce the reconstruction error. The probabilistic
centroid of the quantization interval minimizes the mean squared
error of a quantizer. When you decode one of these wavelet trans-
form coders, you obtain a sequence of quantization bin indices that
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identify the quantization intervals. The so-called de-quantizer sets
the reconstruction value within the decoded quantization interval.
The midpoint or the 38% point is often used arbitrarily, because
the actual probability distribution is unknown. The 38% point is
based on a probability model assumption that skews more of the
probability toward the lower end of the interval. An estimate of
the true reconstructed value can be obtained by realizing that the
refinement bit from the next lower bit plane tells whether or not the
value is in the lower or upper half of the current quantization interval
[T,27), where 7 is the current threshold. Specifically, a refinement “0”
from the next lower bit plane indicates that the value is in the first
half of the interval. Therefore, except for decoding the bottom bit
plane, we can count the number of next lower “0” refinement bits from
previously decoded coefficients to estimate the probability py that the
true value is in the interval [7,1.57). The probability density function
is assumed to be step-wise uniform, with step heights p,/(7/2) for the
first half and (1 — p,)/(7/2) for the second half of the interval. Using
this estimated probability density function in the centroid definition,
a formula for the centroid can be easily derived in terms of p, and 7.
These quantities are substituted into this formula to determine the
reconstruction value. The centroid y. of a probability density function
Po(y) in the interval is given by

2T
yc:/ Ypo(y)dy. (1.5)

Substituting the stepwise uniform density function

21:”, T<y<l1lb5T
Poly) = 20=Pe) - 157 <y <2r (1.6)
0, elsewhere

produces the reconstruction value

7 1.
Ye = (4 - 2po> T. (17)
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The performance of EZBC surpasses that of JPEG2000, usually by
0.3 to 0.6dB in PSNR, depending on the image and the bit rate. Pre-
sumably, the use of conditional de-quantization and the parent con-
text and the overhead in JPEG2000 to enable random access and
other codestream attributes account for this advantage. Neither the
conditional de-quantization nor the parent context adds much compu-
tation. The JPEG2000 Working Group deliberately chose not to use
parent context, so that each subblock would be coded independently.
Such a choice preserves the features of random access, region-of-interest
enhancement coding, and transmission error recovery. The conditional
de-quantization utilizes the counts of “0” bits already accumulated
for arithmetic coding of the refinement bits, and substitutes into the
reconstruction formula 1.7, so involves very little in extra computa-
tion. EZBC is less complex computationally than JPEG2000, because
it codes fewer symbols. JPEG2000 must pass through the bit planes of
every coeflicient, while EZBC passes only through bit planes of coeffi-
cients that have become significant. Furthermore, EZBC passes through
each bit plane only once versus three times for JPEG2000. Also, in its
bit-embedded mode, there is no post-compression Langrangian opti-
mization for rate control.

Any bit plane coder can utilize this method of conditional de-
quantization. For the images tested in trials of EZBC, PSNR gains of 0
to 0.4 dB are claimed. Presumably these gains are relative to mid-point
de-quantization. Most likely, there will be smaller gains with respect
to SPIHT and JPEG2000, because they use the usually more accurate
38% (or 3/8) point for reconstruction.!!

1.6 Tree-Based Wavelet Transform Coding Systems

We have described several block-based wavelet transform coding sys-
tems, so now we turn to those which are tree-based. Already in
Part I, we have presented the SPIHT and EZW (Embedded Zerotree
Wavelet [16]) algorithms operating on trees in the transform domain,
because these algorithms require the energy compaction properties

11 JPEG2000 allows the option of midpoint or 3/8 point reconstruction.
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of transforms to be efficient. These algorithms were described in
their breadth-first search or bit-embedded coding modes and without
entropy coding of their output bits. Here we shall explain how to real-
ize the attributes of resolution scalability and random access of the
block-based systems. Furthermore, we shall describe the entropy cod-
ing normally utilized in these tree-based systems. To do so without
being redundant, SPIHT will be the test case for the methods that
follow. The same methods work for EZW with obvious modification.

1.6.1 Fully Scalable SPIHT

The SPIHT algorithm is described in detail in Part I. Here we shall
review the basic idea of locating individual coefficients and sets of coef-
ficients whose magnitudes fall below a given threshold. The transform
space is partitioned into trees descending from three of the four pixels
in every 2 x 2 group plus the remaining upper left corner pixels in the
lowest frequency subband, denoted by H. A partition generated from
a 2 x 2 group is called a tree-block and is depicted in Figure 1.22. The
members of this partition or tree-block are three spatial orientation
trees (SOT’s), branching vertically, diagonally, and horizontally, and
the corner pixel. The constituent sets of an SOT are all descendants
from a root node, called a D set, the set of four offspring from a node,
called an O set, and the grand-descendant set, denoted by L, consisting
of all descendants of members of the offspring set, O. These sets are
illustrated in Figure 1.22 for the particular case where the root node is
in the lowest frequency subband.

The Sorting Pass. First, the largest integer power of 2 threshold,
Tmaz = 2™"2x that does not exceed the largest magnitude coefficient
in the entire transform is found. The algorithm maintains three con-
trol lists: the LIP (list of insignificant pixels), LIS (list of insignificant
sets), and LSP (list of significant pixels). The LIP is initialized with all
coordinates in H, the LIS with all coordinates in H with descendants,
and LSP as empty. The initial entries in the LIS are marked as Type
A to indicate that the set includes all descendants of their roots. The
algorithm then proceeds to test members of the LIP for significance at

2

the current threshold. A binary symbol of 0 for “insignificant” or 1 for
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Fig. 1.22 Illustration of set types in a tree-block with its three constituent SOT’s descending
from a 2 X 2 group in the lowest frequency subband in a three level, 2D wavelet transform.
A full descendant D set, an offspring O set, and a grand-descendant £ set are encircled in
the diagram. All pixels (coeflicients) in grey, including the upper left corner pixel in the
2 X 2 group, belong to the tree-block.

“significant” is sent to the codestream for each test. When a pixel is
significant, its sign bit is also sent to the codestream and its coordinates
are moved to the LSP. Then the entries in the LIS are visited to ascer-
tain whether or not their associated trees are significant. A tree is said
to be significant if any member pixel is significant. Again, the binary
result of the significance test is sent to the codestream. If insignificant
(0), then the algorithm moves to the next LIS member. If significant,
the tree is split into its child nodes (pixels) and the set of all descen-
dants of these children, the so-called grand-descendant set. The children
are then individually tested for significance. As before, if a child node
is significant, a 1 and its sign are written to the codestream and its
coordinates are moved and appended to the end of the LSP. If insignif-
icant, a 0 is written and its coordinates are moved and appended to
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the end of the LIP. The grand-descendant set is appended to the LIS
and is designated by the coordinates of its tree root and a Type B
tag to indicate that it is a grand-descendant set. That distinguishes it
from LIS sets of Type A. When a grand-descendant set is tested for
significance, as usual, the binary result is written immediately to the
codestream. If significant, the set is divided into the four subtrees ema-
nating from the children nodes. The coordinates of the roots of these
subtrees, which are the children nodes, are appended to the LIS and
tagged as Type A. They will be tested at the current threshold after
the starting LIS entries of this sorting pass. The grand-parent node of
these subtrees is now removed from the LIS. If the grand-descendant
set is insignificant, it stays on the LIS as a Type B set.

During the course of the algorithm, new entries are being added to
the end of the LIS, through the splitting of significant grand-descendant
sets into four subtrees. So these entries will be tested for significance at
the same threshold under which they were added. Since at least one of
these subtree sets is significant, that will engender a sequence of anal-
ogous splitting of successively smaller sets at later generations of the
SOT until the significant single elements are located. Later generations
of the SOT are equivalent to higher resolution levels. Therefore, we note
that pixels and sets belonging to different resolutions are intermingled
in the lists. We also note that the LIS significance search is breadth
first, because LIS entries in the starting list of the pass are tested
before those created at a later generation of the tree corresponding to
the next higher level of resolution.

When all entries on the LIS have been processed, the sorting pass
at the current threshold is complete. The threshold is then lowered by
a factor of 2 to start the next sorting pass. The algorithm visits the
LIP left from the last pass to test it against the new lower threshold
and to code its pixels as described above. It then enters the top of the
LIS remaining from the previous pass to process its entries for the new
threshold.

The Refinement Pass. The refinement pass is executed immediately
after every sorting pass, except for the first one at threshold 27max
before lowering the threshold. The refinement pass at a threshold 2"
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consists of outputting the nth bit of the magnitude of pixels in the
LSP that became significant at a higher threshold. This corresponds
to collecting and writing the bits through bit plane n of all coefficents
previously found to be significant.

The Decoder. 'The conveyance of the outcomes of the significance tests
allows the decoder to recreate the actions of the encoder. The decoder
initializes the same lists and populates them according to the signif-
icance test bits received from the codestream. As the codestream is
being read, the coefficients belonging to the LSP coordinate entries
can be progressively decoded and reconstructed, and all other coeffi-
cients are set to 0. The inverse wavelet transform then produces the
reconstruction of the source image.

1.6.2 Resolution Scalable SPIHT

The original SPTHT algorithm just described above is scalable in quality
at the bit level. Each additional bit written to the bitstream reduces the
distortion no more than any of the preceding bits. However, it cannot
be simultaneously scalable in resolution. Scalable in resolution means
that all bits of coefficients from a lower resolution are written to the
bitstream before those from a higher resolution. We see in the origi-
nal quality scalable SPTHT that resolution boundaries are not distin-
guished, so that bits from higher bit planes in high resolution subbands
might be written to the codestream before lower bit-plane bits belong-
ing to lower resolutions. We therefore have to change the priority of
the coding path to encode all bit planes of lower resolution subbands
before higher resolution ones.

Referring to Figure 1.8, the correspondence of subbands to resolu-
tion level r is described in Table 1.7. The missing L L, subbands in this
table are the union of all the subbands at resolutions lower than r. To
reconstruct an image at a given resolution r > 0, all subbands at the
current and lower resolution levels are needed. For example, we need
subbands H Lo, LHo, HH>, HLs, LH3, HHs, L L3 in order to reconstruct
the image at resolution r = 2.

Let us assume that there are m levels of resolution numbered
r=0,1,....m —1 (m — 1 is the number of wavelet decompositions).
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Table 1.7 Correspondences of resolution levels to subbands.

Resolution level r Subbands
0 LL (LL3)
1 HLs,LH3,HH3
2 HLo,LHo,HH>
3 HLy,LHy,HH,

The way to distinguish resolution levels and avoid their intermingling
on the lists is to maintain separate LIP, LIS, and LSP lists for each
resolution. Let LIP,., LIS, and LSP, be the control lists for resolution
r,r=20,1,...,m — 1. That means that coordinates located in subbands
belonging only to resolution r reside in LIP,., LIS,, and LSP,.. As usual,
whenever a pixel or set is tested, the binary result of 0 or 1 is imme-
diately written to the codestream. For each resolution, starting with
r =0, we proceed with the usual SPIHT search for significance of pix-
els and sets at all thresholds from highest to lowest. This process creates
entries to the lists at the current and next higher resolution. To see how
this works, suppose we enter the process for some resolution r. Con-
sider testing LIP, at some threshold 7 = 2" and if significant, we move
its coordinates to LSP,. If not significant, its coordinates stay on LIP,..
After exiting LIP,, LIS, is tested at the same threshold. If an entry
in LIS, is insignificant, it stays on this list. However, if significant, it
is removed from this list and the tree descending from the associated
location is split into its four offspring and its grand-descendant set. The
four offspring belong to the next higher resolution r + 1, so are placed
on LIP, ;. The grand-descendant set is designated by the coordinates
of its grand-parent, so is then appended to LIS, as Type B. The algo-
rithm tests this LIS, Type B entry immediately. If not significant, it
stays as is. If significant, its four subtrees descending from offspring
are placed on LIS, 1 as Type A entries designated by their associated
offspring coordinates.

There are complications that arise with this procedure. Since we
pass through all thresholds at resolution r before entering the lists
of resolution r + 1, we must indicate the threshold at which single
pixels are placed on LIP,;;. These pixels are the offspring created
from the splitting of a significant grand-descendant set. Instead of just
putting these offspring immediately on LIP, 1, they are first tested
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for significance and placed on LIP,,; if insignificant or on LSP,
if significant, along with tags indicating the threshold at which they
were tested. When testing reaches resolution r + 1, new entries to
LIP,4+1 and LSP;4; should be inserted into the lists in positions that
preserve the order of decreasing thresholds. These threshold tags, just
like Type A or B, do not have to be sent, because the decoder can
re-create them when it populates its lists. The procedure is stated in
its entirety in Algorithm 1.5. It is essentially a modification to two
dimensions of the three-dimensional RARS-SPIHT algorithm [2].

Algorithm 1.5. Resolution Scalable SPTHT

Notation

® ¢;; is value of wavelet coefficient at coordinates (i, ).

e Significance function for bit plane n (threshold 27)
I'h(S) =1, if entity (coefficient or set) S significant; other-
wise 0.

Initialization step

e [Initialize n to the number of bit planes nyax.

L4 LSPO =0

e LIPy : all the coefficients without any parents (the 4 coeffi-
cients of the 2 x 2 root block)

e LISy : all coefficients from the LIP( with descendants (3 coef-
ficients as only one has no descendant)

e For r # 0, LSP, = LIP, = LIS, = 0.

For each r from 0 to maximum resolution m — 1
For each n from npx to 0 (bit planes)

Sorting pass
For each entry (i,7) of the LIP, which had been added at a threshold
strictly greater to the current n

e Output I',, (4, 7)
e If T',,(4,7) =1, move (i,7) to LSP, and output the sign of
Cij (1)
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For each entry (i, ) of the LIS, which had been added at a bit plane
greater than or equal to the current n

e [f the entry is type A
— Output I',,(D(4,5))
— IfI',,(D(¢,5)) =1 then

« For all (k,¢) € O(i,j) : output I',(k,£); If
Iy (k,£) =1, add (k,¢) to the LSP, ;1 and out-
put the sign of ¢ ¢ else, add (k,£) to the end of

the LIP,4, (2)
« If L(i,7) # 0, move (7,7) to the LIS, as a type
B entry

* Else, remove (4,7) from the LIS,
e [f the entry is type B
— Output T',,(L(7,7))
— I T, (L>i,5)) =1

* Add all the (k,¢) € O(i,7) to the LIS, 4; as a
type A entry

* Remove (7,7) from the LIS,
Refinement pass

e For all entries (¢,) of the LSP, which had been added at a
bit plane strictly greater than the current n: Output the nth
most significant bit of ¢; ;.

This resolution scalable algorithm puts out the same bits as the
original quality scalable algorithm, but in different order. In order to
distinguish the resolutions, counts of bits coded at each resolution are
written into a codestream header. Then we can decode up to a resolu-
tion level less than the full resolution, with confidence that we will get
the same reconstruction as if we had encoded the source image reduced
to the same resolution. However, we have lost control of the rate in this
algorithm. The steps in Algorithm 1.5 describe coding through all the
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bit planes, where the final file size or bit rate is undetermined. In order
to enable rate control, we require knowledge of the bit plane boundaries
in every resolution level. It is simple enough when encoding to count the
number of bits coded at every threshold in every resolution level and
put these counts into a file header. We depict the resolution scalable
codestream in Figure 1.23 with resolution and threshold boundaries
indicated by these bit counts. Then to reconstruct a desired resolution
level r4, we discard the bits coded from higher resolution levels and re-
organize the codestream to the quality scalable structure, such as that
shown in Figure 1.24. This structure is obtained by interleaving the
code bits belonging to the remaining resolutions r = 0,1,2,...,r4 at the
same thresholds. One follows the zig—zag scan of the subbands through
resolution level r4 to extract first the bits coded at maximum threshold
2nmax then re-scans to extract bits coded at threshold 2"max—1 and so
forth. Then the codestream can be truncated at the point correspond-
ing to the target bitrate. To decode, one must use the quality scalable
version of SPIHT or reverse the re-organization and use the resolution
scalable version.

Actually, the algorithm for quality scalable SPIHT can be described
just by interchanging the order of the two “For” loops in Algorithm 1.5.
That accomplishes passing through all the resolution levels at every

Ro R1 Ra2
pa ~ 2 > & ---
T~ T~ 7 T~ e
tis toito .. [tuad tior to v L. g v 18 v ..
Fig. 1.23 Resolution scalable bitstream structure. Rg,R1,... denote the segments with

different resolutions, and t11,%10,... the different thresholds (¢, = 2™). Note that in Ro, t11
and t1p are empty.

t11 t1o to
<€ >€ > € ---
Rov R1 1 R2u .. Ro1 Rix Raa .. Ros Riav .
] ] ] ] L] L] L] L]
1 1 1 1 1 1 1 1 S

Fig. 1.24 Quality scalable bitstream structure. Rg,R1,... denote the segments of different
resolutions, and t11,%10,... the different thresholds (¢, = 2™). At higher thresholds, some
of the finer resolutions may be empty.
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threshold, instead of vice-versa. Clearly, this interchange is exactly
what we need to achieve quality scalability.

1.6.3 Block-oriented SPIHT Coding

The resolution scalable SPIHT algorithm can be further modified to
provide random access decoding. Random access decoding means that
a designated portion of the image can be reconstructed by extracting
and decoding only an associated segment of the codestream. Recall that
a block-tree of a wavelet transform, illustrated in Figure 1.22, corre-
sponds to a region of the image geometrically similar in size and posi-
tion of its 2 x 2 root group within the LL subband. Using the example
of this figure, the dimensions of the LL subband and image are 8 x 8
and 64 x 64, respectively. Therefore, the second 16 x 16 block at the
top of the image is similar to the 2 x 2 group root in the LL subband.
In reality, this 2 x 2 wavelet coeflicient group does not reconstruct the
corresponding 16 x 16 image block exactly, because surrounding coef-
ficients within the filter span contribute to values of pixels near the
borders on the image block. However, the correct image block is repro-
duced, although not perfectly. The tree-blocks are mutually exclusive
and their union forms the full wavelet transform.

Algorithm 1.6. Block-Oriented SPITHT Coding

e Form tree-blocks Bi,Bs,...,Bx that partition the wavelet
transform.

e For k=1,2,..., K, code By, either with Algorithm 2.4, Part
I (neither quality nor resolution scalable) or Algorithm 1.5
(quality and resolution scalable).

Random access decoding can be realized therefore by coding all
the tree-blocks separately. In fact, we can use either the quality or
resolution scalable SPIHT to encode each tree-block in turn. We just
initialize the lists of the SPTHT algorithm in the usual way, but only
with the coordinates of the 2 x 2 group in the LL subband that is the
root of the tree-block to be coded. The following steps of the quality
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or resolution scalable SPIHT algorithm are exactly as before. When
the algorithm finishes a tree-block, it moves to the next one until all
the tree-blocks are coded. These steps are delineated in Algorithm 1.6.
Within every tree-block, the codestream is either quality or resolution
scalable, depending on which SPIHT algorithm is used.

Example 1.6 (Using Block-oriented SPIHT to Decode a
Region of Interest). We demonstrate an example of using block-
oriented SPIHT coding (Algorithm 1.6) to reconstruct a region inter-
est from a portion of the codestream. Again, as in Example 1.1, the
Goldhill source image’s wavelet transform is quantized with step size
1/0.31, and the bin indices are losslessly coded to a codestream size
corresponding to 1.329 bpp. The lossless coding method follows Algo-
rithm 2.4, Part I, which is not quality scalable. The coding algorithm
is block-oriented, so a segment of the codestream containing the coded
blocks corresponding to the desired region of interest are extracted and
decoded. Figure 1.25 shows the reconstruction of the region of interest
beside that of the fully coded image.

Fig. 1.25 Reconstructions from same codestream of 512 x 512 Goldhill, quantizer step size
= 1/0.31, coded to rate 1.329 bpp, and of 70 x 128 region at coordinates (343, 239).
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1.7 Rate Control for Embedded Block Coders

In order to exercise rate control when encoding the wavelet transform
in separate blocks, such as we have in JPEG2000, SBHP, and block-
oriented SPTHT, we need a method to determine the rate in each block
that minimizes the distortion for a given average bit rate target. When
the blocks are bit-embedded, their codestreams can simply be trun-
cated to the sizes corresponding to the bit rates determined by such an
optimization method. We assume that blocks have been coded to the
bottom bit plane or threshold and are bit-embedded either naturally
or by re-organization.

Given the target number of codestream bits Bp, the task is to
assign rates (measured in bits) by, ba, ..., bk to the blocks By, Bo,..., Bk,
respectively, so that the average distortion D(Br) is a minimum. Stated

more formally, we seek the solution of rates by,bo,...,bx that minimize
K

D(Br) = Y dg,(bx) subject to (1.8)
k=1

K
Br = Zbka
k=1

where dp, (by;) denotes the distortion in block By, for rate by. We assume
that this function is convex and monotonically nonincreasing. Since the
distortion measure is squared error, the total distortion is the sum of
those of the blocks. The minimization of the objective function,

K
T =D (ds, (bx) + Abr), (1.9)

k=1
with Lagrange multiplier A > 0, yields the solution that at the optimal
rates, all the individual distortion-rate slopes must be equal to —A.
Since we do not have formulas for the block distortion-rate functions,
we offer the following practical procedure to approximate this solution.
In the course of coding any block, say By, the algorithm can calcu-
late and record a set of distortion-rate points ( i8k7b§f)' The index ¢ of
these points increases from low to high rates. According to the convex
assumption, the distortion decreases with increasing rate and index :.
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For a given A, we start calculating distortion-rate slope magnitudes
starting from high rates to lower rates. These magnitudes increase with
decreasing rate. We stop when we first reach

]
=k Tk >\ 1.10
bz;k], _ l)% — ( )

and declare the smaller of the rates bi; as the rate solution for block Bj.
We repeat for all k =1,2,..., K. Algorithm 1.7 details this method.

Algorithm 1.7 Optimal bit allocation to independent blocks
Notation

® j: index of points increasing with rate
e ;th rate in bits to block Bj: b};
e Distortion d%k for rate b§C

(1) Initialization

(a) thain sequence of (rate, distortion) points {(bi,
dp, )} for every block Bg, k=1,2,..., K.

(b) Set a bit budget target Br to allocate.
(c) Choose A > 0.
(2) Main
For k =1,2,..., K (for all blocks)
(a) Set initial 7 large for large rate.
(b) For steadily decreasing i calculate
ad; _ ZBk — diB—Zl
by, bt — b

only until > A; and stop.!? Let i = iy be the stopping
index at smaller of the two rates.

5d; 5d@
6b% 6bY
o k k
(b}c,d%k) and both previous slope calculations involving this point must be discarded and

121n practice the convexity assumption may fail and

<

. In that case, the point

] giml_gitl
sdy _ “By By,

T T i1 7—1
by by by

replaced with
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(c) Denote rate solution for kth block by () = b;}.
(3) Total number of bits is B(\) = > p_, b,

When we choose A, the total rate, B(\) =), b, is revealed only
after the optimization procedure. We do know that A is the magnitude
of the common slope at the rate solution points. Therefore, we start
with small A corresponding to a high rate and steadily increase A to
test slopes at smaller rates. In this way, we can store a table of corre-
spondences of A to B(\) and then know the value of A needed for the
target rate Br.

One of the problems with this procedure is that a rather odd set of
total rates usually results. More often, one would like to find the cutting
points for a given set of rates, such as 0.25, 0.50, 0.75, 1.0, and 2.0 bpp
perhaps. Therefore, one needs to determine the unique slope parameter
A that produces each one of these rates. The bisection method starts
with an interval of slope magnitudes that contains the solution for the
prescribed rate and determines in which half of this interval lies the
solution. Then the solution point is narrowed to one of the halves of
this half-interval and so forth until the interval containing the solution
is sufficiently small. The bisection procedure for a single rate is detailed
in Algorithm 1.8. In calculating these rates for the various values of
A, we needed to calculate the distortion-rate slopes as in Step 2b in
Algorithm 1.7. When you need to find the optimal parameters A* for a
series of rates, it is particularly easy to set initial intervals once the first
A* for the largest rate is found. Taking the rate targets in decreasing
order, the distortion-rate slopes are increasing, so one can always use
the last solution as the lower end point of the next slope interval.

Algorithm 1.8 Bisection procedure for optimal bit allocation

(1) Set target rate By = Zszl br(A*). To find A*. Set precision
parameter € > 0.

(2) Find slope parameters A\; > 0 and A2 > \; such that B(\2) <
Br < B()\l)

(3) Let )\3 = ()\2 + )\1)/2.
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(4) Set i = 3.

(5) If B()\Z) < Br, Ait1 = (>\z + )\j*)/Q,j* = argminj<iB()\j) >
Br.
If B()\z) > Br, /\i+1 = ()\z + /\j*)/2,j* = argmaxj<z~B()\j) <
Br.

(Recursively determines half interval containing target rate.)
(6) If |B()\l+1) — BT| < €, stop. Let )\i+1 = \*
Else, set i =i + 1 and return to Step 5.

1.8 Conclusion

In this section, we have attempted to present the principles and prac-
tice of image or two-dimensional wavelet compression systems. Besides
compression efficiency as an objective, we have shown how to imbue
such systems with features of resolution and quality scalability and
random access to source regions within the codestream. The simulta-
neous achievement of more than one of these features is a unique aspect
of the systems described here. We have tried to present the material at
a level accessible to students and useful to professionals in the field.
The coding methods featured in this section are the basic ones.
The purpose of this section was to explain the fundamental meth-
ods, so as to provide the student and professional with the tools to
extend or enhance these methods according to their own purposes.
Many enhancements and hybrids appear in the literature. We shall
mention just a few of them to suggest further readings. For exam-
ple, only the basic JPEG2000 (Part I) coding algorithm was described
along with its scalability features. There is a Part 2 standard with
many extensions. Even in Part 1, built-in features of error resilience
and region-of-interest encoding (max-shift method) have not been pre-
sented. Interested readers may consult the JPEG2000 standardization
documents [10][11] and the book by Taubman and Marcellin [19].
There have been published many extensions and enhancements of
the SPIHT and SPECK methods. SPIHT especially has inspired thou-
sands of attempts to improve upon the original work [15]. One way
was to dispense with the control lists, especially the LSP, because they
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grow long, requiring large memory, for higher rates and large images.
Articles by Wheeler and Pearlman [20] and Shively et al. [17] report
the use of fixed memory arrays to store the states of pixels and sets,
thereby alleviating the memory problem. A problem of SPIHT that
detracts from its efficiency, especially at low bit rates, is the identifi-
cation of an insignificant pixel at a high threshold. For each such pixel
one bit has to be encoded for every lower threshold. Therefore, there
are attempts in the literature to cluster these insignificant pixels, so
that a single “0” indicates their common insignificance. One such suc-
cessful attempt is the block-tree approach of Moinuddin and Khan [13].
Another approach by Khan and Ghanbari [12] clustered insignificant
offspring together by creating virtual root nodes on top of the real root
nodes of the LL subband.

There have been some notable attempts to combine SPIHT or EZW
and vector quantization. The idea is that the significance search can sort
vectors according to their locations between shells in higher dimensional
spaces. Among such efforts are those by da Silva et al. [6] and Cosman et
al. [5][4], who developed vector EZW coders, and Mukherjee et al. [14],
who developed a vector SPIHT coder.
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