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Progressive Significance Map and Its Application to
Error Resilient Image Transmission

Yang Hu, William A. Pearlman*, and Xin Li

Abstract—Set partition coding (SPC) has shown tremendous
success in image compression. Despite its popularity, the lack of
error resilience remains a significant challenge to the transmis-
sion of images in error-prone environments. In this paper, we pro-
pose a novel data representation called progressive significance
map (prog-sig-map) for error-resilient SPC. It structures the
significance map (sig-map) into two parts: a high-level summation
significance map (sum-sig-map) and a low-level complementary
significance map (comp-sig-map). Such a structured representa-
tion of the significance map allows us to improve its error resilient
property at the price of only a slight sacrifice in compression
efficiency. For example, we have found a fixed length coding of
the comp-sig-map in the prog-sig-map renders64%of the coded
bit-stream insensitive to bit errors, compared to 40% with the
conventional significance map. Simulation results have shown that
the prog-sig-map can achieve highly competitive rate-distortion
performance for binary symmetric channels, while maintaining
low computational complexity. Moreover, we note that prog-sig-
map is complementary to existing independent-packetization and
channel-coding based error-resilient approaches and readily lends
itself to other source coding applications such as distributed video
coding.

Index Terms—Error resilience, significance map, set partition
coding (SPC), SPIHT, image transmission.

I. I NTRODUCTION

Set partition coding (SPC) has been widely studied in
image and video compression. From Shapiro’s pioneering
work on embedded zerotree wavelet (EZW) coding [1] to
the JPEG 2000 [2], [3] image compression standard and
the new 2D lossy-to-lossless compression algorithm recently
standardized by the Consultative Committee for Space Data
Systems (CCSDS) [4], [5], SPC has served as a key component
to the coding efficiency of wavelet-based approaches. SPC has
also been successfully applied into several other well-known
image coding algorithms including SPIHT [6], SPECK [7],
SWEET [8], SBHP [9] and EZBC [10]. As an effective way
of representing image data in the wavelet domain, SPC (some-
times combined with other entropy coding methods, such
as arithmetic coding) takes advantage of the characteristics
of wavelet transforms. Additionally, SPC can easily support
desirable features such as precise rate control and progressive
transmission. A comprehensive tutorial on SPC and its usage
in wavelet coding systems can be found in [11], [12].
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The salient feature of SPC is that its compressed bitstream
divides naturally into two components: a significance map
that conveys location information; and a value bitstream that
conveys intensity information of signs and lower order bits
of wavelet coefficients. Despite the nice properties of SPC,
a widely known weakness of this technique is its sensitiv-
ity to channel errors. A single bit error in the significance
map can cause a catastrophe in image reconstruction due
to error propagation. To overcome this weakness, a number
of error resilient coding techniques have been proposed in
the literature. Forward error correction (FEC), initiallypro-
posed by Sherwood and Zeger [13], [14], is among the first
joint source/channel coding schemes using concatenated code,
where an outer cyclic redundancy check (CRC) code detects
errors and an inner rate compatible punctured convolutional
(RCPC) code corrects as many errors as possible. The FEC
achieves good performance for a class of binary symmetric
channels (BSC) with known error rates. Then it is developed
for burst-error-prone channels with more powerful channel
codes, such as in [15] with Reed-Solomon code and in [16]
with Turbo code. Further improved error resilience is obtained
through combining FEC with unequal error protection (UEP)
techniques (e.g., in [17], [18]), where more important dataare
protected by stronger channel codes.

All of the aforementioned techniques employing FEC pro-
duce error resilience at the expense of substantial increase
in channel transmission rate. Another class of techniques
attempts to build natural error resilience into the compressed
bitstream without resorting to FEC. Such techniques, which
have been adopted by JPEG2000 and the new CCSDS im-
age compression standard, partition the data into groups
and encode each group into packets that can be decoded
independently [19], [20], [21], [22]. Thanks to independent
packetization, error propagation is limited to the packetswithin
which channel errors occur. Error resilient entropy coding
(EREC) [23] can be used to reorganize these variable-length
packets into fixed-length data slots before multiplexing and
transmission. Therefore, the synchronization of the startof
each packet can be automatically obtained at the receiver
without synchronization words. Self-synchronizing variable
length coding [24] is a mechanism that limits the effects of an
error to a small portion of the data. Typically, the natural error
resilience techniques manage to stop the error propagationat
the expense of small loss in coding efficiency. There exist
hybrid schemes that protect naturally error resilient bitstreams
with FEC. For example, [25], [26] apply channel codes to
independently coded packets to further improve the robustness
against both random error and packet erasure.
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A fundamental issue related to error resilience of SPC
is the synchronization at the decoder. Since two levels of
uncertainty (location vs. intensity) are sequentially resolved
by SPC as described in Sec. II, it is highly desirable to extend
the strategy of SPC such that random errors associated with
location decoding and intensity decoding do not propagate.
In this paper, we propose a novel extension of SPC called
progressive significance map(prog-sig-map) with the desirable
natural error-resilient property. It is a new data representation
consisting of asummation significance map(sum-sig-map) and
a complementary significance map(comp-sig-map). The sum-
sig-map conveys the high-level information of significance
tests, which dictates coding/decoding of the comp-sig-map
at the lower level. Unlike the conventional significance maps
(sig-maps), such progressive representation allows us to code
the comp-sig-map using fixed-length-codes; consequently,the
decoding errors (in terms of bit flips) associated with comp-
sig-map would not propagate within the comp-sig-map or to
the decoding of sum-sig-map. To the best of our knowledge,
this is the first time that error resilience is achieved within the
core framework of SPC itself and without noticeable coding
efficiency loss (typically about2% to 3%). With proper design,
the proposed prog-sig-map can be jointly used with other error
resilience techniques (such as independent packetization, FEC,
UEP, EREC, etc.) to further improve the robustness.

We note that Meany and Martens presented an error resilient
entropy coding method in [27], bearing some resemblance
to ours, where they separated the individual codewords into
two fields: a greater protected variable-length prefix and an
error-resilient fixed-length suffix. Given a correct prefix,the
associated suffix is error-resilient. However, this so-called split
field coding is built on some parametric coding methods, for
which the codewords include fixed length suffixes (such as
Rice coding [28] or start-step coding [29]). In contrast, our
method can build its own variable length prefix (the sum-
sig-map) and error-resilient fixed-length suffix (the comp-sig-
map). In image compression, split field coding is applied
to codewords for coefficient values, but not to positional
codewords (such as the significance map), while our method
is aimed at more error-sensitive positional information.

The rest of the paper is organized as follows. We briefly
review conventional significance map and introduce a new
conception of the significance test in terms of(c, w)-test in
Sec. II. Based on the new conception, we present the prog-
sig-map in Sec. III and illustrate it with a coding example. We
analyze two classes of error propagation patterns which help
explain the improved error resilience of prog-sig-map. We also
provide a simple proof that the entropy of the prog-sig-map
equals that of the conventional sig-map. Simulation results
on coding efficiency, error performance, and computational
complexity are given in Sec. IV. In Sec. V, we discuss some
possible applications of the proposed coding technique. Sec.
VI concludes the paper.

II. SET PARTITION CODING

In this section, we provide a brief overview of SPC. SPC
starts from the highest bit-plane indexed byn = nmax =

⌊log
2
(maxl |X

l|)⌋, where X l is a coefficient at locationl,
and descends in unit increments to successively lower bit-
planes. When the magnitudes of all coefficients in a set are
less than the thresholdT = 2n of then-th bit-plane, the set is
deemedinsignificantand indicated by bit 0; otherwise, the set
is declaredsignificantand indicated by bit 1. This comparison
operation is called significance test or sig-test. When SPC
is applied to the wavelet transform of an image, all sets are
initially treated as insignificant and stored in an ordered list
LIS (list of insignificant sets). Starting with thenmax-th bit-
plane, the sig-test is performed on every set of the LIS. If
a set is found to be significant, it is partitioned into several
subsets according to the pre-defined set partitioning rule.
These subsets are further tested and multi-element sets found
to be significant are again partitioned until the significant
coefficients are isolated, as illustrated by the quadtree example
in Fig. 1. For each located significant coefficient, the sign
is coded and sent out. Processing all LIS elements in this
way at a given threshold completes thesorting pass. Upon
completion of a sorting pass, arefinement passtypically
follows to gather magnitude bits of significant coefficients1.
Proceeding to lower thresholds (smaller bit-plane indicesn),
SPC alternates between sorting pass and refinement pass [6]
to progressively resolve the location and intensity uncertainty
of significant coefficients.

Significant coefficient

Insignificant coefficient/set

Indicators from sig-tests:

1

0 1 0 0

0 1 1 0

Fig. 1. The quadtree partitioning example of a4× 4 coefficient block. The
sig-test of the whole4×4 block outputs indicator 1 (the block is significant),
and then partition the block into four2 × 2 sub-blocks. The sig-test of the
four 2 × 2 blocks outputs indicators 0100 according to the zig-zag scanning
order (the top-right2 × 2 block is significant), and the significant2 × 2

block is further partitioned into four single-element sub-blocks. Finally, the
sig-test of the four single-element blocks outputs indicators 0110, and the two
significant coefficients (shaded) are located. The raw (uncoded) conventional
sig-map consists of the indicators directly.

The sig-map associated with the sig-tests often occupies
the majority of the coded bitstream. For example, in typical
lossy image coding, arithmetic-coded conventional sig-map
takes about60% of the whole bitstream at 30 dB or higher
recovered PSNR [30]. The sig-map is unfortunately sensitive
to channel errors. It should be noted that error resilience and
coding efficiency represent two conflicting goals. For example,
fixed-length codes often have better error-resilience property
than variable-length codes, but are worse on coding efficiency.
The challenge lies in how to achieve a good tradeoff between
these two such that the end-to-end rate-distortion performance
can be improved. The motivation behind this work is similar to
that of data partitioning - think of groups instead of coefficients

1A refinement pass in each bit-plane is not really part of the SPC process.
Alternatively, when a significant coefficient is located, its sign and all its lower
order bits may be coded and sent immediately.
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- but we opt to implement it by a novel data structure within
the context of SPC. The subsets generated by set partitioning
are called aset group. Assume that a set group hascn sets and
wn of them are found significant in the sig-test of bit-planen.
In the sig-test of the next lower (n − 1) bit-plane, it follows
from the SPC rule that

cn−1 = cn − wn, (1)

because only the remaining insignificant sets are tested for
significance again in the next lower bit-plane.

The above observation motivates us to introduce a new
conception of the significant test, which we call the(c, w)-test
throughout this paper. Thec denotes the number ofcandidates,
defined as the sets in the set group to be sig-tested; whilew

denotes the number ofwinners, defined as the newly found
significant sets in the set group. For example, the sig-test of
the four subgroups from a quadtree partition is called a(4, w)
test, where thew is the number of significant subgroups. It is
not difficult to see that the conventional sig-map contains the
results of a series of correlated(c, w) tests. More specifically,
if we assign a binary indicatorI, calledwinner indicator, to
signal whether or not a candidate is a winner,

I =

{

1, if the candidate is a winner;

0, otherwise.
(2)

then a(c, w)-test generatesc indicators{I1, I2, ..., Ic} satis-
fying

w =

c
∑

i=1

Ii. (3)

Intuitively, such(c, w)-test can be seen as a group transforma-
tion of the sig-map to facilitate error-resilient coding, as we
will elaborate next.

III. PROGRESSIVESIGNIFICANCE MAP

Based on the newly-defined(c, w)-test, we present the novel
structure of prog-sig-map and its improved error resilient
property. The key idea is to protect the synchronization of
encoded bit stream by structuring the significance information
into two parts: a high-level sum-sig-map and a low-level comp-
sig-map.

A. Sum-Sig-Map

For a sig-test withc candidates, the sum-sig-map conveys
how many of thec candidates are winners. The number of
winnersw is actually the sum of thec winner indicators in
the conventional sig-map as in (3). Ifw = 0 or w = c, the
c winner indicators must be all0’s or all 1’s, respectively. If
0 < w < c, there is ambiguity, because

(

c

w

)

different choices
exist for thew winners out of thec candidates. Therefore
additional information (comp-sig-map) is needed to recover
the c winner indicators correctly, which will be addressed in
the next subsection.

When a group of sets is initially generated from set par-
titioning, the candidate numberc is decided by the specific
algorithm and is known by the decoder without error. For the
set group in the following sorting passes, the candidate number

c is inferred from the previous sig-test of the group according
to (1). So thec values depend on thew values only. The sum-
sig-map therefore conveys the coding architecture, comprising
three parts:

P-1) The numberw of partitioning operations needed after
each(c, w) test of a group of multi-element sets.

P-2) The numberw of significant coefficients located after
each(c, w) test of a group of single-element sets.

P-3) The candidate numberc for the sig-tests in the next
sorting pass.

Correct P-1 and P-3 maintain the map synchronization, and
correct P-2 keeps the value synchronization. Details on map
and value synchronizations are described in Sec. III-C.

B. Comp-Sig-Map

The comp-sig-map assists in unambiguous recovery of the
c winner indicators of a sig-test, given the knownc and w

satisfying 0 < w < c. For c ∈ {1, 2, 3, 4}2, there are six
qualified (c, w) pairs: (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), and
(4, 3). To clarify the ambiguity left by the sum-sig-map, the
comp-sig-map need to indicate which one of the

(

c

w

)

indicator
combinations is the correct one. This process is progressive,
because each complementary bit precludes some impossible
indicator combinations. Different expressions can be usedfor
the complementary information.

1) Variable-Length Comp-Sig-Map:Assume that the
(

c

w

)

indicator combinations of a(c, w) test approximately have
equal probabilities, which is true for most sig-tests of thepop-
ular set partition methods3. The Huffman codes are adopted
in the variable-length comp-sig-map, by means of Huffman
coding a set of

(

c

w

)

equally probable symbols. The(2, 1),
(4, 1), and (4, 3) sig-tests have2, 4, and4 equally probable
symbols respectively. Their Huffman codes are of length1, 2,
and2 bits respectively, which agree with the entropy (1, 2, and
2 bits per symbol) of these sig-tests. Each of(3, 1) and(3, 2)
tests has3 equally probable symbols, having entropylog

2
3

bits per symbol. The corresponding Huffman codes include
one 1-bit codeword and two 2-bit codewords. The(4, 2) test
has 6 equally probable symbols, having entropylog

2
6 bits

per symbol. Its Huffman codes include two 2-bit codewords
and four 3-bit codewords. Arithmetic coding (AC) [32] can be
applied to reduce the compression bit rate further.

To facilitate understanding, we map the Huffman codewords
(i.e., the complementary bits or comp-bits) and the indicator
combinations according to Fig. 2. For example, for the(3, 1)
test in Fig. 2(b), the first comp-bit is just the first indicator. If
it is 1, the three indicators must be “100” and, thus, no more
comp-bits are needed. If it is0, the second indicator serves
as the second comp-bit, and then all three indicators can be
inferred unambiguously. A 1 indicates 0, while a 0 indicates

2There is a maximum of four sig-test candidates in most SPC methods for
2D image coding. However, more candidates can exist in some other scenarios.
For example, in 3-D SPIHT [31] for video coding, the maximum candidate
number is eight. To present the new sig-map without being redundant, we
will considerc ∈ {1, 2, 3, 4}, but it can be easily extended to the cases with
more candidates.

3For octave band partition, the threeS subsets typically have higher
significance probability than theI subset as analyzed in [7].
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1 for the third symbol. Actually, after the first comp-bit0, the
decision for the last two indicators is the same as the(2, 1)
test in Fig. 2(a). For(4, 1) and (4, 3) tests, the first comp-bit
is the XOR (exclusive or) result of the first two indicators, and
the second comp-bit is decided as in the(2, 1) test.

0 1

01 10

(2,1)-test
0 1

0xx

100

(3,1)-test

0 1

001 010

0 1
1xx

011

(3,2)-test

0 1

101 110

0 1
0xxx

(4,2)-test

1xxx

Same as 

(3,1)-test

0 1
00xx

(4,1)-test

0 1

0001 0010

xx00

0 1

0100 1000

0 1
11xx

(4,3)-test

0 1

1101 1110

xx11

0 1

0111 1011

Same as 

(3,2)-test

Fig. 2. Huffman codewords (comp-bits) generating for variable-length comp-
sig-map (comp-bits on edges, indicator combinations on nodes).

2) Fixed-Length Comp-Sig-Map:Under fixed length cod-
ing, the number of comp-bits for a(c, w) test is fixed to
⌈log

2
M⌉, whereM =

(

c

w

)

. For (3, 1), (3, 2), and(4, 2) tests.
Additional bits are appended to the shorter codewords to make
them the same length as the longer ones. We still take the(3, 1)
test as an example. For the indicator combination “100”, one
bit is added after its comp-bit “1”, making its comp-sig-map
the same length of 2 bits as those of the other two indicator
combinations. The appended bit could be 0 or 1 based on
the agreement between the encoder and the decoder; or the
appended bits could be utilized by other modules of a coding
system, such as FEC, error-check, etc.

C. Information Theoretic Interpretation and Error Sensitivity
Analysis

To gain deeper insight into the proposed progressive signif-
icance map, we will offer an information theoretic interpre-
tation and analyze its error sensitivity in this subsection. Let
H(T ) denote the entropy of a sig-testT . The random variables
C, W , and Ii denote the candidate number, winner number,
and winner indicator, respectively, satisfyingW =

∑C

i=1
Ii.

BecauseC is inferrable from previous sig-tests (according to
Eq. (1)), we have

H(T ) = H(I1, I2, ..., IC |C) (4)

= H(I1, I2, ..., IC , W |C)

= H(W |C) + H(I1, I2, ..., IC |C, W ) (5)

The expression in (4) corresponds to the conventional sig-
map, while that in (5) is associated with the prog-sig-map. The
H(W |C) andH(I1, I2, ..., IC |C, W ) are the entropies of the
sum-sig-map and comp-sig-map, respectively. Therefore, in
theory, the layered structure of the prog-sig-map introduces no
penalty on coding efficiency compared with the conventional
one.

What makes the prog-sig-map more attractive is its im-
proved error resilience property. Depending on the nature
of the errors, we can classify them into two types: globally
damaging and locally damaging. They cover all possible error
patterns caused by bit flips.

1) Globally Damaging Errors: In the first type, channel
errors change the number of “1”-indicators in a sig-test —
i.e., thew value of a(c, w) test is changed. This error pattern
results in serious collapse at the decoder. The simplest case is a
single bit error in the sig-test of a group of single-elementsets
(that cannot be further partitioned). Assuming that an indicator
“0” is erroneously decoded to be “1”, as in the example of Fig.
3(a), the(c, w) test becomes(c, w +1)-test. The decoder will
read in and recover one more significant coefficient, which
originally should be read in and recovered after some later
sig-test. Thus every following significant value/coefficient will
be recovered to a wrong location. This situation reflects the
loss of “value synchronization”. In the next sorting pass, there
originally should bec − w (2 in the example) candidates in
the group (the top right2 × 2 coefficients in the example) to
be sig-tested, jointly or separately depending on the specific
algorithm, but onlyc − (w + 1) candidates left due to the
previous bit error. The indicators originally belonging tothe
sig-test of this set group will go to some later sig-tests, and
consequently every following indicator will be interpreted to
a wrong candidate. This phenomenon is referred to as loss of
“map synchronization”. Therefore, the global-damaging error
on the sig-test of single-element sets will result in the loss of
map synchronization from the next sorting pass while the loss
of value synchronization happens immediately.

Another case is a single bit error on the sig-test of a
group of multi-element sets (that can be further partitioned if
significant). Still assuming that an indicator “0” is erroneously
decoded to be “1”, as in the example of Fig. 3(b), the(c, w)
test becomes(c, w+1)-test. In this case, the decoder needs to
read in more indicators (four more indicators in the example),
which should originally be read in for the later tests. As
a consequence, every following sig-test will use indicators
originally belonging to later tests, so map synchronization is
lost immediately. The value synchronization will be lost when
the recursively performed sig-test comes to the sets with single
elements. In short, the global-damaging error on the sig-test of
multi-element sets will result in loss of map synchronization
immediately and value synchronization soon thereafter.

2) Locally Damaging Errors: In the next type, the bit-
stream has changed due to channel errors, but the number of
“1”-indicators in the sig-test is kept the same. For example, as
shown in Fig. 4(a), the correct number (w = 2 in the example)
of “1”-indicators is maintained. Significant coefficients may
be recovered at the wrong places, but the errors are localized
within the current tested group (the top right2 × 2 block in
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single-bit error

single-bit error

4 more

indicators

Fig. 3. The quadtree partitioning example with globally damaging error on
the sig-test of (a) single-element sets and (b) multi-element sets.

the example) and do not propagate to the next coding-pass.

If this error pattern happens in the sig-test of a group of
multi-element sets, as illustrated in Fig. 4(b), the correct num-
ber (w = 1 in the example) of “1” indicators is maintained.
Although partitioning will be performed on some wrong set,
the erroneous partitioning will be limited to the current tested
group (limited to the four2×2 blocks in the example) and the
correct number of indicators will be read in for the following
sig-tests. Still correctc − w candidates will be left for the
next sorting pass and the correct number of significant values
will be recovered although to wrong places within the current
tested sets (the four2×2 blocks in the example). In summary,
locally damaging errors are less catastrophic because error
propagation is avoided by preserving synchronization.

w = 2 

maintained

w = 1 

maintained

Fig. 4. The quadtree partitioning example with locally damaging error on
the sig-test of (a) single-element sets and (b) multi-element sets.

In the proposed sig-map, a correct sum-sig-map can prohibit
the occurrence of globally damaging errors. The reason is
that if the sum-sig-map is correct, it will produce the correct
winner numbersw. In the decoding of a sig-test, the indicators
are recovered under the constraint of the correct(c, w) and
indicated by comp-bits. Assuming error(s) in the comp-sig-
map, erroneous indicators will be resulted. However, the
number of ‘1’-indicators will still equal the correctw. Such
indicators will lead to local damage only.

D. A Coding Example

To facilitate our understanding, we shall illustrate the coding
procedure of the prog-sig-map through the toy example shown
in Fig. 1. The coding begins with a(1, 1) test, followed by a
(4, 1) test and a(4, 2) test. The raw (uncoded) conventional
sig-map carries the indicators directly as

1 . . . indicator from the (1,1) test

0100 . . . indicators from the (4,1) test

0110 . . . indicators from the (4,2) test

While the prog-sig-map is formed as below.

1 . . . w value of the (1,1) test;

compose the sum-sig-map;

no comp-sig-map needed.

1 . . . w value of the (4,1) test;

compose the sum-sig-map.

10 . . . comp-bits of the (4,1) test (Fig. 2(e));

compose the comp-sig-map;

2 . . . w value of the (4,2) test;

compose the sum-sig-map.

011 . . . comp-bits of the (4,2) test (Fig. 2(d));

compose the comp-sig-map;

With the prog-sig-map, the decoder infers thec number
from previous sig-tests and receives thew number (assumed
error free) from sum-sig-map. On knowingc and w, the
decoder will recover thec indicators based on the later
received comp-bits, according to the mapping rules in Fig.
2 (or its fixed length version).

For the example in Fig. 1, if the comp-sig-map of the
(4, 1) test has bit error(s), the received comp-sig-map could
be 00, 01, or 11. On knowingc = 4 from the previous
sig-tests andw = 1 from the received sum-sig-map, the
decoder will recover the 4 indicators according to 2(e). The
recovered indicator combination could be 0001, 0010, or 1000,
corresponded to the 00, 01, and 11 comp-sig-map, respectively.
All of them satisfy the locally-damaging error pattern, because
the number of “1” indicators remains unchanged. Thus coding
synchronization is still maintained and only local damage
(within the four2 × 2 blocks) results.

Assume a fixed length comp-sig-map is used. If the comp-
sig-map of the (4,2) test has bit error(s), there are seven
(23 − 1 = 7) possible received comp-sig-maps. Among them
five (001, 010, 100, 101, and 110) can be mapped back to
some indicator combination satisfying locally-damaging error
pattern, i.e., with unchanged number of “1” indicators. The
other two (000 and 111) possible comp-sig-maps areillegal
comp-bit sequences. On receiving them, the error can be
detected immediately and further steps (retransmission, error
concealment, etc.) can be adopted. Since these steps are out
of the scope of this paper, we just randomly assign alegal
sequence for the comp-sig-map whenever the decoder receives
an illegal one in our simulations.

In a word, under the constraint of a correct sum-sig-map
(or equivalently w), the globally damaging errors can be
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prevented. Errors in the comp-sig-map will result in local
damage only, which is less catastrophic. It should be noted
that bit errors in the raw (uncoded) value data – signs and
refinement bits – impact only the values of the specific
coefficients corresponding to the error bits, so the damage is
even milder.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed prog-sig-map,
we have incorporated it into the well-known SPIHT [6] codec
in our simulations4. We have chosen the reversible 5/3 filters
[33] to implement the wavelet transform with three levels of
decomposition (other popular filters such as Daubechies’ 9/7
were also tested and similar conclusions can be drawn)5. Two
standard 8-bit greyscale test images:Lena andBaboon size
512 × 512 and two 8-bit greyscale JPEG2000 test images:
Woman andCafe size2048×2560 were used in our coding
experiments. The coding bit rate is measured by bits per pixel
(bpp); the objective image quality is measured with PSNR in
dB, defined as PSNR= 10 log

10
( 255

2

MSE
) for 8-bit images, with

MSE denoting mean squared error. There are three sig-map
strategies in the simulations.

• Conventional (AC) sig-map: arithmetic-coded conven-
tional sig-map.

• Progressive (AC) sig-map: prog-sig-map consisting
of arithmetic-coded sum-sig-map and arithmetic-coded
variable-length comp-sig-map.

• Progressive (fixed) sig-map: prog-sig-map consisting of
arithmetic-coded sum-sig-map and uncoded fixed-length
comp-sig-map.

A. Performance on Coding Efficiency

We first report the comparison of coding efficiency between
the prog-sig-map and the conventional one. The codec with
conventional (AC) sig-map is used as the reference, and the
length of the sig-map (or the whole bitstream) in other coding
strategies is normalized with respect to this benchmark. InFig.
5 we plot the normalized lengths of the arithmetic-coded sum-
sig-map versus recovery PSNR for these four test images. We
can see that the size of the sum-sig-map is about60% of that
of the conventional (AC) sig-map.

Fig. 6 demonstrates the whole prog-sig-map normalized by
the conventional (AC) sig-map. The lower four curves (solid-
line) demonstrate the progressive (AC) sig-map. Its size is
similar to that of the conventional (AC) sig-map for recovery
PSNR above 30 dB. For lower recovery PSNR ofLena, the
prog-sig-map performs even better. This verifies that the new
and the conventional sig-maps convey the same information
and thus have similar sizes after properly designed entropy
coding. The higher four curves (dashed-line) demonstrate the
progressive (fixed) sig-map. It has a3% to 5% penalty for
moderate to high recovery PSNR, mainly due to the appended
bits in the fixed-length comp-sig-map. This progressive (fixed)

4Both C and MATLAB implementations of SPIHT are available online:
http:// qccpack.sourceforge.net; http://www.cipr.rpi.edu/research/SPIHT/ .

5Degradation in PSNR due to channel errors does not depend on the type
of filters used for the wavelet transform.
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Fig. 5. The length of the arithmetic-coded sum-sig-map normalized by the
length of the conventional (AC) sig-map.

sig-map is the map structure that has error resilience property.
When considering the whole bitstream (including signs and
refinement data), as shown in Fig. 7, the penalty introduced
by fixed-length comp-sig-map is about2% to 3% of the
conventional SPIHT bitstream.
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Fig. 6. The length of the prog-sig-map normalized by that of the conven-
tional (AC) sig-map. Solid-line curves: normalized progressive (AC) sig-map;
dashed-line curves: normalized progressive (fixed) sig-map.

B. Error Resilience Performance

In order to demonstrate error resilience of the prog-sig-
map, we introduce bit errors randomly only into the comp-
sig-map, where errors were shown to cause only local damage,
and leave the preceding sum-sig-map and following value bit
stream error free. In this way, we can evaluate the effects of
comp-sig-map errors alone. We want to compare it to bit errors
inserted randomly into the conventional sig-map at a point
corresponding to the beginning of the comp-sig-map in the
prog-sig-map. Since the conventional and progressive sig-maps
have different lengths and there is no possible registration of
bits between them, we leave error free the same proportion of
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Fig. 7. The length of the whole bitstream with prog-sig-map normalized
by that of the whole bitstream with conventional (AC) sig-map. Solid-line
curves: normalized bitstream with progressive (AC) sig-map; dashed-line
curves: normalized bitstream with progressive (fixed) sig-map.

the conventional sig-map as the prog-sig-map (approximately
60%) and insert bit errors randomly in the rest. This would
not be a realistic scenario in practice, say for a UEP (unequal
error protection) application, since we can never completely
guarantee error-free reception even with strong channel codes
and/or ARQ (automatic request repeat). Furthermore, in the
UEP scenario, it implies strong protection of the sum-sig-
map in all bit planes and the conventional sig-map only in
the highest, most important bit planes. We shall show later
that the redundancy bits of the channel code are wasted in
protection of the lower bit planes. However, these comparative
simulations will serve to validate the claim of robustness of
the prog-sig-map. That is their only purpose.

We have adopted a memoryless binary symmetric channel
characterized by its bit error rate (BER), or known as crossover
probability. Experimental comparisons between the progres-
sive and the conventional sig-maps are made for the four test
images at the BERs of0, 0.001, 0.002, 0.005, 0.008, and0.01.

Similar to SPIHT, we vary the coded bit rate by adjusting
the threshold of final bit-plane (four were tested here: 32, 16,
8, and 4); all reported coding results are averaged over 20
simulations.

The plots of PSNR versus bit rates for different images
and BERs are shown in Fig. 8. (We have omitted the curves
of BERs 0.002 and 0.010 from this figure.) We have plotted
only one red curve for all tested non-zero BERs in Fig. 8 for
the conventional sig-map, because the graphs of PSNR versus
rate almost completely overlap for different tested BERs. (The
recovered PSNR is largely determined by the location of the
first bit error.) The following observations may be gleaned
from these plots.

1) The conventional sig-map shows significant degradation
in performance in the presence of random bit errors.
Comparing the red/dashed-line curves of error-free and
error-present transmission of the conventional sig-map,
we can clearly observe significant PSNR loss (often>

5dB) in the presence of random errors regardless of BER

levels.
2) The progressive sig-map offers a graceful PSNR degra-

dation as the BER increases. For example, for the PSNR
of about 35 dB, the prog-sig-map is 5 to 9 dB higher
than the conventional sig-map for all test images when
BER = 0.001. As the BER increases, the gain decreases
as expected.

3) The progressive sig-map is more effective for low to
medium bit-rates than high bit-rates. Since random bit
errors are added from the very beginning of the comp-
sig-map, errors are introduced from the highest bit-
plane, causing the most severe damage locally. As the
bit rate increases, the extra bits are used to code lower
bit-planes, which introduces minor increase in recovery
quality, because local damage from errors in the higher
bit-planes is still present.

In summary, we conclude that prog-sig-map offers an appeal-
ing error-resilient coding tool primarily for low and medium
bit rates and BERs smaller than 0.01 under our simulation
condition, by which the “whole” sum-sig-map is error-free
and random bit errors are added from the “beginning” of the
comp-sig-map. This condition was chosen for simplicity and
serves to reveal the error resilient property of the proposed
prog-sig-map.

To facilitate subjective evaluation, recoveredLena images
from conventional (AC) and progressive (fixed) sig-maps, both
at the BER of 0.001, are shown in Fig. 9. Comparing Fig.
9(a) and 9(b), or comparing Fig. 9(c) and 9(d), we can see
that the erroneous prog-sig-map provides much better recovery
quality than the erroneous conventional sig-map at a similar
coding bit rate, both objectively (in terms of the PSNR) and
subjectively. The bit rates of prog-sig-map are only slightly
higher, due to the raw fixed-length comp-sig-map. Figs. 9(b)
and 9(c) have similar PSNR results, but the former has much
lower bit rates and even better subjective quality. One reason is
that the erroneous prog-sig-map (more specifically, comp-sig-
map) degrades the recovered image locally. As evinced earlier
in [34], the reconstructed images with localized distortions
tend to be preferred over the ones with global distortions in
terms of subjective quality.

C. Computational Complexity

Another salient feature of the proposed sig-map is that it
adds little complexity to the already low complexity of SPIHT.
To justify this claim, we compare the run times for lossless
encoding of four test images. These run-time numbers are
reported for a PC with Intel Core 2 Duo CPU and 2.95 GB
RAM. As for the SPIHT encoding operations only (excluding
file I/O, transformation, and arithmetic coding), providedin
upper half of Table I, the progressive (fixed) sig-map increases
the complexity slightly, due to the summation operations to
producew for the sum-sig-map and the additional operations
to get the comp-bits. However, the low complexity property of
SPC is still maintained (processing speed is approximatelyin
the order of106 pixels per second). In a realistic system, where
AC is applied to the conventional sig-map and the sum-sig-
map, the running times (including SPIHT encoding, AC, and
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map (0.244 bpp, 24.12 dB)

(b) Recovered from progressive (fixed) sig-
map (0.250 bpp, 31.61 dB)

(c) Recovered from conventional (AC) sig-
map (0.615 bpp, 31.59 dB)

(d) Recovered from progressive (fixed) sig-
map (0.630 bpp, 36.49 dB)

Fig. 9. Reconstructed images for Lena when BER = 0.001.
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file output operations6) are provided in the lower half of Table
I. The progressive (fixed) sig-map is even computationally
simpler than the conventional (AC) sig-map, mainly because
the fixed-length comp-sig-map need not AC.

Lena Baboon Woman Cafe
SPIHT encoding only:
conv. (AC) sig-map 0.0460 0.0520 1.0640 1.1215

prog. (fixed) sig-map 0.0479 0.0541 1.1044 1.1679
SPIHT encoding, arithmetic coding, and file output:
conv. (AC) sig-map 0.1442 0.1873 3.1554 3.7022

prog. (fixed) sig-map 0.1276 0.1740 2.8723 3.4647

TABLE I
RUNNING TIME (IN SECOND) FOR DIFFERENT SIG-MAPS.

V. A PPLICATIONS

One promising application of the prog-sig-map is image
transmission in error prone environments. Errors occurring
in the comp-sig-map and value bitstream produce only local
damage, while errors in the sum-sig-map, which comprises
about60% of the progressive sig-map and36% of the entire
bitstream for recovery with moderate to high quality, propagate
and cause global damage. Therefore, the sum-sig-map needs
stronger protection from bit errors than the other segmentsof
the bitstream (the UEP technique).

We can assess the potential of the prog-sig-map in a
UEP scenario with the following experiment. We mentioned
previously that it was wasteful of channel code bits to protect
strongly the lower bit planes as we do in our simulations to
prove error resiliency. It is advantageous to shift protection of
lower bit-planes of the sum-sig-map to higher bit-planes of
the comp-sig-map. Suppose the sum-sig-map is L bits long.
We still assume L bits of the proposed sig-map error-free
(implemented with strong channel codes or other techniques),
but assign 0.9L to the sum-sig-map (from the beginning) and
0.1L to the comp-sig-map (from the beginning). Under this
arrangement and BER 0.008, the rate-distortion performance
for Lena is 39.2 dB @ 1.571 bpp, instead of the 36.1 dB @
1.571 bpp in Fig. 8. This significant PSNR gain of 3.1 dB,
achieved with an arbitrarily chosen 90% and 10% division of
error protection, shows the potential of using the prog-sig-map
in a UEP scenario. Thus the simulation assumption for Fig. 8
that protects the entire sum-sig-map and leaves the following
comp-sig-map unprotected is just for simplicity to reveal the
error resilient property of the proposed prog-sig-map. It is far
from its optimal performance in a UEP application.

Distributed source coding (DSC) is another possible applica-
tion. In the literature, [35], [36], [37], [38] to name a few,only
the value information can be Slepian-Wolf (SW) coded [39].
The sig-map conventionally is difficult to be SW coded. On
one hand, it is hard to generate an effective side information
sig-map (of the same length and bit-wise correlated with the
original one). On the other hand, the conventional sig-map

6The image input and transformation operations are excludedin this
comparison because they are exactly the same for different tested sig-maps.

is error sensitive, while decoding errors are unavoidable for
SW coding even if the error rate is very low. The prog-sig-
map alleviates these difficulties. With the intra coded sum-
sig-map, both the comp-sig-map and the value information
can be further SW coded with the commonly used channel-
code-based (such as Turbo or LDPC codes) SW codec. An
implementation of this framework is described and simulated
for distributed video coding in [40].

Another DSC related application is to take advantage of the
progressive feature of the comp-sig-map. More specifically, the
comp-sig-map could be used as rate-adaptive SW data, to send
out initially a portion of the comp-bits according to the SW
boundary,H(X |Y ). Upon failed decoding, more progressive
comp-bits are requested and transmitted until correct decoding
is achieved. When all comp-bits are transmitted, a successful
decoding is guaranteed. In this DSC model, the ambiguity,
which is generated at SW encoding and clarified at SW
decoding assisted by side information, is introduced by an
ambiguous sig-map. To the best our knowledge, this would be
a novel approach of ambiguity generation in DSC applications.
The two main existing ambiguity generation methods are
based on channel coding as in [41] [42] [43] [44] or arithmetic
coding as in [45] [46].

VI. CONCLUSION

To improve the error-resilient property of SPC, we propose a
novel data representation called progressive significancemap
in this paper. It separates the significance map of SPC into
two layers: sum-sig-map (number of significant coefficientsin
a set) and comp-sig-map (locations of significant points in the
set). Just as the uncoded value data – signs and refinement bits
– are less sensitive than the significance map, the fixed-length
coded comp-sig-map has better error-resilient property than
the variable-length coded sum-sig-map. The simulation results
show that the proposed method achieves much better error
resilience performance in BSC, with about2% to 3% penalty
on coding efficiency, while maintaining low computational
complexity. To the best of our knowledge, this is the first time
that error resilience is achieved within the core frameworkof
SPC itself. Designed as a tool supplementary to other existing
error resilience coding techniques, the progressive significance
map can be jointly used with FEC, UEP, independent packe-
tization, EREC and so on, to achieve higher robustness in a
variety of error prone environments. The proposed prog-sig-
map also lends itself to other applications such as distributed
video coding.
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