
Scalable Three-Dimensional SBHP Algorithm with Region of
Interest Access and Low-Complexity

Ying Liu and William A. Pearlman

Center for Image Processing Research,
Electrical Computer and Systems Engineering Department,

Rensselaer Polytechnic Institute, Troy, NY

ABSTRACT
A low-complexity three-dimensional image compression algorithm based on wavelet transforms and set-partitioning strat-
egy is presented. The Subband Block Hierarchial Partitioning (SBHP) algorithm is modified and extended to three dimen-
sions, and applied to every code block independently. The resultant algorithm, 3D-SBHP, efficiently encodes 3D image data
by the exploitation of the dependencies in all dimensions, while enabling progressive SNR and resolution decompression
and Region-of-Interest (ROI) access from the same bit stream. The code-block selection method by which random access
decoding can be achieved is outlined.The resolution scalable and random access performances are empirically investigated.
The results show 3D-SBHP is a good candidate to compress 3D image data sets for multimedia applications.

Keywords: Volume image compression, 3D wavelet compression, random access decoding, ROI retrievability, complexity

1. INTRODUCTION
Three dimensional (3-D) data sets, such as hyperspectral images and medical volumetric data generated by computer to-
mography (CT) or magnetic resonance (MR) typically contains many image slices that require huge amounts of storage.
For modern multimedia applications, particularly in the Internet environment, efficient compression techniques are nec-
essary to reduce storage and transmission bandwidth. Furthermore, it is highly desirable to have properties of SNR and
resolution scalability and ROI retrievability with a single embedded bitstream per data set in many applications. SNR
scalability gives the user an option of lossless decoding, which is important for analysis and diagnosis, and also allows
the user to reconstruct image data at lower rate or quality to get rapid browsing through a large image data set. Resolu-
tion scalability means that a portion of the bit stream can be decoded to reconstruct the image data to the desired level of
resolution. It provides image browsing with low memory cost and computational resources. For some applications, only
a subsection of the image sequence is selected for analysis or diagnosis. Therefore, it is very important to have region of
interest retrievability, which can greatly save decoding time and transmission bandwidth.

Although 3-D image data can be compressed by applying two-dimensional compression algorithm to each slice inde-
pendently, the high correlation between slices makes an algorithm based on three-dimensional coding a better choice. To
provide scalability and compression efficiency , many volumetric image compression algorithms based on wavelet trans-
form were proposed recently, such as Three-Dimensional Context-Based Embedded Zerotree of Wavelet coefficient(3D-
CB-EZW)1 and Three-Dimensional Set Partitioning In Hierarchical Trees(3D-SPIHT),2 Asymmetric Tree 3D-SPIHT
(AT-3D-SPIHT),11 Three-Dimensional Set Partitioned Embedded bloCK (3D-SPECK),8 Three-dimensional Tarp,9 and
Annex of Part II of JPEG200010 standard for multi-component imagery compression. Most of those algorithms are un-
able to naturally provide random access functionality or resolution scalability due to their data structure across different
subbands.

SBHP was introduced as a low complexity alternative to JPEG2000.3 It can supportall the features planned for
JPEG2000, such as progressive transmission by resolution, quality, location; random access and lossy-to-lossless compres-
sion. Its encoder runs about 4 times faster, and the decoder is about 6 to 8 times faster than JPEG 2000 with only a small
loss in compression performance. Here, in this paper, we extend SBHP to three dimensions. The 3D-SBHP is based on

Further author information: (Send correspondence to W.A.P.)
W.A.P.: E-mail: pearlw@ecse.rpi.edu, Telephone: 1 518 276 6082, Fax: 1 518 276 8715

coding 3-D subblocks of 3-D wavelet subbands and can provide the aforementioned functionality and fast encoding and
decoding.

JPEG2000 uses three ROI coding methods: tiling, coefficient scaling and code-block selection. Since code-block
selection does not require the ROI be determined and segmented before encoding, the image sequence is encoded only
once and the decoder can extract a subset of the bit stream to reconstruct the image region of required spatial location
and quality. This gives the user the flexibility at decode time, which is vital to some applications, such as client/server
applications.

In this paper, we investigate the scalability, ROI access performance and computational complexity of 3D-SBHP in
detail.

The rest of this paper is organized as follows. We present the scalable 3D-SBHP algorithm and code-block selection
ROI access scheme in Section 2. Experimental results of scalable coding, ROI decoding and computational complexity are
given in Section 3. Section 4 will conclude this study.

2. SCALABLE 3D-SBHP
2.1. Coding Algorithm
The 2-D SBHP algorithm is a SPECK4 variant which was originally designed as a low complexity alternative to JPEG2000.3

3-D SBHP is a modification and extension of 2-D SBHP to three dimensions. In 3-D SBHP, each subband is partitioned into
code-blocks. All code-blocks have the same size. 3-D SBHP is applied to every code-block independently and generates a
highly scalable bit-stream for each code-block by using the same form of progressive bit-plane coding as in SPIHT.5

Consider a 3D image data set that has been transformed using a discrete wavelet transform. The image sequence is
represented by an indexed set of wavelet transformed coefficients ci,j,k located at the position (i, j, k) in the transformed
image sequence. Following the idea in,6 for a given bit plane n and a given set B of coefficients, we define the significance
function:

Sn(B) =

{
1, if (max

(i,j,k)∈B
|ci,j,k|) ≥ 2n,

0, otherwise.
(1)

Following this definition, we say that set B is significant with respect to bit plane n if Sn(B) = 1. Otherwise, we say
that set B is insignificant.

3-D SBHP is based on a set-partitioning strategy. The set-partitioning process used by 3-D SBHP is almost the same
as that used by 2-D SBHP. Below we explain in detail the partition rules by using a 16× 16× 4 code-block as an example.

The algorithm starts with two sets, as shown in Figure 1(a). One is composed of the 2×2×1 top-left wavelet coefficient
in the first frame, and the other contains the remaining coefficients. In the first set partitioning stage, the first set can be
decomposed into 4 individual coefficients and the second set can be decomposed into three 2 × 2 × 1 groups and the
remaining coefficients, as shown in Figure 1(b). Figure 1(c) shows the second stage of set partitioning, each 2 × 2 × 1
group can be decomposed into 4 coefficients, and the remaining set can be split into seven 4 × 4 groups and a remaining
set. In the third stage, as shown in Figure 1(d), each 4× 4× 1 group is split into 4 2× 2× 1 groups, and the remaining set
is partitioned in seven 8 × 8 × 2 groups. Figure1(e) shows each 2 × 2 × 1 group can be decomposed into 4 coefficients,
and each 8× 8× 2 group can be split into eight 4× 4× 1 groups. This process of quadrature splitting continues until all
sets are partitioned to individual coefficients.

During the coding process a set is partitioned following the above rules when at least one of its subsets is significant.
To minimize the number of significant tests for a given bit-plane, 3-D SBHP maintains three lists:

• LIS(List of Insignificant Sets) - all the sets(with more than one coefficient) that are insignificant but do not belong to
a larger insignificant set.

• LIP(List of Insignificant Pixels) - pixels that are insignificant and do not belong to insignificant set.

• LSP(List of Significant Pixels) - all pixels found to be significant in previous passes.

(a) (b) (c)

8*
8*
2

(d) (e)

Figure 1. Set partitioning rules used by 3-D SBHP.

Instead of using a single large LIS that has sets of varying sizes, we use an array of smaller lists of type LIS, each
containing sets of a fixed size. All the lists and list arrays are updated in the most efficient list management method - FIFO.
Since the total number of sets that are formed during the coding process remain the same, using an array of lists does not
increase the memory requirement for the coder. Use of multiple lists completely eliminates the the need for any sorting
mechanism for processing sets in increasing order of their size and speeds up the encoding/decoding process. For each
new bit plane, significance of coefficients in the LIP are tested first, then the sets in the LIS in increasing order of their
sizes, and lastly the code refinement bits for coefficients in LSP. The idea behind processing LIP and LIS in increasing size
can be seen as a way to achieve the same effect as the fractional bitplane coding used in JPEG2000 without having to go
through several passes through the bitplane.

The way 3D-SBHP entropy codes the comparison results is an important factor that reduces the coding complexity.
Instead of using adaptive arithmetic or Huffman coding, 3D-SBHP uses three 15-symbol Huffman codes to code the set
partitioning results of the significant S sets. Fixed Huffman coding avoids identifying the current context model, updating
models and calculating frequency. These 15-symbol Huffman codes have the longest codeword to be 6 bits, and we can
use lookup tables instead of binary trees for speeding up decoding. No entropy coding is used to code the sign and the
refinement bits.

2.2. Scalable Coding
3D-SBHP is applied independently to every code-block inside a subband . An embedded bit stream is generated by bitplane
coding and the method has the same effect as fractional bitplane coding. To enable SNR scalability, bit stream boundaries
are maintained for every bit plane, as shown in Figure 2. To get SNR scalability, bits belonging to the same fraction of the
same bit planes in the the different code-blocks are extracted for decoding.

In wavelet coding systems, resolution scalability enables step increases of resolution when bits in higher frequency
subbands are decoded. After N levels of wavelet decomposition, the image has N resolution scales. As shown in Figure
2, 3D-SBHP codes code-blocks from lowest subband to the highest subband. The algorithm generates progressive bit

stream for each code-block, and the whole bit stream is resolution scalable. If a user wants to decode up to resolution n,
bits belonging to the same fraction of the same bit planes in the code-blocks related to resolution n can be extracted for
decoding.

b(
n
_
0
,0
)

b(n_
0
-1,0)

b(0,0)

block 0

the highest

 bitplane

the lowest

bitplane

b(0,i)

b(n
_
j
,j)

b(0,j)

b(n
_
L
,L)

b(0,L)

b(n
_
i
,i)

b(n
_
i
-1,i)
 b(
n
_
j
-1,j)

b(n
_
L
-1
,L)

block L

LLLLLL Subband

resolution 0

HHHHHH Subband

resolution
k

Resolution scalable

SNR

scalable

Figure 2. An example of 3D-SBHP SNR and resolution scalable coding. Each bitplane α in block β is denoted as bα,β . Code-blocks
are encoded and indexed from the lowest subband to the highest subband.

2.3. Random Access Decoding
This section describes how to apply 3-D SBHP to achieve ROI access to the codestream. Consider an image sequence
which has been transformed using a discrete wavelet transform. The transformed image sequence exhibits a hierarchical
pyramid structure. The wavelet coefficients in the pyramid subband system are spatially correlated to some region of the
image sequence. In 3-D SBHP, code-blocks are of a fixed size, and represent an increasing spatial extent at lower frequency
subband. Figure 3 gives an example of the parent-offspring dependencies in the 3D spatial orientation tree after 2-level
wavelet packet decomposition(2D spatial + 1D temporal). Except those coefficients in the lowest spatial and temporal
subband, every coefficient located at (i, j, k) has its unique parent at (b i

2c, b j
2c, bk

2 c) in the lower subband. All coefficients
are organized by trees with roots located in the lowest subband.

 t

x

y

LLt

LHt

Ht

Figure 3. Parent-offspring dependencies in the 3D orientation tree.

In this paper, we consider retrieving a cubic region in a image sequence, where A denotes the upper-left corner in the
first frame of the cubic region and B denotes the lower-right corner in the last frame of the cubic region. Since the wavelet
transform is separable, we first consider the random access problem in one dimension.

Let [xA, xB) denote the range of the cubic region in the X direction. Let [xF
k,l, x

R
k,l) denote the X-direction interval that

is related to the cubic region at DWT level k in low-pass or high-pass subbands. Let l = {0, 1} represent the low-pass and

high-pass subband respectively. Suppose the volume size of the image sequence is W ×H ×D. If we do not consider the
filter length, the boundaries of each interval can be found recursively using

xF
k,l = b

xF
(k−1),0

2
c+ l × W

2k
, xR

k,l = d
xR

(k−1),0

2
e+ l × W

2k

xF
0,0 = xA, xR

0,0 = xB

The spatial error penetration of the filter length effect around edges can be calculated from the wavelet filter length and
level of wavelet decomposition. Topiwala7 gives an approximate equation of the error penetration, by which the spread of
the error D (in pixels) as a function of the wavelet filter length L and the number of wavelet decomposition levels K is
given by

D(K, L) =
{

(2K − 1)(2L−3
2 + 1), L even

(2K − 1)(2L−2
2 + 1), L odd

(2)

Suppose we have a synthesis filter with filter length L = M + N + 1,

gn =
N∑

i=−M

ai × fn+i

the boundaries of each interval can become

xF
k,l = max{0, b

xF
(k−1),0 −M

2
c}+ l × W

2k
,

xR
k,l = min{d

xR
(k−1),0 + N

2
e, W

2k
− 1}+ l × W

2k

xF
0,0 = xA, xR

0,0 = xB

Similarly, the boundaries of each interval in Y direction, [yF
k,l, y

R
k,l), and in temporal direction, [zF

k,l, z
R
k,l), can be found

following the same principle.

Suppose that an image sequence is decomposed at level K in spatial domain and level T in temporal domain with
synthesis filter length L and coded with code-block size O × P × Q. To reconstruct a X × Y × Z (Z ≤ GOPsize) 3D
region, where

X = xR
0,0 − xF

0,0, Y = yR
0,0 − yF

0,0, Z = zR
0,0 − zF

0,0.

The number of decoded code-blocks, denoted as NB , is given below.

NB =
K∑

j=1

(
S∑

l=1

s×
(
dx

R
j,l

O
e−bx

F
j,l

O
c+1

)
×

(
dy

R
j,l

P
e−by

F
j,l

P
c+1

)

×
T∑

i=1

t∑
n=1

(
dz

R
i,n

Q
e−bz

F
i,n

Q
c+1

))

where,

t =
{

1, i < T
0, i = T

S =
{

1, j < K
0, j = K

s =
{

3, S = 1
1, S = 0 (3)

For example, a 32×32×4 3D region is positioned at row 64, column 90, in frame number 5 of a image sequence which
is decomposed at level 2 with synthesis filter length 3 and coded with code-block size 16× 16× 2. If we do not consider
filter length, 96 code-blocks are needed for reconstruction the ROI region. Here we call these code-blocks nonfilter-length
related ROI code-blocks. To losslessly reconstruct this region, 156 code-blocks are needed. Here, 60 more code-blocks

are used for lossless reconstruction. In this paper, we call these extra code-blocks filter-length related code-blocks. Since
subband transforms are not shift invariant, the same 3D region positioned at different locations may need different numbers
of code-blocks for reconstruction.

In 3D SBHP, a 3D region can be independently reconstructed with blur at the boundaries of that region if we only select
nonfilter-length related ROI code-blocks and the synthesis filter length is larger than two. In addition, the decoder can also
extract filter-length related code-blocks in order to correctly perform the inverse discrete wavelet transform and construct
the 3D region losslessly.

3. NUMERICAL RESULTS
We conduct our experiments on 4 8-bit CT medical image volumes, 4 8-bit MR medical image volumes, and 4 16-bit
Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) hyperspectral image volumes. AVIRIS has 224 bands and
614 × 512 pixel resolution . For our experiments, we cropped the scene to 512 × 512 × 224 pixels. Table 1 shows the
description of these sequences.

In this section, we provide simulation results and compare the proposed 3-D volumetric codec with other algorithms.

File Name Image Type Volume Size Bit Depth
(bit/pixel)

Skull CT 256× 256× 192 8
Wrist CT 256× 256× 176 8

Carotid CT 256× 256× 64 8
Aperts CT 256× 256× 96 8

Liver t1 MR 256× 256× 48 8
Liver t2e1 MR 256× 256× 48 8
Sag head MR 256× 256× 48 8
Ped chest MR 256× 256× 64 8

moffett scence 1 AVIRIS 512× 512× 224 16
moffett scence 2 AVIRIS 512× 512× 224 16
moffett scence 3 AVIRIS 512× 512× 224 16
jasper scence 1 AVIRIS 512× 512× 224 16

Table 1. Description of the image volumes

3.1. Comparison of Lossless Performance with Different Algorithms
Table 2 compares the lossless compression performance JPEG2000 on medical image sequences of the following com-
pression algorithms: AT-3D-SPIHT, 3D-SPECK, 3D-CB-EZW, 3D-SBHP, JPEG2000 multi-component and (2D lossless)
JPEG2000.

To get these results, 3D-SBHP and AT-3D-SPIHT use GOS = 16, while other 3D algorithms treat the entire image
sequence as one coding unit. The code-block size used by 3D-SBHP is 64× 64× 4. For all 3D algorithms, the three level
wavelet transform was applied on all three dimensions using the I(2+2,2) filter. To emulate JPEG2000 multi-component,
we first applied the I(2+2,2) filter to the axial (wavelength) domain, then coded every resultant spectral slice as separate
file by Kakadu JPEG200012 which uses the integer 5/3 filter.

Comparing the average compression performance listed in the last row of the table, JPEG2000 multi-component gives
the best coding efficiency. As an extension of SBHP, a low-complexity alternative to JPEG2000, 3D-SBHP on average
yields 23% higher compression performance than 2D JPEG2000, and is 13% worse than JPEG2000 multi-component.
Compared with the average compression results of other 3D algorithms, 3D-SBHP is 2%, 5% and 13% worse than 3D-
SPECK, AT-3D-SPIHT and 3D-CS-EZW, in compression efficiency, respectively. On the other hand, 3D-SBHP outper-
forms most algorithms on some sequences. If we consider the fact that 3D-SBHP is applied with GOS = 16, while other
3D algorithms use the whole sequence as coding unit, a smaller performance gap will be expected.

Table 3 presents the lossless performances of 3D-SBHP, 3D-SPIHT, 3D-SPECK, JP2K-Multi, 2D-SPIHT and JPEG
2000 on hyperspectral image sequences. 3D-SBHP uses five-level dyadic S+P(B) filter in the spatial domain and two-level

1D S+P(B) filter on the spectral axis with GOS = 16 and code-block size = 64× 64× 4. JP2K-Multi is implemented first
by applying the S+P filter on spectral dimension and is then followed by application of the 2D JPEG 2000 on the spatial
domain using the integer filter(5,3). For all other 3D algorithms, all 224 bands are coded as a single unit and five-level
filter are applied on every dimension.

For AVIRIS test image volumes, 3D-SPIHT gives the best coding efficiency. 3D-SBHP is comparable to 3D-SPIHT
on the AVIRIS image sequence. On average, it is only about 2% inferior to 3D-SPIHT and 3D-SPECK. Our algorithm
yields, on average, about 2%, 13% and 17% higher compression efficiency than JPEG2000 multi-component, 2D-SPIHT
and JPEG2000, respectively. Again, we sacrifice coding efficiency to gain random accessibility and low memory usage by
using GOS = 16.

File AT-3D- 3D- 3D- 3D-CB JP2K- JPEG
Name SPIHT SBHP SPECK -EZW Multi 2000
Skull 2.1754 2.2701 2.0170 2.0095 1.7450 2.9993
Wrist 1.3083 1.4002 1.2538 1.1393 1.1771 1.7648

Carotid 1.5844 1.6631 1.6517 1.3930 1.6785 2.0277
Aperts 1.0370 1.0876 1.1502 0.8923 0.7290 1.2690
Liver1 2.3191 2.5257 2.4331 2.2076 2.3814 3.2640
Liver2 1.7868 1.8477 1.8733 1.6591 1.6247 2.5804
head 2.2071 2.3219 2.3589 2.2846 2.5961 2.9134
chest 1.9629 2.0873 2.1160 1.8705 1.4884 3.1106

Average 1.7976 1.9004 1.8567 1.6820 1.6775 2.4912

Table 2. Comparison of different coding methods for lossless compression of 8-bit medical image volumes (bits/pixel).

File 3D- 3D- 3D- JP2K- 2D- JPEG
Name SPIHT SBHP SPECK Multi SPIHT 2000

moffett 1 6.9411 7.0333 6.9102 7.1748 7.9714 8.7905
moffett 2 7.9174 8.4333 8.0835 8.4131 9.8503 10.0815
moffett 3 6.7402 6.8359 6.8209 7.0021 7.5874 7.7258
jasper 1 6.7157 6.7842 6.7014 6.8965 7.7977 8.8560
Average 7.0786 7.2716 7.1290 7.3716 8.3458 8.7959

Table 3. Comparison of different coding methods for lossless coding of 16-bit AVIRIS image volumes (bit/pixel).

3.2. Lossless coding performance by use of different code-block sizes
Table 4 compares the lossless compression results for all image data listed in Table 1 by using different code-block sizes:
8× 8× 2, 16× 16× 2, 32× 32× 4 and 64× 64× 4. The image sequences are compressed with GOS = 16 and I(2,2) filter.
Three level of wavelet decompositon is applied on all three dimensions. The results show that for all image sequences,
increasing the size of the code-block improves the performance somewhat. The main reason for the improvement of coding
efficiency is that larger code-block size decreases the total overhead for the whole image sequence.

3.3. Resolution scalable results
The CT medical sequence ”skull” , I(2,2) integer filter, and 32 × 32× 4 code-block size are selected for this comparison.
The quality of reconstruction is measured by peak signal to noise ratio (PSNR) over the whole image sequence. PSNR is
defined by

PSNR = 10 log10

x2
peak

MSE
dB (4)

where xpeak = 255 for these medical images and MSE denotes the mean squared-error between the original and recon-
structed slice. Figure 4 shows the reconstructed CT skull sequence decoded from a single scalable code stream at a variety
of resolution at 1.0 bpp. The PSNR values listed in Table 5 for low resolution image sequences are calculated with respect

File Name 8× 8× 2 16× 16× 2 32× 32× 4 64× 64× 4

Skull 3.1066 2.4758 2.2617 2.2301
Wrist 2.1780 1.5601 1.3604 1.3347

Carotid 2.5093 1.8973 1.6952 1.6684
Aperts 1.8857 1.2718 1.0793 1.0525

Liver t1 3.3724 2.7478 2.5287 2.5001
Liver t2e1 2.6961 2.0709 1.86613 1.8354
Sag head 3.1859 2.5538 2.3395 2.3091
Ped chest 2.8729 2.2502 2.0372 2.0081
moffett 1 8.3711 7.5104 7.2282 7.1848
moffett 2 9.8242 8.9170 8.6086 8.5674
moffett 3 8.0128 7.1722 6.8960 6.8536
jasper 1 8.1417 7.2922 7.0130 6.9705

Table 4. Lossless Coding Results by Use of Different Code-block Size (bits/pixel)

to the lossless reconstruction of the corresponding resolution. Table 5 shows that the PSNR values decrease from one res-
olution to the next lower one, while the total byte cost decreases rapidly with successive reductions in resolution as shown
in Table 6. We can see that the computational cost and memory requirement of decoding reduces from one resolution level
to the next lower one.

Bit
Rate

PSNR (dB)

1/4 resolution 1/2 resolution FULL
0.25 11.10 23.46 37.63
0.5 13.77 29.03 41.85
1.0 24.04 35.71 46.50
2.0 32.58 43.88 50.55

Table 5. PSNR for decoding CT skull at a variety of resolutions and bit rates

Figure 4 demonstrates the first reconstructed slice of the reconstructed sequence which is decoded at 1.0 bpp to a variety
of resolutions. Even at a low resolution, we can get a clear view of the image sequence.

Figure 4. A visual example of resolution scalable decoding. From left to right: 1/4, 1/2 and full resolution at 1.0 bpp

3.4. Random Access Decoding Results
In this experiment, we randomly chose a 64×64×16 region from (134, 117, 17) to (198, 181, 32) of CT skull sequence as
the ROI. In order to decode this region, we only need to apply 3D-SBHP with the code-block selection method described
in Section 2.3. For a given bit rate, the bit stream is truncated at the same fraction of the same bit plane for all selected
code-blocks. In Table 7, we compare the PSNR performance of 3D-SBHP random access decoding at different code-block
sizes and bit rates. The byte and number of code-blocks used for lossless decoding the ROI region are listed in Table 8.
These two tables show that a smaller code-block can give higher ROI decoding performance, especially at high bit rate,

Bit
Rate

Byte Budget
(bytes)

1/4 resolution 1/2 resolution FULL
0.25 6132 48951 391351
0.5 12284 98258 785364
1.0 24575 196604 1572597
2.0 49151 39321 3145610

Lossless 137333 757110 3725185

Table 6. Byte used for decoding CT skull at a variety of resolutions and bit rates

while decreasing the overall compression efficiency. Therefore, the trade-off between compression efficiency and random
accessibility should be considered.

Table 8 gives the number of bytes and code-blocks used for lossless reconstruction of the ROI region. As filtering is
a spatially expansive operation, the samples that need to be retrieved always exceed the number of samples in the ROI
region.

Bit
Rate
(bpp)

Code-block
Size

32× 32× 4 16× 16× 2

0.5 22.13 dB 21.71 dB
1.0 26.44 dB 26.80 dB
2.0 32.04 dB 33.81 dB
4.0 38.22 dB 40.63 dB

Table 7. PSNR for random access decoding of a 64× 64× 16 region of CT skull at a variety of code-block size and bit rates

Code-block Size Byte Budget (bytes) Code-block
32× 32× 4 144788 88
16× 16× 2 123143 440

Table 8. Bytes and code-blocks used for lossless decoding ROI

Figure 5(a) and Figure 5(b) give both 2D and 3D visual example of ROI decoding. In the 3D example the region of
ROI is from (134, 117, 17) to (198, 181, 112).

3.5. Computational Complexity
One of the main advantages of 3D-SBHP is its fast encoding and decoding. 3D-SBHP has been implemeted using standard
C++ language and complied by VC++.NET compiler. Tests are performed on a laptop with Intel 1.50GHz Pentium M
processor and Microsoft Windows XP. The coding speed is measured by CPU cycles. The RDTSC (read-time stamp
counter) instruction is used for cycle count.

CT Skull and MR liver t1 are selected for test. 3D-SBHP ues GOS = 16 and code-block size = 32 × 32 × 4, while
AT-3D-SPIHT codes the whole sequence as a coding unit. Three-levels of spatial dyadic integer wavelet transform and
two-levels temporal integer wavelet transform are applied on all image sequences by using I(2,2) filter. Both 3D-SBHP
and AT-3D-SPIHT schemes perform lossless encoding. In our experiments, we measure only the coding time. The wavelet
transform time is not included.

The lossless encoding times of AT-3D-SPIHT and 3D-SBHP on CT Skull and MR liver t1 are compared in Table 9,
measured in total CPU cycles used for whole image sequence and average CPU cycles used for a single pixel. Table 10
compares the decoding times of AT-3D-SPIHT and 3D-SBHP on CT Skull and MR liver t1 at the rate of 0.125, 0.25, 0.5
and 1.0 bpp. The comparison shows that 3D-SBHP encoder runs around 6 times faster than AT-3D-SPIHT encoder. As bit
rate increases from 0.125 bpp to full bit rate, 3D-SBHP decoder is about 6 to 10 times faster than AT-3D-SPIHT decoder.
For both schemes, the decoding time is much less than encoding time. The decoding times increase around twice when the

(a) A 2D visual example of 3D-
SBHP random access decoding. The
left: the 17th slice of CT skull se-
quence at 1/2 resolution; The right:
the 17th slice in the ROI decoded
image sequence, full resolution.

(b) A 3D visual example of 3D-SBHP random ac-
cess decoding. The left: CT skull sequence; The
right: the ROI decoded image sequence.

Figure 5. A visual example of 3D-SBHP random access decoding.

bit rate is doubled. For these two kinds of test image sequences, the average coding times used for coding a single pixel
are very similar at every bit rate.

Table 11 compares the coding times of 3D-SBHP on CT Skull and MR liver t1 at a variety of resolution. The results
show that total encoding and decoding times increase about 6 to 7 times at the next higher resolution.

File Total Cycles (×106) Cycles/pixel
3D-SBHP AT-3D 3D-SBHP AT-3D

-SPIHT -SPIHT
CT Skull 1643.162 10086.096 130.58 801.570

MR liver t1 449.921 2560.516 143.58 813.966

Table 9. The comparison of lossless encoding time between AT-3D-SPIHT and 3D-SBHP on image CT skull and MR liver t1. (Wavelet
transform times are not included.)

Bit Rate Total Cycles (×106) Cycles/pixel
3D-SBHP AT-3D- 3D-SBHP AT-3D-

SPIHT SPIHT
CT Skull

0.125 58.130 375.695 4.62 29.86
0.25 107.528 786.145 6.08 62.477
0.5 199.141 1677.159 15.82 133.29
1.0 378.820 3689.307 30.11 293.20

lossless 814.119 8333.717 64.70 662.30
MR liver t1

0.125 14.451 96.860 4.59 30.79
0.25 27.797 174.739 8.837 55.55
0.5 51.634 396.864 16.41 126.16
1.0 97.215 844.629 30.904 268.50

lossless 231.21 2142.805 73.50 681.18

Table 10. The comparison of decoding time between AT-3D-SPIHT and 3D-SBHP on image CT skull and MR liver t1 at a variety of
bit rates. (Wavelet transform times are not included.)

Resolution Encoding Decoding
Total Cycles Total Cycles

(×106) (×106)
CT Skull

1/4 41.614 18.638
1/2 255.458 113.901
Full 1643.162 814.119

MR liver t1
1/4 10.605 6.903
1/2 73.128 38.106
Full 449.921 231.21

Table 11. Coding time of 3D-SBHP on CT skull and MR liver t1 at a variety of resolutions

4. SUMMARY AND CONCLUSIONS
In this article, we present 3D-SBHP, an embedded, block based, three-dimensional wavelet transform coding algorithm of
low complexity. With small loss of compression efficiency, it is able to encode an image sequence around 6 times faster
than AT-3D-SPIHT. And according to the bit rate, it is able to decode a image sequence about 6 to 10 times faster than
AT-3D-SPIHT. 3D-SBHP also supports resolution scalability and ROI retrievability. These features make the proposed
algorithm a good candidate for compression of 3D image data sets for multimedia applications.

Acknowledgments
We gratefully acknowledge the support of the Office of Naval Research under Grant No. N00014-05-1-0507.

REFERENCES
1. A. Bilgin, G.Zweig, and M.W. Marcllin, “Three-dimensional image compression with integer wavelet transform”, Applied Optics,

Vol. 39, No.11, April. 2000.
2. B.Kim and W.A.Pearlman, “An embedded wavelet video coder using three-dimensional set partitioning in hierarchical tree”, IEEE

Data Compression Conference, pp. 251-260, March 1997.
3. C. Chysafis, A. Said, A. Drukarev, A. Islam, and W.A Pearlman, “SBHP - A Low complexity wavelet coder”, IEEE Int. Conf.

Acoust., Speech and Sig. Proc. (ICASSP2000), vol. 4, PP. 2035-2038, June 2000.
4. A. Islam and W.A. Pearlman, “An embedded and efficient low-complexity hierarchical image coder”, in Proc. SPIE Visual Comm.

and Image Processing, Vol. 3653, pp. 294-305, 1999.
5. J.M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients”, IEEE Trans. Image Processing, Vol. 41, pp.

3445-3462, Dec. 1993.
6. A. Said and W.A. Pearlman, “A new, fast and efficient image codec based on set-partitioning in hierarchical trees”, IEEE Trans. on

Circuits and Systems for Video Technology, Vol. 6, pp. 243-250, June 1996.
7. P.N.Topiwala, “Wavelet Image and video compression”, Kluver Academic Publishers, 1998.
8. X. Tang, W.A. Pearlman and J.W. Modestino, “HyPerspectral image compression using three-dimensional wavelet coding”,

SPIE/IS&T Electronic Imaging 2003, Proceedings of SPIE, Vol. 5022, Jan. 2003.
9. Yonghui Wang, Justin T. Rucker, and James E. Fowler, ”Three-Dimensional Tarp coding for the compression of hyperspectral

images”, IEEE Geoscience and Remote Sensing Letters, Vol. 2, pp. 136-140, April 2004.
10. D. Taubman, “High performance scalable image compression with EBCOT”, IEEE Trans. on Image Processing, Vol. 9, pp.

1158-1170, July 2000.
11. S. Cho, D. Kim, and W. A. Pearlman, ”Lossless compression of volumetric medical images with improved 3-D SPIHT algorithm”,

Journal of Digital Imaging, Vol. 17, No. 1, pp. 57-63, March 2004.
12. Kakadu JPEG2000 v3.4, http://www.kakadusoftware.com/.

