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ABSTRACT

We propose resolution progressive Three-Dimensional Set Partitioned Embedded bloCK (3D-SPECK), an
embedded wavelet based algorithm for hyperspectral image compression. The proposed algorithm also supports
random Region-Of-Interest (ROI) access. For a hyperspectral image sequence, integer wavelet transform is
applied on all three dimensions. The transformed image sequence exhibits a hierarchical pyramidal structure.
Each subband is treated as a code block. The algorithm encodes each code block separately to generate
embedded sub-bitstream. The sub-bitstream for each subband is SNR progressive, and for the whole sequence,
the overall bitstream is resolution progressive. Rate is allocated amongst the sub-bitstreams produced for each
block. We always have the full number of bits possible devoted to that given scale, and only partial decoding is
needed for the lower than full scales. The overall bitstream can serve the lossy-to-lossless hyperspectral image
compression. Applying resolution scalable 3D-SPECK independently on each 3D tree can generate embedded
bitstream to support random ROI access. Given the ROI, the algorithm can identify ROI and reconstruct
only the ROI. The identification of ROI is done at the decoder side. Therefore, we only need to encode one
embedded bitstream at the encoder side, and different users at the decoder side or the transmission end could
decide their own different regions of interest and access or decode them. The structure of hyperspectral images
reveals spectral responses that would seem ideal candidates for compression by 3D-SPECK. Results show that
the proposed algorithm has excellent performance on hyperspectral image compression.

Keywords: Hyperspectral image compression, 3D-SPTHT, 3D-SPECK, resolution scalable coding, ROI cod-
ing

1. INTRODUCTION

Hyperspectral imaging is a powerful technique and has been widely used in a large number of application, such
as detection and identification of the surface and atmospheric constituents present, analysis of soil type, mon-
itoring agriculture and forest status, environmental studies, and military surveillance. Hyperspectral images
are generated by collecting hundreds of narrow and contiguous spectral bands of data such that a complete
reflectance spectrum can be obtained for each point in the region being viewed by the instrument. However,
at the time we gain high resolution spectrum information, we generate massively large image data sets. Access
and transport of these data sets will stress existing processing, storage and transmission capabilities. As an
example, the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) instrument, a typical hyperspectral
imaging system, can yield about 16 Gigabytes of data per day. Therefore, efficient compression should be
applied to these data sets before storage and transmission.”

However, utilization of the data in compressed form can often be inconvenient and intractable, if it requires
full decompression. One would like the bitstream to have properties of scalability and random access. There
are two types of scalability of interest for hyperspectral images - SNR or quality scalability and resolution
scalability. SNR scalability means that a portion of the bit stream can be decoded to provide a reconstruction
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at lower rate or quality. That would allow faster or lower bandwidth transmission or a quick look at the entire
data set at lower quality. Resolution scalability would permit decoding at reduced resolution from a portion of
the compressed bit stream. These scalability properties enable transmission and retrieval that are progressive
by quality or resolution. We presented the SNR scalable 3D-SPECK!? in previous paper. In this paper, we
concentrate on resolution scalable 3D-SPECK.

Resolution scalability is important also in the sense that it is connected to complexity scalability as the
consumptions of memory and computational resource is commonly exponentially increased or reduced from
one resolution level to another. Therefore, this feature can be used for the application of an image server.

For some applications, the image analyst may select only a subsection of an image to isolate a homogenous
region of a material class or end members. Therefore, it is important to access or coding the ROI and it can
save space and coding time. We demonstrate in this paper that 3D-SPECK also has ROI retrievability.

Hyperspectral imagery has an important property that it has numerous high frequency content. Therefore,
hyperspectral image compression algorithm should also have excellent performance on images with numerous
high frequency content.

There are some algorithms proposed recently for hyperspectral image compression. Ryan and Arnold®
proposed mean-normalized vector quantization (M-NVQ) for lossless AVIRIS compression. Each block of the
image is converted into a vector with zero mean and unit standard variation. Motta® et al. proposed a
VQ based algorithm that involved locally optimal design of partitioned vector quantizer for the encoding of
source vectors drawn from hyperspectal image. Harsanyi and Chang? applied Principle Component Analysis
(PCA) on hyperspectral images to simultaneously reduce the data dimensionality, suppress undesired or in-
terfering spectral signature, and classify the spectral signature of interest. All these algorithm have promising
performance on hyperspectral image compression. however, none of them generates embedded bitstream.

To incorporate the embedded coding requirement and maintain other compression performances, many
promising volumetric image compression algorithms based on wavelet transform were proposed recently. Sev-
eral widely used ones are Three-Dimensional Context-Based Embedded Zerotrees of Wavelet coefficients (3D-
CB-EZW), Three-Dimensional Set Partitioning In Hierarchical Trees (3D-SPIHT),* 3D-SPECK,!® and Annex
of Part II of JPEG2000'! standard for multi-component imagery compression.

Among these wavelet based embedded image compression algorithms, 3D-SPECK has very good perfor-
mance on hyperspectral image compression; it performs excellently on image sequences with numerous high
frequency content. It’s simple, efficient, and with low computational complexity.

Most embedded algorithms in the literature are unable to efficiently generate resolution scalable code-
streams due to the entanglement in coding, modeling, and data structure across different resolution. In
particular, the classical zerotree coders with individual zerotrees spanning several subband scales are not effi-
cient for resolution scalable coding. 3D-SPECK, however, is designed to have the block based structure which
is easy to support resolution scalable coding. The original 3D-SPECK supports SNR progressive coding. It is
easy to implement 3D-SPECK to support resolution progressive coding as well. 3D-SPECK can also generate
ROI-retrievable bitstream to support random ROI access.

This paper is organized as following: We first present resolution scalable 3D-SPECK in section 2, followed
by experimental results in section 3. Section 4 will conclude this study.

2. THE RESOLUTION SCALABLE 3D-SPECK ALGORITHM
2.1. Set-up and Terminology

3D-SPECK is an extended and modified version of 2D-SPECK.? Consider an image sequence which has been
adequately transformed using the discrete wavelet transform (we use integer wavelet transform in this paper).
The transformed image sequence is said to exhibit a hierarchical pyramidal structure defined by the levels of
decomposition, with the topmost level being the root. Figure 1, illustrates such a structure with three-level
decomposition. The finest pixels lie at the bottom level of the pyramid while the coarsest pixels lie at the top
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Figure 1. Structure for 3D-SPECK. The numbers on the front lower left corners for each subband are marked to
indicate the sorting order.

(root) level. The image sequence is represented by an indexed set of transformed coefficients ¢; j 1, located at
pixel position (i, j, k) in the transformed image sequence.

Pixels are grouped together in sets which comprise regions in the transformed images. Unlike 2D-SPECK,
3D-SPECK has only one type of set: S set. We say a set S is significant with respect to n, if

o > 9n 1
A eigl 2 1)

Where ¢; ;. denotes the transformed coefficients at coordinate (4, j, k). Otherwise it is insignificant. For
convenience, we can define the significance function of a set S as:

I'n(S) = (2)

1 . ifan< maxX j k)esS |Ci,j,k| < ontl
0 : else

Resolution scalable 3D-SPECK makes use of rectangular prisms in the wavelet transform. Each subband
in the pyramidal structure is treated as a code block or prism, henceforth referred to as sets S, and can be
of varying dimensions. The dimension of a set S depends on the dimension of the original images and the
subband level of the pyramidal structure at which the set lies.

We define the size of a set to be the number of elements in the set. The size of a set can be 1, which means
that the set consists of just one pixel. Sets of various sizes will be formed during the course of the algorithm,
depending on the characteristics of pixels in the original set.

The way that 3D-SPECK encodes an S set is similar to 3D-SPIHT. 3D-SPECK follows closely the method-
ology used in the 3D-SPIHT algorithm. The difference lies in the sorting pass. 3D-SPIHT uses spatial orien-
tation trees for significance testing, whereas 3D-SPECK uses sets of type S as defined above. In other words,
the difference is in the partitioning. The way 3D-SPECK doing the partitioning can exploit the clustering of
energy found in transformed images and code first those areas of the set with high energy. The coefficients
with large information content are therefore can be coded first.

3D-SPECK maintains two linked lists:

e LIS — List of Insignificant Sets. This list contains S sets of varying sizes which have not yet been found
significant against a threshold.



e LSP — List of Significant Pixels. This list contains pixels that have been found significant against a
certain threshold n.

3D-SPECK proceeds sets S in the order of increase of sizes. Single pixel sets are to be tested first, and
sets with larger sizes are to be tested later. This kind of ordering is the functional equivalent of separating
the LIS into two lists, an LIP and an LIS, as done in SPTHT.

2.2. The Algorithm

Although the subband transform structure is inherently scalable of resolution, most embedded coders in
the literature are unable to efficiently provide resolution scalable code streams. This is a consequence of
entanglement in coding, modeling, and data structure across different resolutions. As an example, EZW and
SPIHT, the classical zerotree coders with individual zerotrees spanning several subband scales are not efficient
for resolution scalable coding.

To obtain resolution progressive bitstream, the bits in blocks belonging to subbands of coarser scales are
encoded before those of finer scales.

The original 3D-SPECK supports SNR scalability, it generates SNR embedded bitstream for the whole
image sequence.'® We can modify our implementation of SNR scalable 3D-SPECK quite easily to enable
resolution scalability. The idea is just to run the 3D-SPECK algorithm on each subband separately. Instead
of maintaining the same significance threshold across subbands until we exhaust them, we maintain separate
LIS and LSP lists for each subband and proceed through the lower threshold in every subband before moving
to the next one. Therefore, we generate an array of lists, LSP, and LISy, where k is the subband index.
We move through the subbands in the same order as before, from lowest to highest scale. Therefore, we can
truncate the bitstream corresponding to a reduced scale and decode to that scale.

Similar to SNR progressive 3D-SPECK, resolution progressive 3D-SPECK also starts by adding all sets S
to the LISk. Note each set S at the begining belongs to one LIS, where &k = 1,2, 3, ..., K, and K is the total
number of subbands.

for k=1,2,3,...,.K
1. Initialization
e Output n = [logy(max | ci i |)
e Set LSP, =0, k=1,2,3,...,K
e Set LIS, = {corresponding subband of transformed images of wavelet coefficients }

2. Sorting Pass

In increasing order of size of sets, for each set S € LISy, ProcessS(S)

ProcessS(S)
{

e Output I',(S) (Whether the set is significant respect to current n or not)
o if I, (S) =1

— if § is a pixel, output sign of S and add S to LSPy

— else CodeS(S)

— if § € LIS, remove S from LIS
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Figure 2. An example of resolution progressive 3D-SPECK

}
CodeS(S)

{

e Partition S into eight approximately equal subsets O(S).
e For each O(S)
— Output T',,(O(S))
— i, (008)) =1
x if O(S) is a pixel, output sign of O(S) and add O(S) to LSPy
* else CodeS(O(S))

— else
x add O(S) to LIS,

3. Refinement Pass
For each entry (i,j, k) € LSP}, except those included in the last sorting pass, output the n** MSB of
| Cigik |-

4. Quantization Step
Decrement n by 1 and go to step 2.

For total K subbands, there are K LSP; and K LISy at initialization. The algorithm encodes each subband
and generates embedded bit stream independently. As shown in Figure 2, for two level dyadic decomposition
(K = 15), resolution progressive 3D-SPECK generates SNR progressive bit stream for each subband, and
overall, the whole bit stream is resolution scalable.

In order to effect multi-resolution decoding, bit stream boundaries are maintained between subbands.
Adaptive arithmetic coding models are accumulated from samples within the same resolution scale. Finally,
the modeling contexts do not include any neighbor from the finer scales. These conditions guarantee the
decodability of the truncated code stream.

Although the full bit stream is resolution progressive, it is now not SNR progressive. The bit streams
in the subbands are individually SNR progressive, so the bits belonging to the same bit planes in different
subbands could be interleaved at the decoder after truncation to the desired scale to produce an SNR scalable
bit stream.

For the SNR progressive coding mode, the bits are allocated optimally across subbands, according to the
significance threshold of the coefficients. But, for the resolution progressive mode, for a given target bit rate,
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Figure 3. 1D wavelet packet structure along the spectral axis that makes the transform approximately unitary by
shifting of the integer wavelet coefficients.

we need now to apply an explicit bit allocation algorithm to assign different bit rates to different subbands
to minimize mean squared error. The procedure! we adopt to solve the rate allocation is a variance based
algorithm.

To decode the image sequence to a particular level at a given rate, we need to encode each subband at a
higher rate so that the algorithm can truncate the sub-bitstream to the assigned rate. However, unlike the
JPEG2000 method, with this method we can achieve the target rate at the encoding stage without over-coding.

2.3. Scaling Wavelet Coefficients by Bit Shifts

We use integer filter in this paper. However, the integer filter transform with dyadic decomposition structure
is not unitary. This does not affect the performance of lossless compression. However, to achieve good
lossy coding performance, it is important to have an unitary transform. If the transform is not unitary, the
quantization error in the wavelet domain is, thus, not equal to the mean squared error (MSE) in the time
domain. Therefore, the lossy coding performance will be compromised. Appropriate transform structure and
scaling of the integer wavelet coefficients can make the transform approximately unitary before quantization.
It is therefore possible to keep track of the final quantizer coding error with the integer transform.

We adopt the transform structure mentioned by Xiong et al..!> As shown in Figure 3, a 4-level 1D wavelet
packet tree structure is applied on the spectral axis. The scaling factors for each subband is indicated in the
figure. As each scaling factor is some power of two, we can implement the scaling factor by bit shifting.

For the spatial axes, we keep the same 2D dyadic wavelet transform to each slice. As shown in Figure 4,
4-level dyadic decomposition structure with scaling factor for each subband is plotted. Each of the scaling
factors is some power of two and therefore can be implemented by bit shifting.

To summarize, the 3D integer wavelet packet transform we use here is first to apply 1D packet decompo-
sition and bit shifting along the spectral axis, followed by the basic 2D dyadic decomposition and bit shifting
on the spatial axes. An example is shown in Figure 5, where scaling factors associated with some subbands
are indicated. The factors are the multiplications of the corresponding scaling factors in Fig. 3 and Fig. 4.
This 3D integer wavelet packet structure makes the transform approximately unitary, and thus leads to much
better lossy coding performance.



Figure 4. Same 2D spatial dyadic wavelet transform for each slice.
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Figure 5. 3D integer wavelet packet transform.

2.4. Random ROI Access

This section describes how to apply resolution scalable 3D-SPECK to generate ROI retrievable bitstream.
Figure 1 demonstrates the dyadic structure of the subband after wavelet decomposition. Figure 6 then gives
an example of the parent-offspring dependencies in the 3D orientation tree after two-level dyadic decomposition.
All the coefficients can be organized by trees with roots located at the lowest subband. Except the coefficient
on the upper-left corner and the coefficients at the highest and lowest pyramid levels, the parent-offspring
relationships for the coordinate (i, j, k) is

O(i, j, k)

= (2i,24,2k), (24,25, 2k + 1), (24,25 + 1, 2k), (2i + 1, 27, 2k),
(21,2) + 1,2k + 1), (20 + 1,24, 2k + 1), (20 + 1,25 + 1, 2k),

(20 + 1,25+ 1,2k + 1).

(3)

A 3D region can be reconstructed by the coefficients of a tree independently. For an image sequence of
size I x J x K decomposed to level L, the number of trees, denoted as N, equals to the number of coefficients
in the lowest frequency subband. That is N = QLL X QLL X QEL

For instance, if the hyperspectral image sequence has 224 bands of 512 x 512 images. For L = 4 level
decomposition, there are 14366 trees, with each tree representing a 32 x 32 x 14 3D region.

We use the coordinate of the root coefficient to represent a tree. For instance, the tree shown in Figure 6



Figure 6. Parent-offspring dependencies in the 3D orientation tree.

e

Figure 7. The 3D orientation tree shown in Figure 6.

is the tree with root coordinate located at (0, 0, 0), and this tree can be used to reconstruct the region from
(0, 0, 0) to (31, 31, 13).

Similar to the idea presented by Xie,'? to generate ROI retrievable bitstreams, we can apply resolution
scalable 3D-SPECK on each tree independently. Figure 7 shows all the coefficients of the tree shown in
Figure 6. We can see that the tree has the similar pyramid structure as that of the entire wavelet coeflicients
of the sequence. Hence, it is straightforward to apply the resolution scalable 3D-SPECK on each tree. The
coefficients in each tree can then be put together to construct a block of the same size as its corresponding
ROLI. Therefore, we can randomly access any 3D regions in the sequence.

3. NUMERICAL RESULTS

We apply S+P (B) integer filter for resolution scalable 3D-SPECK. Dyadic wavelet transform is applied on
the spatial domain, and wavelet packet structure with appropriate scaling factors is used for the spectrum
(the third dimension) domain to make the transform approximate unitary.

We perform coding experiments on a signed 16-bit reflectance AVIRIS image volume. AVIRIS has 224
bands and 614 x 512 pixel resolution that corresponds to an area of approximately 11 km x 10 km on the
ground. We have the 1997 version of Jasper Ridge scene 16 . For our experiments, we cropped the scene to
512 x 512 x 224 pixels.

To quantify fidelity, the coding performances are reported using rate-distortion results, using root mean
square error (RMSE) calculated over the whole sequence as the distortion measure. Note that the 16-bit value
range is -32,768 to 32,767. For comparison, we also provide results of the original SNR scalable 3D-SPECK
at the partial and full scales.



Bit Rate (Full) RMSE
(bpppb) 1/8 [1/4 [1/2 | Full
‘ Resolution scalable ‘
0.1 7.3 10.5 | 22.6 | 65.3
0.5 6.9 10.1 | 18.1 | 23.3
1.0 4.1 7.8 9.7 11.2
2.0 2.7 3.8 4.3 5.0
SNR scalable
0.1 7.7 11.3 | 23.2 | 64.2
0.5 7.4 10.5 | 18.6 | 22.9
1.0 4.4 8.3 10.2 | 10.8
2.0 2.8 4.0 4.4 4.9

Table 1. RMS error at a variety of resolution and coding bit rates using integer filter resolution scalable and SNR,
scalable 3D-SPECK.

Figure 8. A visual example of resolution progressive 3D-SPECK. From left to right: 1/8, 1/4, 1/2, and full resolution
at 1.0 bpppb.

Integer filter implementation supports lossy-to-lossless coding, and thus lossy and lossless reconstruction
can be generated from the same embedded bitstream.

The RMSE values for a variety of bit rates in bits per pixel per band (bpppb) for the sequence are listed
in Table 1 by comparing to the results of SNR scalable 3D-SPECK. The RMSE values listed in Table 1 for
low resolution image sequences are calculated with respect to the lossless reconstructions of the corresponding
resolutions. Since our bit allocation algorithm is not optimal, SNR scalable version performs slightly better at
the full scale. To get reduced resolution from SNR scalable version, the full bitstream is decoded, but inverse
DWT is performed only to partial scales. As there is significant high frequency content in hyperspectral
images, the magnitudes of the coefficients are not close to monotone decreasing from coarse to fine scale.
Instead, many coefficients that are on the highest bit planes are located in the higher subbands. To a partial
scale, more bit budget is assigned to resolution scalable 3D-SPECK than assigned to SNR scalable version.
Therefore resolution scalable 3D-SPECK yields lower RMSE values at partial scales.

Figure 8 demonstrates the reconstructed band 20, one band from the reconstructed sequence, decoded from
a single resolution scalable bitstream at 1.0 bpppb to a variety of resolutions. Even a low resolution, we can
get very high quality images. When the reconstructed sequences are presented at same display resolution, the
perceived distortion for viewing a sample image at half resolution is equivalent to that at full resolution but
from twice a distance.



Figure 9. A visual example of lossless resolution progressive 3D-SPECK. From left to right: 1/8, 1/4, 1/2, and full
resolution (original).

Bit Rate | Bit budget (accumulated Kbytes)
(bpppb) [1/8 [1/4 [1/2 ] Full

0.1 61 274 734 734

0.5 68 290 963 3670

1.0 7 357 | 1505 7340

2.0 91 471 | 2422 14680

Table 2. Corresponding bit budgets for resolution scalable 3D-SPECK results for Table 1

The lossless decoding of the same band is demonstrated in Figure 9 at different resolutions.

The corresponding byte budgets for the individual resolutions of the resolution scalable 3D-SPECK for
Table 1 are provided in Table 2. We can see that the computational cost of decoding reduces from one
resolution level to the next lower one. The total bit cost decreases rapidly with successive reductions in
resolution. However, for SNR scalable 3D-SPECK, the decoder needs to visit the whole full bitstream in order
to decode to a certain resolution level.

Applying resolution scalable 3D-SPECK on each 3D orientation tree independently, we can generate an
ROI retrievable bitstream. Figure 10 includes both 3D and 2D visual examples of ROI decoding. The original
image sequence is lossless, and the ROI is also lossless. As shown in the third image of Figure 10, the brighter
region is the ROI, and it corresponds to the original sequence from (250, 250, 0) to (410, 410, 223). In order
to decode this region, we only need to decode the trees with root coordinates from (15, 15, 0) to (26, 26, 13).
Note that to decode the ROI losslessly, we need to select trees to cover a slightly larger region to make sure
the reconstruction is lossless even around the border of that ROI.

4. CONCLUSION

An embedded, block based, image wavelet transform coding algorithm of low complexity has been proposed.
The algorithm has excellent performance for hyperspectral image compression. It supports resolution scalable
coding and random ROI access.
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