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Beginnings of Image Coding

• Shannon 1948: 
– entropy is lowest bit rate possible 

for perfect recovery
• Shannon 1960:

– Rate-distortion function (R(D)) gives lowest bit 
rate possible for reconstruction with distortion 
no greater than D



Considerations
• Theorems true for statistically stationary 

processes – images not stationary
• Optimal in limit of long data length  

– not practical
• Early image coding techniques built for 

stationary models 
– Often simple Gaussian or Laplacian models
– Parameters may vary block-wise or region-

wise



Early Post-Shannon Image Coding

• DPCM : Prediction and coding from past 
quantized residuals 
– Quantization tailored 

to visual perception
– Predictor from simple 

to adaptive 

MIT (Schreiber, Proc IEEE 3/67), 
Bell Labs (Kretzmer, Limb, etc.)

Good reviews: Netravali, Limb, Proc. IEEE 03/80; 
Connor, Brainard, Limb, Proc. IEEE 07/72



Advent of Transform Coding

• Huang and Schultheiss (IEEE Trans Commun. 
Tech. (T-CT) 1963) 
– Proved coding gain for correlated Gaussian sequence 

via optimal bit allocation to KLT
– Sparked image transform coding research: 

• Purdue: Habibi and Wintz  (T-CT1971), Wintz (Proc. IEEE 
1972)

• USC: Pratt and Andrews(1968-9), Chen and Pratt (T-COM 
1974) 

• MIT: Anderson and Huang (T-CT ’71), Woods and Huang 
(Picture Bandwidth Comp Wkshp 1969)



Interesting Developments

• Goblick and Holsinger (T-IT 4/67)
– Entropy coding of outputs of 
uniform quantizer nearly optimum:
¼ bit > R(D) for Gaussian, MSE
– Proved more formally for other 

statistics by Gish and Pierce 
(T-IT 9/68)

Validates uniform quantizer as 
choice for minimum MSE with 
given entropy.



Transforms
• Search for easily computable, fixed transforms

– KLT optimal: dependent on statistics and no fast alg.
– DFT asymptotically optimal, fast algorithm
– Hadamard fastest to compute, but inefficient in coding
– Slant, SVC harder to compute, more efficient in 

coding
• Applied to 16x16 image blocks
• DCT : Ahmed, Natarajan, Rao  (T-Cmptr 01/74)

– Approached KLT spectrum closely for finite N 
– Fixed, independent of statistics, with fast algorithm
– Became dominant, canonical transform



Region Adaptive Transform Coding

• Chen and Pratt, “Scene Adaptive Coder”, T-
Comm 1984
– Divided 16x16 DCT blocks into 4 classes, calculated 

4 intra-class variance distributions for rate allocation
– Forerunner of JPEG standard 

• JPEG Standard 1989-1992
– Codes 8x8 DCT blocks independently with Huffman 

coding of uniform step size quantizer outputs
– Huffman code based on statistics gathered from 

experiments with a large number of images



Vector Quantization
• Generalized Lloyd or LBG (Linde-Buzo-Gray) 

algorithm  (T-COM, 01/80) 
– Asymptotically optimal: complexity ~ 2nR

– Restriction to small n and statistical mismatch limited 
performance

• TCQ (Trellis Coded Quantization) (Marcellin & 
Fischer,T-COM, 1/90)
– Asymptotically optimal: complexity ~n
– Within 0.21 dB of R(D) for Gauss iid source (>1 b/s)
– Deteriorates in performance < 1 b/s
– Adopted in JP2000, Part II for Wavelet TCQ



Subband Coding
• Woods and O’Neil (ICASSP 4/86,T-ASSP 

10/86); Gharavi and Tabatabai (VCIP 10/86)
– First subband coding of images, although 

done before for speech
– DPCM coding in subbands
– Superior results over DCT coding

• Surprising performance – theoretically unjustified 
by W&O analysis, eventually justified by P. Rao, S. 
Rao, and Pearlman (T-IT 3/91, 7/96)



Wavelets

• Need alias-cancelling half-band filters (a low-pass and a 
high-pass) for perfect reconstruction

• QMF and paraunitary
filters were exact or 
approximate solutions

• Then came wavelet filters, specifically the CDF 9/7 
biorthogonal wavelet filter

--- used first for image coding by 
Antonini, Barlaud et al. (T-IP 4/92)



Coding of Subbands

• Kinds of coding of subbands 
independently
– Huffman coding, arithmetic coding, predictive 

coding (DPCM), tree coding, trellis coding, 
VQ, TCQ

• All did well, the more complex the better the result
• Significant breakthrough: zerotree coding

– EZW  (Shapiro, ICASSP’92, T-ASSP 12/93)
• Takes advantage of decaying amplitude with wavelet 

subband frequency



SPIHT

• SPIHT (Said and Pearlman, T-CSVT 6/96)
– Introduces set partitioning in spatial orientation trees 

with roots in lowest frequency subband 
– Finds groups of pixels below

set of thresholds T=2n

-- reduces to n raw bits for 
smallest n (+ sign bit)

-- n=0: 1 ‘0’ bit locates group

Amplitude-based, non-statistical 
bit assignment
Simple arithmetic operations
More efficient than EZW



Another Partition (SPECK)

• SPECK (Islam and 
Pearlman, VCIP99)
– Recursive quadri-

section of blocks 
– Quadtree code for 

execution path



JPEG2000

• Seek better low rate performance than JPEG
– Eliminate blocking artifacts found in low-rate JPEG

• LOT (Malvar, 1992) was one solution

• Embed new features: rate scalability, ROI 
encoding/decoding, etc. (inherent in SPIHT and 
EZW)

• Codes subblocks of wavelet subbands with 
EBCOT coder (Taubman, T-IP 07/00) 
– Subblocks’ size 64x64 or 32x32
– Context-based adaptive arithmetic bitplane coding

• Part 1 finalized in 2001



Trends
• Get closer to code based on actual value

– SPIHT does it almost perfectly
• Smaller coding units

– Enables finer resolution, locally adaptive coding
• 8x8 DCT in JPEG, 4x4 DCT in H.264/AVC, JPEG XR 
• Subband subblock coding in JPEG2000

• Overlapped blocks or inter-block prediction 
– Eliminates discontinuities at block boundaries

• More complex, adaptive context-based entropy 
coding (e.g., JPEG2000, H.264/AVC)

• Simpler block transforms (integerized DCT)
– Less decorrelation compensated by more complex coding



Efficiency of Modern Methods

• Methodology
– Generate Gauss-Markov Images
– Compare compression results with 

Rate-Distortion or joint entropy function



Gauss-Markov Images
Variance = 400       Mean = 128

a = 0.95 a = 0.90

Separable;    8-bit precision;
512x512 lower cut from 640x640



Gauss-Markov Images (cont.)

a = 0.50 a = 0.0

Separable;    8-bit precision;
512x512 lower cut from 640x640

Variance = 400       Mean = 128



Theoretical Bounds

Rate-Distortion Function (Gaussian, squared error)
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Comparisons

6.6 dB

0.6

PSNR = 22.11–D dB



More Comparisons

PSNR = 22.11–D dB



Lossless Compression

0.9438 0.4188 0.4838 0.9329

0.6652 0.2312 0.3762 0.6847

0.2392 0.0872 0.3172 0.2939

0.2469 0.1779 0.3639 0.4420

0.95 3.0172

0.90 3.9778

0.50 5.9548

0 6.3691

Correlation      Joint       SPIHT       CALIC        JP2K     JPEG-XR
Parameter    Entropy 

Differences from Entropy (b/p)

* CALIC closest to entropy in all cases
* Aside from CALIC,  SPIHT at a = 0.5  and 0 beats others



What Have We Learned?

• Much room for improvement for lossy 
compression : 
– > 0.5 bpp for high quality
– 4 to 6 dB at useful bit rates

• Small room for improvement for lossless 
compression - ~0.2 bpp

**Lesson: The best adaptive techniques can 
take you only so far. 



Where to go from here?

• For pure compression, much more potential 
payoff for lossy methods.

• Clearly advantageous to transform to 
independent variables and/or segment to 
stationary entities.
– closes performance to the latter gaps

• Barring advancements in pure compression, 
need to pursue
– better transforms that are adaptive to image features

• Bandelets, curvelets, etc. ?
– better segmentation and set partitioning methods



Future Application Space

• Large images with multiple dimensions
– Examples: 

• 4 dimensions: fMRI, medical ultrasound     
• Materials micro-structures with many attributes at given grid point.

• Content-based retrieval from large databases
– Internet application needs interactivity for consultation and quantitative 

analysis.
– Need fast search and retrieval and fast scalable decoding for browsing, 

retrieval, and transmission
• Places limits on complexity and memory usage

– Increase in size always seems to outpace gains in speed
• Not likely to close existing performance gaps with simpler techniques that 

utilize less memory.
– Fruitful or fruitless pursuit?

• Contribution is to limit degradation the least possible by being clever
 Transmission rate decrease is main motivation for compression

– Storage reduction now secondary

Question: Do we need more efficient compression?



Distributed Source Coding

Encoder

Decoder
Y

• X and Y correlated sources
• Y unknown at source

S-W: Encode X with H(X/Y) bits, Y with H(Y) bits, can achieve      =  
No loss over when Y is known at encoder also, if  statistics X given Y are 
known.

^
X

X

Source Coding with Side Information: Slepian-Wolf 1973, Wyner-Ziv 1976

W-Z:  Lossy coding performance same whether Y is known at both ends 
or only at decoder, if  statistics  of X and Y are jointly Gaussian.

)/( YXHRX ≥
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DSC Image Compression Scenarios

• Low complexity encoding for image transmission
• Sensor networks

– Multiview coding
• Multiple description coding
• Camera alignment
• Cryptogram compression

None likely to bridge identified performance 
gaps, especially for the usual non-Gaussian 
lossy coding



Technology Advances

• Dramatic increases in processor speeds seem to be 
ending
– Parallelization by multi-core processor chips is the trend

• Power consumption  ~ f 3

– New parallel forms of algorithms for compression likely to 
emerge

• Currently JPEG2000, JPEG, etc. have parallel structure  ---
currently not exploited 

• Multiple description coding; distributed source coding

• More compact, higher power batteries would expand 
application scenarios for compression

• Miniaturization to quantum limit to be reached in 10 to 15 
years
– Quantum Computers: lower rate limits theoretically possible 



Quantum Computing
• Quantum computers can solve some math 

problems considerably faster than classical 
computers

• Qbit.com (defunct) – claimed 2-10:1 lossless 
image compression at 1.5 Gbits/sec throughput
– with qubit processor?  US 2004/0086038 App.

• Quantum Information Theory
– Well developed; parallels Shannon theory

• Source coding theorem (von Neumann entropy limit)
• R(D) theorem
• S-W and W-Z theorems
• Channel capacity theorem

– Theoretically achievable rates lower than in classical 
computing



Quantum Bits and Entanglement
• General state of one qubit (input): α ‘s complex

- said to be entangled
Ex.: photon

• Output is measurement: or
– Orthogonal states can be measured
– Similarly for 2-qubit system- states are entangled

• n-qubit space – 2n dimensional Hilbert Space 
• States can not be copied or cloned.  
• A measurement changes the state: basis of secure key 

distribution
• States can be communicated
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Entropy Example

0Suppose 0  H polarization

Suppose 1  1sin0cos θθψ += Angle     polarization 

Von Neumann Entropy S(     ,      ) = 

0 ψ
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Two equiprobable photon states:   Shannon entropy = 1 bit

Except for                        ,      S(     ,    ) < 1    (e.g., 0.60 at θ = π/4) 2/πθ ±=
2/πθ ±=But, only is detectable or communicable!!

 Therefore, von Neumann entropy not yet physically realizable.
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Prospect of Lower Compression Limit

• So far, quantum information theory does not give physically 
realizable lower entropy limits 

• Also, the devices and detectors work only in the laboratory or with 
limited capability – polarizers,1-qubit gates, and short shift registers

• Short error-correcting codes, secure key distribution
• Physicists are hard at work to make the devices that form and detect 

specified quantum states
• Physicists have taken the lead at formulating quantum information 

theory, but IT community has been roused (e.g., Devetak & Berger, 
“Quantum R-D Theory,” Trans. IT Jun 2002; Rob Calderbank)

• Further reading
– E. Desurvire, Classical and Quantum Information Theory (Cambridge 2009)
– M. A. Nielson, I. L. Chang: Quantum Computation and Quantum Information
– N. D. Mermin : Quantum Computer Science: An Introduction 
– J. Audretsch, Ed.: Entangled World: The Fascination of Quantum Information 

and Computation 
– Bennett & Shor, “Quantum Information Theory”, Trans IT, Oct 1998



Conclusion

• Substantial gaps to compression limits still exist
• Trend toward algorithms working in small coding 

units and using complex entropy coding
• Trend to multiple core processors to spur 

development of new parallel processing paradigms
– Collaborative compression

• Open question whether quantum information theory 
and quantum computation will bring future rate 
savings



Thank you!


	Milestones and Trends in Image Compression
	Outline
	Beginnings of Image Coding
	Considerations
	Early Post-Shannon Image Coding
	Advent of Transform Coding
	Interesting Developments
	Transforms
	Region Adaptive Transform Coding
	Vector Quantization
	Subband Coding
	Wavelets
	Coding of Subbands
	SPIHT
	Another Partition (SPECK)
	JPEG2000
	Trends
	Efficiency of Modern Methods
	Gauss-Markov Images
	Gauss-Markov Images (cont.)
	Theoretical Bounds
	Comparisons
	More Comparisons
	Lossless Compression
	What Have We Learned?
	Where to go from here?
	Future Application Space
	Distributed Source Coding
	DSC Image Compression Scenarios
	Technology Advances
	Quantum Computing
	Quantum Bits and Entanglement
	Entropy Example
	Prospect of Lower Compression Limit
	Conclusion
	�Thank you!

