
Submitted to the IEEE Transactions on Biomedical Engineering

Wavelet Compression of ECG Signals by the Set
Partitioning in Hierarchical Trees (SPIHT) Algorithm

Zhitao Lu, Dong Youn Kim ∗, and William A. Pearlman

Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute
Troy, NY 12180-3590

January 12, 2000

Abstract

A wavelet ECG data codec based on the Set Partitioning In Hierarchical Trees
(SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm [1]
has achieved notable success in still image coding. We modified the algorithm for the
one-dimensional (1-D) case and applied it to compression of ECG data. Experiments
on selected records from the MIT-BIH arrhythmia database revealed that the proposed
codec is significantly more efficient in compression and in computation than previously
proposed ECG compression schemes. The coder also attains exact bit rate control and
generates a bit stream progressive in quality or rate.
KEYWORDS: ECG signal compression, wavelet signal processing, portable heart mon-
itoring.

1 Introduction

Multichannel ECG data provide cardiologists with essential information to diagnose heart
disease in a patient. In an ambulatory monitoring system, the volume of ECG data is neces-
sarily large, as a long period of time is required in order to gather enough information about
the patient. As an example, with the sampling rate of 360 Hz, 11 bits/sample data resolu-
tion, a 24-hour record requires about 43 Mbytes per channel. Therefore, an effective data
compression scheme for ECG signals is required in many practical applications including:
(a)ECG data storage; (b) ambulatory recording systems; and (c) ECG data transmission over
telephone line or digital telecommunication network. Compression schemes used on ECG
data fall into two categories: direct and transform schemes. Examples of direct schemes
that attempt to code the signal directly are FAN, AZTEC, CORTES, and ASEC. A good

∗D.Y. Kim is with the Department of Biomedical Engineering and Research Institute of Medical Engi-
neering, Yonsei University, Wonju, Korea.

1

review and comparison of some of these methods are presented in [2]. Among transform
schemes, the wavelet transform schemes have shown promise because of their good localiza-
tion properties in the time and frequency domain. Several wavelet and/or wavelet packet
based compression algorithms have been proposed in [3] [4] [5].

In this paper, we propose a wavelet coder based on the the Set Partitioning in Hierarchical
Trees (SPIHT) compression algorithm. This algorithm is considered the premier state-of-
the-art algorithm in image compression and is here modified to suit the special characteristics
of ECG signals. The paper is organized as follows: Section 2 is a brief introduction to the
wavelet transform and its filter bank implementation. Section 3 presents the coding algorithm
based on 1-D SPIHT. Section 4 is a simple example to show how the coding algorithm works.
We applied the proposed codec on selected records from the MIT-BIH arrhythmia database
and present the results and comparisons with other coders in the literature in Section 5.
Section 6 concludes the paper.

2 Wavelet Transform

The wavelet transform comprises the coefficients of the expansion of the original signal x(t)
with respect to a basis ψω,n(t), each element of which is a dilated and translated version of
a function ψ called the mother wavelet, according to

ψω,n(t) =
1√
2ω
ψ(
t− 2ωn

2ω
), ω, n ∈ Z, (1)

where Z is the set of integers. Depending on the choice of the mother wavelet appropriately,
the basis can be orthogonal or biorthogonal. The wavelet transform coefficients, given by
the inner product of x(t) and the basis functions,

W (ω, n) =< x(t), ψω,n(t) > (2)

comprise the time-frequency representation of the original signal. The wavelet transform
has good localization in both frequency and time domains, having fine frequency resolution
and coarse time resolution at lower frequency, and coarse frequency resolution and fine time
resolution at higher frequency. Since this matches the characteristic of most signals, it
makes the wavelet transform suitable for time-frequency analysis. In data compression, the
wavelet transform is used to exploit the redundancy in the signal. After the original signal
is transformed into the wavelet domain, many coefficients are so small that no significant
information is lost in the signal reconstructed by setting these coefficients to zero.

In digital signal processing, the fast forward and inverse wavelet transforms are imple-
mented as tree-structured, perfect-reconstruction filter banks. The input signal is divided
into contiguous, nonoverlapping blocks of samples called frames and is transformed frame
by frame for the forward transform. Within each frame, the input signal is filtered by the
analysis filter pair to generate lowpass and highpass signals,which are then downsampled by
a factor of two. Then this analysis filter pair is applied to the downsampled lowpass signal
recursively to generate layered wavelet coefficients shown in Figure 1. In different layers,
the coefficients have different frequency and time resolution. In layer i, each coefficient cor-
responds to two coefficients in layer i+1 in the time domain. For the inverse transform, the

2

coefficients in the highest layer are upsampled by a factor of two (zeros are inserted between
successive samples), filtered by the low- and high-pass synthesis filter and added together to
get the lowpass signal for next layer. This process is repeated for all layers until the full size
signal is reached to complete the inverse transform.

The selection of different analysis-synthesis filter pairs, which correspond to different
wavelet bases, is very important for obtaining effective data compression. For the design of
perfect reconstruction filter pairs, being beyond the scope of this paper, we refer the reader
to the literature, such as [6] and many other works.

......

.......

.......

Highest Layer

...

Layer i

Layer i+1

Figure 1: The temporal orientation tree

Wavelet Transform SPIHT Encoder
Bit Stream

Input ECG

Signal

Encoded

Encoded

Bit Stream

Reconstructed

ECG Signal

SPIHT Decoder Inverse Wavelet
Transform

Figure 2: The diagram of the proposed encoder and decoder

In implementation, the frame size, number of layers of the wavelet transform and the
filter pair need to be appropriately selected. The number of layers determined the coarsest
frequency resolution of the transform and should be at least four for adequate compression.
The frame size is taken to be a power of 2 that exceeds the number of layers. The frame should
contain several periods of the ECG signal, but should still be short enough for acceptable

3

Table 1: The Coefficients of the Biorthogonal 9/7 Tap Filters

Lowpass 0.852699 0.377403 -0.11062 -0.023849 0.037829
Highpass 0.788485 0.418092 -0.04069 -0.064539

coding delay and memory usage. Our choices of 6 layers of wavelet decomposition and
1024 sample frames fulfill the requirements. Among the potential perfect reconstruction
filter pairs, we seek a good tradeoff between compression performance, generally better for
longer filters, and computational complexity, obviously smaller for the shorter filters. The
biorthogonal 9/7 tap filters [9], whose coefficients are in Table 1, have been chosen, because
they have proved to offer the best such tradeoff for images and have shown to give the best
compression performance for wavelet coding of ECG signals among all filters tested in [4].
Since these filters are symmetric, we employ a symmetric(reflective) data extension scheme
at the boundaries of the frames to obtain perfect reconstruction at the boundaries in the
absence of coding.

3 Coding Algorithm

After the wavelet transform, we use the SPIHT algorithm to encode the wavelet coefficients.
The SPIHT algorithm has received widespread recognition for its notable success in image
coding [1]. We have also implemented it in the case of one dimension (1-D) for coding
wavelet packet transforms of audio signals and obtained very good compression performance
[8]. Here we apply the SPIHT algorithm to the wavelet (purely dyadic) transform of ECG
signals. The diagram of the encoder and decoder is shown as in Figure 2.

The principles of the SPIHT algorithm are partial ordering of the transform coefficients
by magnitude with a set partitioning sorting algorithm, ordered bit plane transmission and
exploitation of self-similarity across different layers. By following these principles, the en-
coder always transmits the most significant bit to the decoder.

3.1 Temporal Orientation Trees

As shown in Figure 1, a tree structure, called ”temporal orientation tree”, defines the
temporal relationship in the wavelet domain. Every point in layer i corresponds to 2 points
in the next layer i+1, with the arrow indicating the parent-offspring relation. This definition
is analogous to that of spatial orientation trees in [1]. Each node either has no offspring or 2
offspring. In a typical 1-D signal, most of the energy is concentrated in low frequency bands,
so that the coefficients are expected to be better magnitude-ordered as we move downward
following the temporal orientation tree to the leaves (terminal nodes).

4

3.2 Set Partitioning Sorting Algorithm

The same set partitioning rule is defined in the encoder and decoder. The subset of subband
coefficients ci in the subset T is said to be significant for bit depth n if maxi∈T {|ci|} ≥ 2n,
otherwise it is said to be insignificant. If the subset is insignificant, a 0 is sent to the decoder.
If it is significant, a 1 is sent to the decoder and then the subset is further split according
to the temporal orientation tree until all the significant sets are a single significant point.
In this stage of coding, called the sorting pass, the indices of the coefficients are put onto
three lists, the list of insignificant points (LIP), the list of insignificant sets (LIS), and the
list of significant points (LSP). In this pass, only bits related to the LSP entries and binary
outcomes of the magnitude tests are transmitted to the decoder. In implementation, we
grouped together the entries in the LIP and LIS which have the same parent into an entry
atom. For each entry atom in LIP, we estimated a pattern in both encoder and decoder
to describe the significance status of each entry in the current sorting pass. If the result of
the significance test of the entry atom is the same as the specified pattern, we can use one
bit to represent the status of the whole entry atom which otherwise had two entries and
representation of significance by two bits. If the significance test result does not match the
pattern, we transmitted the result of the significance test for each entry in the atom. Since
the ECG signal has periodic characteristics, we correctly estimated the pattern with high
probability, so were able to save one bit frequently enough to give noticeable improvement
in compression performance.

3.3 Refinement Pass

After each sorting pass, we get the significant coefficients for the threshold 2n, and then
send to the decoder the nth most significant bit of every coefficient found significant at a
higher threshold. By transmitting the bit stream in this ordered bit plane fashion, we always
transmit the most valuable (significant) remaining bits to the decoder.

The outline of the full coding algorithm is as follows:

1. Initialization.
Set the list of significant points (LSP) as empty. Set the roots of similarity trees in
the lists of insignificant points (LIP) and insignificant sets (LIS). Set the significance
threshold 2n with n = �log2(max(i)|ci|)�

2. Sorting pass.
Using the set partitioning algorithm distribute the appropriate indices of the coefficients
to the LIP, LIS,and LSP.

3. Refinement pass:
For each entry in the LSP significant for higher n,
send the nth most significant bit to the decoder.

4. Decrement n by one and return to step 2
until the specified bit rate is reached.

5

4 An Example to Show the Coding Process

In this section, we use a simple example to show how the coding algorithm works. A four level
wavelet decomposition of an input signal of length 32 produces the 32 wavelet coefficients
distributed among the subbands as shown in Figure 3, with the arrows indicating the parent-
offspring relationships in the temporal trees. The number in each cell is the value of the
integer-rounded wavelet coefficient. The actions of the coding process are shown in Table 2.
Following are some of the important definitions and explanations in Table 2.

LIS List of insignificant sets: contains sets of wavelet coefficients which are defined by tree
structures, and which had been found to have magnitude smaller than a threshold (are
insignificant). The sets are designated by, but exclude the coefficient corresponding to
the tree or all subtree roots, and have at least two elements.

LIP List of insignificant points: contains individual coefficients that have magnitude smaller
than the threshold.

LSP List of significant points: points found to have magnitude larger than the threshold
(are significant).

O(ci) in the tree structures, the set of offspring (direct descendants) of a tree node defined
by point location (i).

D(ci) set of descendants of node defined by point location (i).

L(ci) set defined by L(ci) = D(ci) −O(ci).

Type A entry in LIS: the entry i represents D(ci).

Type B entry in LIS: the entry i represents L(ci).

1. The largest coefficient magnitude is 59, so the threshold is 32.
The LSP set is empty, the initial LIP are coefficients {0, 1, 2, 3} and initial LIS are
coefficients {2, 3}.

2. Sorting pass in LIP:
SPIHT begins to code the significance of individual coefficients in LIP. c0 is significant:
1 is sent followed by a positive sign bit , and c0 is moved to the LSP. c1 is significant:
1 is sent followed by a negative sign bit , and c1 is moved to the LSP. (1+ represents
positive significant, 1- represents negative significant). c2 and c3 are both insignificant,
so 0 is sent for each.

3. Sorting pass in LIS:
After finishing the LIP, SPIHT begins to test the LIS(active entry indicated by bold
letter). For type A entry, When an entry in LIS is significant, 1 is sent. Then its two
offspring are checked like an entry in the LIP. If L(ci) is not empty, that entry is moved
to the end of the LIS and changed to type B. If L(ci) is empty, that entry is removed
from the LIS. When an entry in the LIS is insignificant, 0 is sent. In this case, the type

6

A D(c2) is found significant, and split into offspring c4, c5, and L(c2), which goes to
the end of the LIS as type B. c4 and c5 are found to be insignificant, they are moved
to the LIP and two 0’s are sent. D(c3) is insignificant, so a 0 is sent.

4. For a type B LIS entry, if it is significant, 1 is sent, add its two offspring to the LIS as
type A, and remove that entry from LIS. If it is insignificant, 0 is sent. In this case,
L(c2) is significant, so a 1 is sent and the offspring of c2, c4 and c5, become roots of
type A sets in the LIS and L(c2) (2B) is removed from the LIS. D(c4) and D(c5) are
then tested as above with the actions given in the table.

5. Refinement Pass: After the sorting pass. SPIHT begins the refinement pass. We
check each old entry of LSP (the coefficients which became significant under the last
threshold). Send 1 if it is significant under this threshold and reduce its magnitude
by the current threshold. Since this is the first refinement pass, there are no old LSP
entries. These new entries of LSP, c0, c1 and c8, are reduced in magnitude by the
current threshold of 32, so that their values become c0(27), c1(16), c8(11).

6. Reduce the threshold to 16.

7. Sorting Pass in LIP: Check the significance for LIP entries under threshold 16. c2 and
c3 are significant and moved to the LSP, while c4, c5, and c9 remain insignificant.

8. Sorting Pass in LIS: Check the significance for LIS entries under threshold 16.

9. Refinement Pass: check old LSP members c0, c1, c8, send their significance informa-
tion, reduce the magnitude of significant old LSP entry and all new entry in LSP. Their
value become c0(11), c1(0), c8(11), c2(9), c3(5), c16(6).

10. Reduce the threshold to 8 and repeat sorting pass and refinement pass until the bit
budget or quality requirement is reached.

In the decoder side, the same process is running. The only difference is that the signifi-
cant/insignificant decisions found in the encoder by comparing the coefficients to a thresh-
old are input to the decoder. Since the lists are initialized identically, they are formed in
the decoder exactly as in the encoder. In the refinement pass, the threshold is added to
the significant coefficients, instead of subtracted. (The addition or subtraction of threshold
is equivalent to adding or removing a bit in a bit plane representation of the coefficient’s
magnitude.)

Note that the encoding and decoding are comprised of simple operations: comparison to
threshold, movement of co-ordinates to lists, and bit manipulations. There are no complex
calculations needed for modeling and training prior to coding. The only search is the single
search for the initial threshold. The method is completely self-adaptive, always finding the
most significant bits of the largest coefficients and sending them before those bits of smaller
coefficients. The method is also extremely efficient, as it has the capability to locate large
descendent sets with maximum magnitude smaller the final threshold and representing them
with a single 0.

7

Step Point or Output Action Control Lists code bits
Set Tested Bit accumulated

(1) LIS = {2A, 3A}
LIP = {0, 1, 2, 3}

LSP = ∅
(2) c0 1 c0 to LSP LIP = {1, 2, 3} 1

+ LSP = {0} 2
c1 1 c1 to LSP LIP = {2, 3} 3

- LSP = {0, 1} 4
c2 0 none 5

c3 0 none 6
(3) D(c2) 1 test offspring LIS = {2A, 3A} 7

c4 0 c4 to LIP LIP = {2, 3, 4} 8
c5 0 c5 to LIP LIP = {2, 3, 4, 5} 9

type changes LIS = {3A, 2B}
D(c3) 0 none LIS = {3A, 2B} 10

(4) L(c2) 1 add new sets LIS = {3A, 4A, 5A} 11
D(c4) 1 test offspring LIS = {3A, 4A, 5A} 12

c8 1+ c8 to LSP LSP = {0, 1, 8} 13,14
c9 0 c9 to LIP LIP = {2, 3, 4, 5, 9} 15

type changes LIS = {3A, 5A, 4B }
D(c5) 0 none LIS = {3A, 5A, 4B } 16
L(c4) 0 none LIS = {3A, 5A, 4B } 17

(5) LIS = {3A, 5A, 4B}
LIP = {2, 3, 4, 5, 9}

LSP = {0, 1, 8}
(6) reduce threshold
(7) c2 1 c2 to LSP LSP = {0, 1, 8, 2} 18

- LIP = {3, 4, 5, 9} 19
c3 1 c3 to LSP LSP = {0, 1, 8, 2, 3} 20

+ LIP = {4, 5, 9} 21
c4 0 none LIP = {4, 5, 9} 22
c5 0 none LIP = {4, 5, 9} 23
c9 0 none LIP = {4, 5, 9} 24

(8) D(c3) 0 none LIS = {3A, 5A, 4B} 25
D(c5) 0 none LIS = { 3A, 5A, 4B} 26
L(c4) 1 add new sets LIS = {3A, 5A, 8A, 9A} 27

D(c8) 1 test offspring LIS = {3A,5A,8A, 9A} 28
c16 1+ c16 to LSP LSP = {0, 1, 8, 2, 3, 16} 29, 30
c17 0 c17 to LIP LIP = {4, 5, 9, 17} 31

remove c8 from LIS LIS = {3A, 5A, 9A}
D(c9) 0 test offspring LIS = {3A,5A, 9A} 32

(9) c0 1 33
c1 1 34
c8 0 35

(10) reduce threshold
...

Table 2: Coding example using the SPIHT method.

8

11

0 1 2 3

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 5 6 7

59 -48 -25 21

12 13 -9 11

43 -7 8 6 -5 4 2 -3

5 -7 6 1 5 2 9 -2 -1 4 4 -2 3 122

Figure 3: The subbands and temporal trees of the example.

5 Results

We used data in the MIT-BIH arrhythmia database to test the performance of our coding
schemes. All ECG data used here are sampled at 360Hz, and the resolution of each sample
is 11 bits/sample, so that total bitrate of these data is 3960 bps. The distortion between the
original and reconstructed signal is measured by Percent Root mean square Difference(PRD).
Although PRD does not exactly correspond to the result of a clinical subjective test, it is
easy to calculate and compare, so is widely used in the ECG data compression literature.
The formula used to calculate the PRD is as follows:

PRD =

√√√√
∑n

i=1[xori(i)− xrec(i)]2∑n
i=1 xori(i)2

× 100 (3)

where xori denotes the original data 1, xrec denotes the reconstructed data, and n, the number
of samples within one data frame.

We compare the performance of our encoder with two kind of encoders in the literatures–
wavelet based codec and direct ECG signal codec. Since the data used in the literatures are
usually different in sampling frequency, and sample resolution, exact quantitative compar-
isons are inconclusive. Nonetheless, we compared the PRD results in similar compression
ratio.

5.1 Comparison with Wavelet Codecs

The test datasets are taken from the MIT-BIH arrhythmia database. The record numbers
for the first dataset are 100, 101, 102, 103, 107, 109, 111, 115, 117, 118, 119, which consist

1The test data included a baseline of 1024 added for storage purposes. In the PRD formula, a level of
1024 is subtracted from each data sample to give xori(i).

9

Table 3: Average Test Results for the First Dataset

CR 4:1 5:1 8:1 10:1 12:1 16:1 20:1
PRD 1.19 1.56 2.46 2.96 3.57 4.85 6.49

Time(encoder,sec) 8.05 7.62 7.04 6.86 6.72 6.58 6.48
Time(decoder,sec) 4.79 4.48 4.08 3.95 3.85 3.75 3.68
Times recorded in an SGI Indy Workstation with 133 MHz CPU.

of different rhythms, QRS complex morphologies and ectopic beats. We encoded 10 minutes
of data from each of these records. We report compression ratios from actual compressed
file sizes and PRD’s from decompressing these compressed files. Figure 4 shows the PRD
value versus compression ratio for each record of data. We remark that these results are
obtained by decoding each record’s compressed file at different truncation lengths to obtain
the different PRD vs. CR (compression ratio) points. The PRD vs. CR curves are shown
aggregately in Figure 4, and the average PRD values of this dataset are presented in Table
3.

4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

 Compression Ratio (CR)

 P
R

D
 (

%
)

Figure 4: The PRD results of MIT-BIH ECG data

From Figure 4, we see that the results for all data are close to each other, except for the
two with the highest PRD’s. That means the coder presented here is suitable for a variety of
ECG data. Also the performance of the coder degrades only gradually when the compression
ratio becomes larger. To exhibit the effect of compression on the reconstructed signal, we
reproduce in Figure 5 5.69 seconds (2048 samples) of the original signal from Record 117A

10

and reconstructed signals decoded at different bitrates of 1000 bps, 400 bps and 200 bps.
The chief effect of compression, especially noticeable at 200 bps, is the smoothing of the
low-level background noise. Otherwise, the characteristic features of the waveform appear
to be faithfully preserved.

0 500 1000 1500 2000 2500
600

700

800

900

1000

1100
Original Signal

0 500 1000 1500 2000 2500
600

700

800

900

1000

1100
Reconstructed Signal at 1000bps

0 500 1000 1500 2000 2500
600

700

800

900

1000

1100
Reconstructed Signal at 400bps

0 500 1000 1500 2000 2500
600

700

800

900

1000

1100
Reconstructed Signal at 200bps

Figure 5: The Original and Reconstructed ECG Signal of MIT-BIH Record 117A

There are other wavelet based ECG codecs in the literature. Hilton presented a wavelet
and wavelet packet based EZW encoder [4]. He reported the PRD value of 2.6% with
compression ratio 8:1 for record 117 and compared it with the best previous effort for the
same data and compression ratio of 3.9% reported in [5]. The PRD value of the coder
proposed here is 1.18% for the same record and compression ratio, which is considerably
better than the coders in [4] and [5]. The summary of this comparison appears in Table 4.
The average PRD values of our coder shown in Table 3 are smaller than those in [4] by
factors ranging from about 0.5 to 0.6, depending on the compression ratio.

In comparison to other wavelet coders, the PRD ranges of 9.89% to 13.34% for compres-
sion ratios of 13:1 to 22:1 in [3] and 3.70% to 6.19% for compression ratios of 6.19 to 7.98 in
[7] are significantly higher (inferior) compared to our results. However, the data and sam-
pling rates are different, so these comparisons are inconclusive. Bradie [11], however, used

11

Table 4: PRD Comparison of Different Coding Algorithms.

Algorithm PRD(%) CR Signal Sampling R(Hz) bits/sample
SPIHT 1.18 8:1 MIT-BIH 117 360 11
Hilton 2.6 8:1 MIT-BIH 117 360 11
Diohn 3.9 8:1 MIT-BIH 117 360 11

the same 10-minute long records in the MIT-BIH database and proposed a coding scheme
combining wavelet packet expansion and the methodology of the Karhunen-Loeve transform
[11]. He reported a single high compression ratio for each record (with average compression
ratio 21.4:1) and reported his result in Root-Mean-square error(RMS). For the compression
ratio lower than 20:1, the RMS of our algorithm is on the average about equal to his. For
the compression ratio higher than 20:1, his result is slightly better, but the clinical utility
of the quality of the reconstruction is open to question. Compared to his algorithm, the
computation complexity of our algorithm is much less. Also his algorithm appears to be
incapable of obtaining a given rate, whereas ours can always achieve precisely any specified
bit rate.

5.2 Comparison with Direct ECG Signal Codec

We also compare the performance of our codec with direct ECG signal codecs in the lit-
erature. It suffices to compare our codec with Zigel et al. [10], as they reported that the
performance of their Analysis by Synthesis ECG Compressor (ASEC) to be superior to
AZTEC, SAPA2 and LTP. The ASEC coder is fairly complex as it performs beats segmen-
tation, dependent non-uniform filtering, feature extraction, and minimization in a loop to
get a best estimate of the signal according to a model. Then the error residual is vector
quantized from a trained codebook.

In order to compare to ASEC, we ran tests of our coder on a second dataset, the same as
that used in [10]: 1 minute length of data in record numbers 104, 107, 111, 112, 115, 116,
117, 118, 119, 201, 207, 208, 209, 212, 213, 214, 228, 231 and 232 in the MIT-BIH database.
The average PRD results at different compression ratios are listed in Table 5 and shown in
Figure 6. (The PRD result of ASEC is from the Figure 6c in [10].) Compared with the
Figure 6c in [10], our PRD results are better than those of ASEC algorithm. For record
119, they reported PRD result 5.5 % at bitrate 183 bps, compared to our PRD of 5.0 %
at the same bitrate. However, the ASEC algorithm attempts to minimize a different metric
called WDD (Weighted Diagnostic Distortion), which is claimed to be better matched to
diagnostic distortion than PRD, but requires complex parameter extraction to calculate, as
is done within the ASEC procedure.

Besides the good performance in quality vs compression ratio, the codec we proposed
here has some other features which are very important in real time environment. First,
SPIHT algorithm achieves exact bit usage control and generates an embedded bitstream,
meaning that the encoding and decoding process can stop at any pre-specified bitrate or
quality requirement. From one available bitstream, the decoder can get different quality

12

Table 5: Average Test Results for the Second Dataset

CR 4:1 5:1 6.6:1 8:1 10:1 12:1 16:1 20:1
PRD 1.11 1.47 2.04 2.50 3.11 3.82 5.46 7.52

100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

9

10

bitrate bps

P
R

D
 %

 *−− SPIHT
 +−− ASEC

Figure 6: The average PRD results of SPIHT and ASEC

reconstructed signals by decoding subsets of the bitstream. Secondly, the computational
complexity of the proposed codec is very low, as witnessed in Table 3 by the average
execution times to encode and decode the records of 10 minutes length in the first dataset.
(The computer is an SGI Indy workstation with an 133MHz IP22 Processor and 64Mbytes
memory). For the lowest compression ratio, where the times are largest, the encoding and
decoding times are 8.05 seconds and 4.79 seconds, respectively, far smaller than the data
duration of 600 seconds.

6 Conclusions

We proposed a ECG data compression codec based on 1-D SPIHT coding algorithm. We test
its performance by coding several records in MIT-BIH ECG arrhythmia database. These
records consists of different rhythms, QRS complex morphologies and ectopic beats. The
results showed that our coding algorithm has following features:

13

1. Our algorithm compresses all kinds of ECG data very efficiently, perhaps more effi-
ciently than any previous ECG compression method.

2. Embedded bit stream: The user can truncate the bit stream at any point and obtain
the best quality reconstruction for the truncated file size.

3. Exact bit usage control. The coding and decoding process can be stopped at any
specified bit rate.

4. The coding and decoding are fast and easy to implement.

The high efficiency, high speed, and simplicity (low complexity) make the algorithm an
attractive candidate for use in portable and mobile heart monitoring systems.

References

[1] A. Said and W. A. Pearlman, “A New, Fast and Efficient Image Codec Based on Set
Partitioning in Hierarchical Trees,”, IEEE Trans. on Circuits and Systems for Video
Technology, Vol. 6, pp. 243–250, June 1996.

[2] S. Jalaleddine, C. Hutchens, R. Strattan and W. Coberly, “CG data compression tech-
niques - A unified approach”, IEEE Trans. on Biomedical Engineering, Vol. 37, pp.
329–343, 1990.

[3] A. G. Ramakrishnan, Supratim Saha, “ECG Coding by Wavelet-Based Linear Predic-
tion”, IEEE Trans. on Biomedical Engineering, Vol. 44, pp. 1253–1261, Dec. 1997.

[4] Michael L. Hilton, “Wavelet and Wavelet Packet Compression of Electrocardiograms”,
IEEE Trans. on Biomedical Engineering, Vol. 44, pp. 394–402, May 1997.

[5] A. Djohan, T. Q. Nguyen, and W. J. Tompkins, “ECG compression using discrete
symmetric wavelet transform”, 17th Int. Conf. IEEE in Medicine and Biology, 1995.

[6] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press. 1997.

[7] A. Enis Cetin, Hayrettin Koymen and M. Cengiz Aydn, “Multichannel ECG Data Com-
pression by Multirate Signal Processing and Transform Domain Coding Techniques”,
IEEE Trans. on Biomedical Engineering, Vol. 40, pp. 495–499, May 1993

[8] Zhitao Lu and W. A. Pearlman, “An Efficient, Low-Complexity Audio Coder Deliver-
ing Multiple Levels of Quality for Interactive Applications”, Proceedings of 1998 IEEE
Second Workshop on Multimedia Signal Processing, Dec. 7-9,1998 Redondo Beach, CA,
pp. 529–534.

[9] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image Coding Using Wavelet
Transform”, IEEE Trans. Image Processing, Vol. 1, pp. 205–220, Apr. 1992.

[10] Y. Zigel, A. Cohen, A. Abu-ful, A. Wagshal, A. Katz, “Analysis by Synthesis ECG
Signal Compression”, Computers in Cardiology, Vol. 24, 1997, pp. 279–282.

14

[11] Brian Bradie, “Wavelet Packet-Based Compression of Single Lead ECG”, IEEE Trans.
on Biomedical Engineering, Vol. 43, May 1996, pp. 493–501.

15

