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Abstract—In this paper, we present a motion compensated two- the shape coding techniques are typically classified as block-
link chain coding technique to effectively encode 2-D binary shape hased techniques and contour-based techniques. Block-based
sequences for object-based video coding. This technique ConSiStStechniquesuseabi nary image to represent the shape of thevideo

of a contour motion estimation and compensation algorithm and a LR . - .
two-link chain coding algorithm. The object contouris definedona object; this binary image is encoded block by block as in the

6-connectectontour lattice for a smoother contour representation.  conventional image coding technique. By using the same block
The contour in the current frame is first predicted by global mo-  size as in texture coding, the shape coding and texture coding

tion and local motion based on the decoded contour in the previous - can be combined to be processed in the block level which brings
frame; then, it is segmented into motion success segments, WhiChsimpIe architecture for real implementation, such as hardware

can be predicted by the global motion or the local motion, and mo- . . .
tion failure segments, which can not be predicted by the global and implementation. Contour-based techniques perform the com-

local motion. For each motion failure segment, a two-link chain  Pression along the boundary of the video object. A polygonor a
code, which uses one chain code to represent two consecutive con-contour is usually used to represent the shape of a video object.
tour links, followed by an arithmetic coder is proposed for efficient  For these representations, distortion between the decoded and
coding. Themotion successsegment is represented by the motion original shape information is easy and well defined. According

vector and its length. For contour motion estimation and compen- toth ified distorti dina algorith hi |
sation, besides the translational motion model, an affine global mo- 0 the speciti IStortion, a coding algorithm can achieve 1ossy

tion model is proposed and investigated for complex global mo- and/or lossless coding.
tion. We test the performance of the proposed technique by sev-  Among the block-based techniques, the context-based arith-
eral MPEG-4 shape test sequences. The experimental fesults S.howmetic encoding (CAE) [1] isone of the most successful methods
that our proposed scheme is better than the CAE technique which . . . . .
is applied in the MPEG-4 verification model [1]. for binary image coding and isapplied tothe JBI G standard [12].
Keywords: Chain coding, Contour motion estimation, Object-  In the CAE method, pixels of an image are encoded in a pre-
based video coding, contour representation, contour matching, defined order, typically raster scan order. It is assumed that a
MPEG-4. high degree of local correlation existsin the shape image. Each
pixel isencoded according to a conditional probability distribu-
|. INTRODUCTION tion that is conditioned upon its context — the value of pixelsin
With the emergence of multimedia applications, functions —aloca neighborhood. This context is used to access atable con-
such as access, searching, indexing and manipulation of visual ~ taining probability distributions. The tableis created by atrain-
information at the semantic object level, are becoming very im-  ing procedure prior to coding; it also can be adapted during the
portant issuesin research and some standardization efforts, such ~ coding procedure in the case of the adaptive CAE. The shape
as MPEG-4. In MPEG-4, each object is represented by three  and size of the neighborhood are represented by atemplate. The
sets of parameters, shape, texture, and motion so that the object ~ widely used templates for the intra and inter mode coding are
can be encoded, accessed and manipulated in arbitrary shape. shown in Fig. 1. The CAE has been adopted in the MPEG-4
Among these three sets of parameters, shape informationiscru-  Vverification model because it is well integrated into the current
cial for object representation and object-based coding. Inorder  MPEG-4 texturecoding scheme. It also hasthe benefit of ashort
to transmit the shape of an object efficiently, alarge number of ~ processing delay because the shape image is processed macro-
techniques have been proposed[1], [2], [3], [4], [5], [6],[7],[8], block by macro-block. However, the block size conversion in
[9], [10], [11]. the M PEG-4 shape coding scheme, which appliesthe CAE tech-
According to the coding results, shape coding techniquescan  nique, shows a visually annoying staircase effect [1].
be classified into two categories. lossless coding and lossy cod-
ing. Lossless coding methods transmit exact shape information —

to the decoder, whilelossy coding methodstolerate acertain de- X | X | x X XXX ‘
gree of distortionin order toimprove the coding efficiency. Ac- X | X~ X X | @
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The chain coding method, first proposed by Freeman [2], is
another widely used technique for shape coding which belongs
to the contour-based technique. Thismethod isbased onthefact
that successive pointsin a continuous contour are adjacent to
each other. Instead of encoding the absolute position of each
contour point, a link which represents the relative position be-
tween two consecutive contour points is encoded. In order to
improve the coding efficiency of the chain code, a large num-
ber of schemes are proposed by imposing certain constraintson
the contour to be encoded or by exploiting the spatial charac-
teristics of contours[4], [6], [13], [14]. In[13], the contour link
is defined on a 4-connectivity neighborhood structure. A con-
straint, that no contour points can be 4-connected to more than
two others, is introduced to reduce the entropy of chain cod-
ing to 1.27 bitg/link. Instead of imposing constraints on a con-
tour, Kaneko et.al. proposes a segmented chain coding scheme
to exploit the spatial redundancy within the object contour [4].
The whole contour is segmented into smooth segmentsinwhich
linksonly have two neighboring directions. In each smooth seg-
ment, a 3-bit Octant codeis used to represent the basic direction
of this segment; the length of the segment is encoded by a vari-
able length coder; and a series of 0 and 1 is used to represent
thetwo neighboring directions. This scheme aimsat the smooth
contour, otherwise the overhead (length of the segment) ishigh.

Shapesin an image sequence generally change slowly or per-
haps not at all from frameto frame, resultingin temporal redun-
dancy that can be exploited to increase coding efficiency. Pre-
dictive contour coding schemes are proposed [3], [5]. A global
motion and/or local motionsare applied to predict the contour in
the current frame based on the decoded contour in the previous
frame. In these two schemes, the object contour is assumed to
undergo rigid translational motion. Both global motion vector
and local motion vectors are searched according to the number
of matched contour points between two contoursin the current
frame and the previousframe. The whole contour is segmented
into global motion success segments, local motion success seg-
ments and motion failure segments. Only those motion fail-
ure segments are encoded by the chain coding technique. This
trandational global motion model works well when the motion
is trandlational motion, but it does not work well when the mo-
tion is more complex, such as zooming and/or rotation.

In this paper, we present a motion compensated two-link
chain coding technique. The contour of the video object is de-
fined on a 6-connected contour lattice for a smoother contour
representation; a two-link chain coding technique is proposed
to exploit the spatial redundancy within the object contour. In
contour motion estimation and compensation, besides transla-
tional globa motion model, we a so investigate an affine global
motion model for complex motioninthe contour sequence. The
paper is organized as follows. The contour lattice contour rep-
resentation is introduced in section 2. In section 3, we present
the two-link chain coding technique. In section 4, both transla-
tional and affine global contour motion estimation are presented.
In section 5, we describe the whole shape coding system. The
experimental results on MPEG-4 shape sequences are presented
in section 6. Finally the paper is concluded in section 7.

1. CONTOUR REPRESENTATION

Our approach is a modified chain coding method which be-
longs to the contour-based technique. A contour-based coding
method usually consists of two steps. extracting the contour
from the binary shape image—abel image, in which 1isfor ob-
ject pixel and 0 otherwise; and encoding the contour. Before
discussing the contour coding, we introduce the contour repre-
sentation. Typically, a contour can be defined in two domains.
Oneisinthe origina image pixel domain, where the shape im-
age pixel isdefined, and another isthe half-pixel domain. Inthis
paper, we useimagelatticeand contour latticeto represent these
two domains.

In the image lattice, contour points are defined as the pixels
with at least one differently labeled neighborhood. In the con-
tour lattice, the contour points are defined in the half-pixel po-
sitions. Asillustratedin Fig. 2, the o represents the original im-
age pixel; thex and + represent the half-pixel positionsbetween
two neighboring image pixels in the horizontal and vertical di-
rections; and the box represents the remaining half-pixel posi-
tions. Throughout the whole paper, top position, left position
and vertex position are used to refer to these three types of half-
pixel positions.
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Fig. 2. Contour lattice

In our chain coding system, the contour is defined on the con-
tour lattice and only on the top and left half-pixel positions. A
contour point is on atop (or left) position when its two neigh-
boringimage pixelsinthevertical (or horizonta) direction have
different labels. By defining the contour in such a way, the
number of links of a contour isidentical in both image lattice
and contour lattice representations. Our contour lattice is a 6-
connected image. Two neighborhood structures centered at the
top and left positionsare shown in Fig. 3.

There are several advantages of thiscontour |attice represen-
tation over the image lattice representation. First, the contour
lattice can handle more general contours. For example, if part
of the object isone-pixel wide, thereare difficultiesinforming a
closed contour on image lattice while it works well on the con-
tour lattice at the same situation. Secondly, the contour lattice
representation makes the contour smoother. AsshowninFig. 4,
if the boundary of an object isin adiagona direction, the con-
tour inimagelatticeisleft, right, left, right, left, right, left, right,
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Fig. 3. Neighborhood structures of the contour lattice

while the contour in the contour latticeis diag, diag, diag, diag,
diag, diag, diag, diag. The coding efficiency can be improved
when an entropy coder is used.

* * * * * * *

*
+o+0o0+0o+0+O0+O0+0+0

*

©)

* * * * * * *
+0+0+0+0+0+0+0+0

7-[ * * * * * * * *
Fﬁ +0+0+0+0+0+0+ 0+0

* * * * *

He +o+o+o\+o+o+o+o+o

L.{ * * * *\* * *

17 +O0+0+0+0 \O+O+O+O

* * * * *

+O+O+O+O+O\+\O+ 0+0
* * * * * *. * *

+O+O+O+O+O+O\+ 0+0

(a) Contour inimage lattice PO I N
+0+0+0+0+0+0+0+0O
(b) Contour in contour lattice

Fig. 4. Contour defined onthe contour latticeis smoother than that ontheimage
lattice

I1l. Two-LINK CHAIN CODE

In order to improve the contour coding efficiency, we impose
constrains on the contour to be encoded by applying a major-
ity filter [3]. A size one element structure of the majority filter
we used is shown as in Fig. 5. We also used a FIFO queue to
implement the filtering process which avoidstheiterationin the
orginal algorithm [15]. A majority filter simplifies the contour
by changing the pixel under considerationto the same asthema-
jority pixelswithinthe element structure. The effectissimilarto
the perfect 8-connectivity constraint. We also encode two links
per code to exploit the spatial redundancy of the contour.
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Fig. 5. Element structure and smoothing effect of the applied majority filter

As presented in Section |1, contour points are defined on the
top and left positions on a 6-connected contour lattice. From
each position, there are 6 possiblelinksto itssix neighbors. Af-
ter majority filtering, the number of the next possible links is

more limited. As shown in Fig. 6, if the current link is in the
horizontal or vertical direction, there are 3 possible directions
for the next link. If the current link is in a diagonal direction,
there are only 2 possible directions for the next link. All other
directional links are not possible. As shown in Fig. 7, we ana-
lyze the impossible links when the last link isin a diagonal di-
rection. If the next contour point is p o, then image pixel i, be-
longs to an object while image pixelsis, i3, i4, @5, ig dO NOt be-
long to that object. In this case, thisobject point will be elimi-
nated during the majority filtering process, because more pixels
(42, 14 and ig) withinthe structureelement [ 3], [15] belongto the
background. If the next contour point isps or py, the last link
will go to these points directly without passing p .. The same
analysis can be done when the last link is in the horizontal or
vertical direction. The same result can be concluded if the last
contour pointisat aleft position. AsshowninFig. 6, fromeach
last contour point p 1, there are 6 possible directions to current
contour pointp.. Two (2) out of 6 (1/3) of them arein horizontal
direction; and 4 out of 6 (2/3) of them are in diagonal direction.
If the direction is horizontal, there are 2 possible directions for
next contour point; if diagonal, there are 3 possible directions
for the next contour point. If we assume also that each type of
link occurs with equal probability, entropy of the chain code un-
der these constraints will be:

2 1 T
glogQZ + 3 log, 3 = 1.19 bits/link
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Since there is spatial correlation among contour points, we
use one chain code to represent two consecutivelinks. The final
chain code is shown in Fig. 8. When the last link isin the hor-
izontal or vertical direction, there are 7 possible combinations



for the next two contour links. When the last link is in the di-
agonal direction, there are 5 possible combinations for the next
two contour links. In order to reduce the bit-rate for the straight
contour segment, we add two more dashed links. When the con-
tour segment is a straight line in a diagonal direction, one code
can represent 3 or 4 contour links. Without using an entropy
encoder, the bit-rate of the proposed chain code is less than or
equal to 1.5 bitg/link.
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Fig. 8. Proposed two-pixel chain code

We use a context-based arithmetic encoder to encode the
chain code sequence for a higher coding efficiency. The con-
text is the direction of the last contour link. In total, there are
12 contexts shown in Fig. 9 and 10. Six of them begin from a
top position, and the other six begin from a left position. Each
number in the two figures represents a codeword for each con-
tour link combination. The probability of each codeword under
each context is adapted during the coding procedure.

IV. CONTOUR MOTION ESTIMATION AND COMPENSATION

Since a contour sequence has very high correlation in tem-
poral domain as the texture does, a straightforward method to
exploit its temporal redundancy is using motion estimation and
compensation. The contour in the current frame can be pre-
dicted from the contour obtained in the previous frame. The
contour segmentswhich can not be predicted are encoded by the
shape coding technique. This can reduce the bit-rate of shape
coding drastically. In the literature, the contour motion us usu-
ally assumed as trand ational motion. Thisapproach workswell
for image sequences with low speed or simple motion. When
thereis zooming and/or rotation, this assumption does not work
well. Inthispaper, we use two global motion models, atransla-
tiona global motion model and an affine global motion model,
to predict the global motion of the contour sequence to be en-
coded. In this contour based motion compensation, two kinds
of contour segments, motion success segment and motionfailure
segment, are defined. After motion compensation, when all pix-
els within a contour segment in the current frame match all pix-
els within a motion compensated contour segment in the refer-
ence frame (previous frame), this segment is called motion suc-
cess segment; otherwise, itiscalled motionfailuresegment. We
define distance between two contour segments ¢,,_; and ¢,, as
follows:

diSt(Cn_l, Cn) = max{d(xi,n—la xj,n)}a (1)
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Fig. 9. 6contour contextsandtheir chain codesbeginningfrom theleft position
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where d(z; —1, ;) is the Euclidean distance. The motion
success segment means the distance between motion compen-
sated contour segment and the contour segment in current frame
is zero; otherwise, it is a motion failure segment. This defini-
tion is applied on both the global motion compensation and lo-
cal motion compensation. In the implementation, a threshold,
which defines the minimum Iength of motion success segment,
isapplied in order to prevent segmenting object contour to very
small segments. The overhead for a small motion success seg-
ment, its motion vector and length, makes it less efficient than
the proposed chain coding method.

A. Translational Contour Motion Estimation

In this contour motion estimation/compensation scheme, the
object contour is assumed to undergo a translational motion. A
global mation vector for the whole object contour is searched
according to the number of matched contour points between the
object contour in current frame and the object contour inthe pre-
viousframe under thisglobal motion. The whole contour isthen
segmented into global motion success segments and global mo-
tion failure segments as shown in Fig. 11. For each global mo-
tion failure segment, local motion vectors, are searched. Each
global motion failure segment is further split into local motion
success segments and local motionfailure segments. Theglobal
motion success segment can be represented by itslength and the
global motion vector. The local motion success segment can be
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Fig. 10. 6 contour contextsand their chain codes beginning from the top posi-
tion

represented by itslength and the local motion vector. The local
motion failure segment is encoded by the two-link chain code
followed by an arithmetic coder.

Motion SUCO%S Segment Motion Failure Segment

'

Motion Predicted Contour
and Contour in Frame |

Contour in Frame I-1

Dot Contour is the Motion Predicted Contour
Dash Contour is the Contour in Frame |
Fig. 11. Motion success contour segment and motion failure contour segment

B. Affine Contour Motion Estimation

When there is more complex motion such as zoom and/or
rotation, the contour motion can not be well compensated by
a trandlational motion model. Here we investigate an affine
global motion model for these cases. We use the following six-
parameter affine motion model as the global contour motion
model.

T =ai1x+ ay + as 2

7 = a4r + asy + ag )

Corner points Motion vectors

Contour in current ;
Corner ! !
- L |
Detection | ! Affine Parameters
frame ! |
\ |
L. | Corner y LMS
™ | Matching Estimator
Contour inprevious | corner
Detection
frame

Fig. 12. Diagram of the affine motion estimation for a contour sequence

Inthe above equations, & and ¢ are the coordinates of contour
pointsin the current frame. z, y are the coordinates of contour
pointsin the previousframe.

The problem is to estimate the vector [a1, as, as, a4, as, ag]
according to available contours. Since the number of the con-
tour points in the two contours is not necessarily equal, there
is no unique solution to determine which contour point in the
current frame corresponds to the contour point in the previous
frame. Instead of using every contour point in these two con-
tours, we only use some feature points on these two contours,
corner points, to solve Eqg. 3. The motion of these feature points
can represent the motion of the whole contour, and the compu-
tational complexity isreduced significantly. The diagram of the
motion estimation process is shown in Fig. 12. First the corner
points of each contour are detected according to their curvature
values. Then, the corner pointsare matched by a corner match-
ing process [16]. The motion vectors are calculated from the
matched corner pairs. The affine parameters are estimated by
aleast median sguare algorithm [17].

1) Corner Detection: The corner detection technique we
used is from TargetJr package [18]. Corners on a contour are
detected according to their curvature values. The algorithm is
illustrated in Fig. 13. The curvature at a contour point ¢ is de-
fined as shownin Fig. 14:

Smoothed contour Curvature
Input contour Gaussian Y Calculate Y
Smoothing Curvature
Corner Loca Maximum

|-————

Distinction Selection

Corner list ‘

Corner candidates
Fig. 13. Corner detection

curvatureli] = 1 — cos(6;)
=1 — (cos(@;t1) cos(a;—1)
+Sin(047',+1) Sin(ai_l)) (4)



o A

Contour Curvature at point i

Fig. 14. Définition of the contour curvature

where cos(a;+1), sin(a;41), cos(a;—1), sin(a;—1) can be
calculated from the coordinates of contour pointsp;+1, p; and
pi—1. Thelarger thevalue of curvaturein Eq. 4, the more likely
the contour point p; isacorner.

In order to overcomethe digitizationeffect, the contour isfirst
smoothed by a Gaussian filter. It is equivalent to convolve the
contour with a Gaussian kernel. The curvature at each contour
point is calculated according to Eq. 4. The contour point whose
curvature valueis alocal maximum and larger than a threshold
is classified as a corner candidate. A corner candidate is a cor-
ner when itsdirection distributionis significantly different from
that of itsneighboring candidates. AsshowninFig. 15, the cur-
vature of contour points between two corner candidates, ¢;_1
and ¢;, is treated as a random variable. Its mean value, 5;, is
the curvature between two neighboring contour candidates c; 1
and ¢;; the variance, var;, is calculated from the curvature be-
tween contour pointsp;, p;+1 and ¢;. The curvatures of con-
tour points between corner candidates ¢; and ¢;41 istreated as
another random variable. Itsmean value, 5,1, isthe curvature
between contour candidates ¢, and ¢;1; the variance, var; 1,
is calculated from the curvatures between contour pointsp ; 4.2,
pj+s and ¢;+1. A scalar parameter, peak separation defined in
Eq. 5 below, is used to represent the difference between the di-
rection distribution at both sides of a corner candidate, c;.

Fig. 15. Definition of thedirection distribution of a contour segment

(Oéq', - 0411+1)

kli] =
pea [Z] var; +var;4q

©)

The complete corner detection algorithm can be summarized
as below:

1) Smooth the contour pointswith a Gaussian kernel.

2) Calculate the curvature value for each contour point.

3) Select the contour points whose curvature values are the
local maximums and larger than the threshold as corner
candidates.

4) Cadculate the peak separation of each corner candidate.

5) Delete the corner candidate with the weakest peak sepa-
ration, and merge the direction distribution of the contour
segments connected to this corner candidate. Update the
peak separation of the neighboring corner candidates.

6) Go back to thelast step until the expected number of cor-
nersisreached.

2) Corner Matching: The corner matching algorithm we
used is proposed in [16]. For each corner of the contour in the
current frame, we choose severa corners of the contour in the
previous frame as its matching candidates. A matching prob-
ability is defined between each corner pair, the corner and one
of its matching candidate. The pair with a matching probabil-
ity higher than a threshold is identified as a matched pair. The
initial matching probability between each pair of cornersisde-
termined by the pattern of branches connected to that pair of cor-
ners according to Eq. 10. At this point, the corner pair with an
initial matching probability higher than the predefined thresh-
old isclassified as amatched pair; otherwise, an iterative relax-
ation procedure is applied. Additional matches based on sup-
porting descriptors are gathered from a wider neighborhood of
branches and corners. Specifically, the supporting descriptors
for agiven corner i in frame I — 1 with a candidate corner j in
frame I are;

1) The geometry of neighboring cornersin frame I — 1 ap-
pears to match that of the neighbors of corner j in frame
1.

2) Motion vectors measured over the same neighborhood of
corners appear to match.

3) Thelocationof corner i relativeto the previously matched
cornersin frame I — 1 islikethat of corner j relative to
the matched cornersin frame 1.

The matching probability between corner ¢ in frame I — 1 and
corner j in frame I is formulated as below. As illustrated in
Fig. 16, there are M = 4 branches (o, 1, l2, [3) connected to
corner p; inframe I — 1 and M = 4 branches (I, 1}, 15, 1) to
p;; inframe I. They form 3 angles (6o, 61, 02) and (6, 01, 05)
respectively. A cost function C'(4, j) expressing the match be-
tween corner i inframe I — 1 and j inframe [ is:

C(Za]) = wLeL(iaj) + w(‘)e(?(iaj) (6)
where
M
er(i,j) =Y |l —1 (7)
eo(i,j) =D 10: = 0] ®8)

i=1
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Fig. 16. Thematching probability between acorner pair on two contours

Since C(i, j) is small when the corner pair is close, we trans-
form it to amatching score S(i, j):

S(,4) =1+ Ci,5) " 9)

Assume that there are M cornersin frame I — 1. For each
corner i, we choose M, cornersin frame I which are the most
nearest corners to <. The matching scores S(i, j) are calcu-
lated for every pair of (i,j) wherei = 1,2,...,M; and j =

1,2,..., Ms. The matching probability P(i, j) is:
. S(i, ]
P(i,j) = el (10)
Zj:l S(i, 7)
where P(i, j) isatrue probability obeying:
0<P(i,j) <1 (11)
My
(12)

ZP@ﬂ=1

Three supporting descriptors can be formulated as below.
Thefirst one, ¢1 (i, j), describes how well the corners connected
to corner i (inframe I —1) match the corners connected to corner
j (inframe I). Let corner i has N, connected corners, indexed
Iy = 1,2,..., N;. Similarly, corner j has N, connected cor-
ners, indexed i = 1,2,..., No. We try to match the groups of
connected cornersform frame I — 1 withthoseinframe I by ro-
tating one group relative to the other group until the best match
is found, indicated by the maximum value of:

N/ZPll,lg

Where the combinations indicated by the right-hand argu-
ment (11, l2) correspond to the possible rotationsallowed in the
matching process. N’ = min(Ny, Na).

The second supporting descriptor, ¢2(i, j), is the motion of
the neighboring corners. Two neighboring corners of corner i in
frame I — 1 are chosen. Each of those two cornersis compared
withthe M closest cornersinframe I. The most likely matched
corner pair, indicated by the maximum matching probability in
Eq. 10, are used to compute the corner motion vectorsin x, y
directions. These motionvectorsare then averaged over thetwo
test cornersto give an average motionvector v, v,. Themotion

(i, §) (13)

discrepancy of thecorner i inframe I —1 tothecorner j inframe
Iis:

D(i.j) =\ (wsli.d) = va)? + (0 (0. 5) —v,)?  (14)
The second supporting descriptor defined as:
q2(i,j) = . (15)
i -
J 14 uD(i, )

The third supporting descriptor, ¢3(i,7), is defined as the
matching probability by using the nearest matched corners to
corner i. Weform areference corner network by connecting cor-
ner i to itsthree nearest matched corners. In frame I, the three
counterparts of the matched corners form the network of corner
J- qs(3, j) isdefined exactly analogousto S(i, j) in Eq. 9.

The three supporting descriptors are combined to give a
matching update factor Q (i, j):

3 .o
Zm,:l q"b(la ])
3 M- ..
1 + Zm,:l Zj:zl q"b(la ])

This matching update factor isthen used to update the matching
probability of each pair of corners. The matching probability in
iteration k + 1 time, P**1(, 5), is

P*(i, §)(1 + Q(i, )
S PR, 5)(1+ QK (4, 7))

The matching probability of areal matched corner pair will be
increased by this update factor and that of a non-matched cor-
ner pair will be decreased. When a corner pair has a matching
probability higher than thethreshold, itisclassified asamatched
pair.

The corner matching algorithm can be summarized as be-
low:

1) For each corner point i in frame I — 1, choose the M,

nearest cornersin frame I as its matching candidates.

2) Calculate the initial matching probabilities P°(i, j) for
each corner pair (4, j). k= 0.

3) If Pk(i, 5) ishigher than the predefined threshol d, denote
(i, ) as amatched pair.

4) For each corner which is not matched, calculate its sup-
porting descriptors, update its matching probability. k£ =
k+1.

5) go back to step 3 until all corners are matched.

3) Affine Parameters Estimation: After we get all matched
corner pairs, we can calculate the motion vectors between these
matched corner pairs. The motion vectors are then used to es-
timate the affine parameters by the least median square (LMYS)
algorithm [17]. The LMS agorithmis robust to the data with
outliers. Since not every corner’s motion is consistent with the
affine model, the LMS algorithm can avoid the effect of these
corners by treating them as outliers.

In order to test the corner matching and the affine motion es-
timation algorithms, we create shape images undergoing trans-
lational and affine motion from an available shapeimage. Asan
example, we create a new shape image by moving the shapeim-
age inframe 0 of the Akiyo sequence with motion vector (5,-5).

Qi) = (16)

PFH(G, 5) = (17)



Then we create another shape image by an affine motion with
affine parameters [0, —0.055, 0, 0.055, 0,0]. This corresponds
to turning the shape image centered at (0,0) with an angle of 3.2
degree. The actua motion parameters and the estimated motion
parameters are listed in Table I. The number of correctly pre-
dicted contour points by the decompressed motion parameters
are listed in Table I1. We can see that the estimated affine pa-
rameters are fairly accurate. When the object contour is under
an affine motion, the affine model can compensate the motion
better than the translational model.

TABLEI
TRUE AND ESTIMATED AFFINE PARAMETERS

a1 a2 ag
True 0. -.055 -5.
Estimated | 0.0017 | -0.0535 | -5.07
True 0. 0. -5.
Estimated 0. 0. -5.
Qy as ag
True .055 0. 5.
Estimated | 0.0592 | -0.0007 | 3.90
True 0. 0. 5.
Estimated 0. 0. 5.
TABLEII

NUMBER OF PIXELS WHICH ARE CORRECTLY PREDICTED

Corrected Pixels | Total Pixels
Trand ational 129 514
Affine 408 514

V. PROPOSED MOTION COMPENSATED CHAIN CODING
SYSTEM

There are two coding modes. the intra mode and the inter
mode in our proposed shape coding scheme. The contour in the
first frame within a GOP (group of pictures) is encoded by the
intra mode. The contours in other frames are encoded by the
inter mode. The diagrams of the intra mode and the inter mode
contour coding are shown in Fig. 17 and Fig. 18 respectively.
In the intra mode coding, the contour isencoded directly by the
chain coding method proposed in 111 followed by an arithmetic
coder. In the inter mode coding, global motion parameters and
local motion vectors are first searched. For globa motion suc-
cess segments, only the length of the segments are transmitted.
For local motion success segments, the length and local motion
vectorsaretransmitted. For motionfailure segments, chain cod-
ing isapplied.

Sincetherequired resolution of affine parametersto be trans-
mitted is high, it consumes more bits to transmit affine param-
eters than trandational motion vectors. In real implementation,
each affine parameter required 10 bits. The total number of bits
required for affine parameters are 60 bits compared with the
10 bitsrequired for translational motion vectors. Therefore we
have two modes for global motion estimation: the affine mode

Object Contour

} Chain Coding | Entropy Coding

Contour
Memory

Chain Decoding

Fig. 17. Diagram for the intra mode contour coding

Chain Coding }—" Entropy Coding

Object Contour +

Predicted Gontour
Contour
Predictor

Contour
Reconstructor
Reconstructed Object Contour

Contour
Memory

Decoded Motion Vector

Chain Decoding

Fig. 18. Diagram for theinter mode contour coding

and the tranglational mode. When non-translational motion is
significant, the number of correctly predicted contour pixelsis
lower. Then we turn on the affine mode. The syntax of the
bitstream is shown in Fig. 19. In the bitstream, the first bit is
the global motion flag, 1 for affine motion, O for trandational
motion. Following is the affine parameters or the translational
global motion vector depending on theglobal motionflag. Then
the coordinate of the start point (10 bits for x and 10 bitsfor y)
is followed by the bitstream for each contour segment. In each
contour segment, the first two bitsrepresent the type of thisseg-
ment. For a global motion success segment, only the length of
the segment istransmitted. For alocal motion success segment,
the length of the segment and the local motion vector are trans-
mitted. For a motion failure segment, a series of chain codes
follows. An END is used to tell the decoder that the end of this
segment is reached.

Contour Segment

Global Motion Flag Global Motion — Start Motion  Bitstream Next Segment
Vector Point Type
Bit Stream ‘ ‘ ‘ ‘ ‘ > ‘
Motion  Segment
Type Length
Glgzgml\g?ltlon CI:' Motion Type: 00 -- Global Motion
Motion Motion ~ Segment 01 -- Local Motion
Loca Motion ‘ Type‘ Vedor ‘ Length ‘ 10 -- Motion Failure
Segment 11 --End
Motion  Chain End
Motion Failure ‘ Type‘ Code ‘ ‘
Segment

Fig. 19. Bitstream syntax for contour coding

V1. EXPERIMENTAL RESULTS

We test the performance of the proposed al gorithm by coding
several widely used MPEG-4 test shape sequences: the Akiyo
and Weather sequences in QCIF and CIF format with frame rate
of 30 fps. The total length of the sequences is 300 frames. We



code the sequences in both the intra mode and the inter mode.
First the shape image is transformed into an object contour de-
fined on the contour lattice. Then the contour linksare encoded
by the proposed chain coding technique.

For the intra mode coding, the average bits used for cod-
ing each frame of these sequences are listed in Table I11. From
the data in Table I11, the coder reached the bit-rate at 0.8-1.0
bits/link for lossless contour coding.

TABLE Il
AVERAGE BIT USAGE FOR INTRA MODE CONTOUR CODING

Sequence Bit Used | Tota Links | Bitslink | bitgpixd
AKiyo(QCIF) 454 508 0.89 0.0484
Akiyo(CIF) 857 1022 0.84 0.0228

Weather(QCIF) | 425 447 0.95 0.0749
Weather(CIF) 79 918 0863 | 00351

We compare the performance of our proposed shape coding
technique with the CAE and baseline-based coder [7]. There-
sultsare listed in Table IV. From Table |V, the performance of
our algorithm is better than that of the CAE and the baseline-
based technique.

TABLE IV
COMPARISON OF SHAPE CODING TECHNIQUESIN INTRA MODE

Sequence | Frame | Format | CAE Basdlinet | Proposed
agorithm
Akiyo 0 QCIF | 0.06059 N/A 0.0576
Akiyo 0 CIF 0.03657 N/A 0.0260
Weather 0 QCIF | 0.05581 N/A 0.0574
Weather 30 QCIF 0.0801 0.0745 0.0579
Weather 0 CIF 0.03167 N/A 0.0252

tAlgorithm does not require a contour smoothing before encoding.

In the inter mode coding, we apply the proposed technique
on the same sequences. The average bitsused for each frame of
these sequences are listed in Table V.

TABLEV
AVERAGE BIT USED FOR INTER MODE CONTOUR CODING

Sequence Bit Used | Tota Links | Bitslink | bitypixa
AKiyo(QCIF) 179 508 035 0.0191
Akiyo(CIF) 769 1022 0.46 0.0125

Weather(QCIF) 288 447 063 0.052
Weather(CIF) 620 918 067 0.0276

We also compare the performance of our proposed shape cod-
ing technique with the CAE and another motion compensated
contour-based technique, GPSC[5]. Theresultsarelistedin Ta-
ble VI. From Table V1, the performance of our algorithmis bet-
ter than that of the CAE and GPSC technique.

VIl. CONCLUSION

In this paper, we present our new two-link chain coding
method for 2-D shape coding. The contour pointsare defined on
the contour lattice, a 6-connected image. We impose a smooth
constraint on the object contour by applying a majority filter to
improve the coding efficiency. We test the performance of the

TABLE VI
COMPARISON OF SHAPE CODING TECHNIQUESIN INTER MODE
(BITS/IFRAME)

Sequence | Format | framerate | CAEt | GPSC | Proposed
agorithm

Weather QCIF 30fps 303 N/A 288

Weather QCIF 10fps 382 394 356

tAlgorithm does not require a contour smoothing before encoding.

proposed techniquein several MPEG-4 shape sequences. Inthe
intra mode, the bit-rate of 0.8-1.0 bitg/link can be reached for
lossless coding. In the inter mode, we investigate the transla-
tional and affine-model based motion compensated chain cod-
ing scheme for shape sequence coding. The corners on a con-
tour are detected as the feature points. A corner matching al-
gorithmis used to match corresponding feature points between
contours. The affine global motion parameters are estimated
from the motion vectors at the feature points. The experimen-
tal results show that affine motion model works well for more
complicated global motion than thetraditional transl ational mo-
tion model. The experimental results show that our proposed
scheme uses fewer bitsthan that of the CAE techniquewhichis
applied in MPEG-4 VM7.0.
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