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Motion Compensated Two-link Chain Coding for
Binary Shape Sequences

Zhitao Lu and William A. Pearlman

Abstract—In this paper, we present a motion compensated two-
link chain coding technique to effectively encode 2-D binary shape
sequences for object-based video coding. This technique consists
of a contour motion estimation and compensation algorithm and a
two-link chaincoding algorithm. The object contour is definedon a
6-connectedcontour lattice for a smoother contour representation.
The contour in the current frame is first predicted by global mo-
tion and local motion based on the decodedcontour in the previous
frame; then, it is segmented into motion success segments, which
can be predicted by the global motion or the local motion, and mo-
tion failure segments, which can not be predicted by the global and
local motion. For each motion failure segment, a two-link chain
code, which uses one chain code to represent two consecutive con-
tour links, followed by an arithmetic coder is proposed for efficient
coding. Themotion success segment is represented by the motion
vector and its length. For contour motion estimation and compen-
sation, besides the translational motion model, an affine global mo-
tion model is proposed and investigated for complex global mo-
tion. We test the performance of the proposed technique by sev-
eral MPEG-4 shape test sequences. The experimental results show
that our proposed scheme is better than the CAE technique which
is applied in the MPEG-4 verification model [1].

Keywords: Chain coding, Contour motion estimation, Object-
based video coding, contour representation, contour matching,
MPEG-4.

I. INTRODUCTION

With the emergence of multimedia applications, functions
such as access, searching, indexing and manipulation of visual
information at the semantic object level, are becoming very im-
portant issues in research and some standardization efforts, such
as MPEG-4. In MPEG-4, each object is represented by three
sets of parameters, shape, texture, and motion so that the object
can be encoded, accessed and manipulated in arbitrary shape.
Among these three sets of parameters, shape information is cru-
cial for object representation and object-based coding. In order
to transmit the shape of an object efficiently, a large number of
techniques have been proposed [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11].

According to the coding results, shape coding techniques can
be classified into two categories: lossless coding and lossy cod-
ing. Lossless coding methods transmit exact shape information
to the decoder, while lossy coding methods tolerate a certain de-
gree of distortion in order to improve the coding efficiency. Ac-
cording to the shape representation during the coding process,
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the shape coding techniques are typically classified as block-
based techniques and contour-based techniques. Block-based
techniques use a binary image to represent the shape of the video
object; this binary image is encoded block by block as in the
conventional image coding technique. By using the same block
size as in texture coding, the shape coding and texture coding
can be combined to be processed in the block level which brings
simple architecture for real implementation, such as hardware
implementation. Contour-based techniques perform the com-
pression along the boundary of the video object. A polygon or a
contour is usually used to represent the shape of a video object.
For these representations, distortion between the decoded and
original shape information is easy and well defined. According
to the specified distortion, a coding algorithm can achieve lossy
and/or lossless coding.

Among the block-based techniques, the context-based arith-
metic encoding (CAE) [1] is one of the most successful methods
for binary image coding and is applied to the JBIG standard [12].
In the CAE method, pixels of an image are encoded in a pre-
defined order, typically raster scan order. It is assumed that a
high degree of local correlation exists in the shape image. Each
pixel is encoded according to a conditional probability distribu-
tion that is conditioned upon its context – the value of pixels in
a local neighborhood. This context is used to access a table con-
taining probability distributions. The table is created by a train-
ing procedure prior to coding; it also can be adapted during the
coding procedure in the case of the adaptive CAE. The shape
and size of the neighborhoodare represented by a template. The
widely used templates for the intra and inter mode coding are
shown in Fig. 1. The CAE has been adopted in the MPEG-4
verification model because it is well integrated into the current
MPEG-4 texture coding scheme. It also has the benefit of a short
processing delay because the shape image is processed macro-
block by macro-block. However, the block size conversion in
the MPEG-4 shape coding scheme, which applies the CAE tech-
nique, shows a visually annoying staircase effect [1].
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Fig. 1. Templates used in context-based arithmetic encoding
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The chain coding method, first proposed by Freeman [2], is
another widely used technique for shape coding which belongs
to the contour-based technique. This method is based on the fact
that successive points in a continuous contour are adjacent to
each other. Instead of encoding the absolute position of each
contour point, a link which represents the relative position be-
tween two consecutive contour points is encoded. In order to
improve the coding efficiency of the chain code, a large num-
ber of schemes are proposed by imposing certain constraints on
the contour to be encoded or by exploiting the spatial charac-
teristics of contours [4], [6], [13], [14]. In [13], the contour link
is defined on a 4-connectivity neighborhood structure. A con-
straint, that no contour points can be 4-connected to more than
two others, is introduced to reduce the entropy of chain cod-
ing to 1.27 bits/link. Instead of imposing constraints on a con-
tour, Kaneko et.al. proposes a segmented chain coding scheme
to exploit the spatial redundancy within the object contour [4].
The whole contour is segmented into smooth segments in which
links only have two neighboring directions. In each smooth seg-
ment, a 3-bit Octant code is used to represent the basic direction
of this segment; the length of the segment is encoded by a vari-
able length coder; and a series of 0 and 1 is used to represent
the two neighboring directions. This scheme aims at the smooth
contour, otherwise the overhead (length of the segment) is high.

Shapes in an image sequence generally change slowly or per-
haps not at all from frame to frame, resulting in temporal redun-
dancy that can be exploited to increase coding efficiency. Pre-
dictive contour coding schemes are proposed [3], [5]. A global
motion and/or local motions are applied to predict the contour in
the current frame based on the decoded contour in the previous
frame. In these two schemes, the object contour is assumed to
undergo rigid translational motion. Both global motion vector
and local motion vectors are searched according to the number
of matched contour points between two contours in the current
frame and the previous frame. The whole contour is segmented
into global motion success segments, local motion success seg-
ments and motion failure segments. Only those motion fail-
ure segments are encoded by the chain coding technique. This
translational global motion model works well when the motion
is translational motion, but it does not work well when the mo-
tion is more complex, such as zooming and/or rotation.

In this paper, we present a motion compensated two-link
chain coding technique. The contour of the video object is de-
fined on a 6-connected contour lattice for a smoother contour
representation; a two-link chain coding technique is proposed
to exploit the spatial redundancy within the object contour. In
contour motion estimation and compensation, besides transla-
tional global motion model, we also investigate an affine global
motion model for complex motion in the contour sequence. The
paper is organized as follows. The contour lattice contour rep-
resentation is introduced in section 2. In section 3, we present
the two-link chain coding technique. In section 4, both transla-
tional and affine global contour motionestimation are presented.
In section 5, we describe the whole shape coding system. The
experimental results on MPEG-4 shape sequences are presented
in section 6. Finally the paper is concluded in section 7.

II. CONTOUR REPRESENTATION

Our approach is a modified chain coding method which be-
longs to the contour-based technique. A contour-based coding
method usually consists of two steps: extracting the contour
from the binary shape image–label image, in which 1 is for ob-
ject pixel and 0 otherwise; and encoding the contour. Before
discussing the contour coding, we introduce the contour repre-
sentation. Typically, a contour can be defined in two domains.
One is in the original image pixel domain, where the shape im-
age pixel is defined, and another is the half-pixel domain. In this
paper, we use image lattice and contour lattice to represent these
two domains.

In the image lattice, contour points are defined as the pixels
with at least one differently labeled neighborhood. In the con-
tour lattice, the contour points are defined in the half-pixel po-
sitions. As illustrated in Fig. 2, the ◦ represents the original im-
age pixel; the ∗ and + represent the half-pixel positionsbetween
two neighboring image pixels in the horizontal and vertical di-
rections; and the box represents the remaining half-pixel posi-
tions. Throughout the whole paper, top position, left position
and vertex position are used to refer to these three types of half-
pixel positions.
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Fig. 2. Contour lattice

In our chain coding system, the contour is defined on the con-
tour lattice and only on the top and left half-pixel positions. A
contour point is on a top (or left) position when its two neigh-
boring image pixels in the vertical (or horizontal) direction have
different labels. By defining the contour in such a way, the
number of links of a contour is identical in both image lattice
and contour lattice representations. Our contour lattice is a 6-
connected image. Two neighborhood structures centered at the
top and left positions are shown in Fig. 3.

There are several advantages of this contour lattice represen-
tation over the image lattice representation. First, the contour
lattice can handle more general contours. For example, if part
of the object is one-pixel wide, there are difficulties in forming a
closed contour on image lattice while it works well on the con-
tour lattice at the same situation. Secondly, the contour lattice
representation makes the contour smoother. As shown in Fig. 4,
if the boundary of an object is in a diagonal direction, the con-
tour in image lattice is left, right, left, right, left, right, left, right,



3

Image Pixel

* Top Position

Left Positon+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

of p.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * *

+

*

* *

+

*

*

+

*

*
+
p

p0

p1

p2

p3

p4

p5

* * *

+ +

++
pp3 p0

p1p2

p4 p5

p0, p1, p2, p3, p4, p5 are neighbors

Fig. 3. Neighborhood structures of the contour lattice

while the contour in the contour lattice is diag, diag, diag, diag,
diag, diag, diag, diag. The coding efficiency can be improved
when an entropy coder is used.

(a) Contour in image lattice

(b)
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Fig. 4. Contourdefined on the contour lattice is smoother than that on the image
lattice

III. TWO-LINK CHAIN CODE

In order to improve the contour coding efficiency, we impose
constrains on the contour to be encoded by applying a major-
ity filter [3]. A size one element structure of the majority filter
we used is shown as in Fig. 5. We also used a FIFO queue to
implement the filtering process which avoids the iteration in the
orginal algorithm [15]. A majority filter simplifies the contour
by changing the pixel under consideration to the same as the ma-
jority pixels within the element structure. The effect is similar to
the perfect 8-connectivity constraint. We also encode two links
per code to exploit the spatial redundancy of the contour.

Object Before Smoothing

Structure B with Size One

Object Pixel

Background Pixel

Object After Smoothing

Fig. 5. Element structure and smoothing effect of the applied majority filter

As presented in Section II, contour points are defined on the
top and left positions on a 6-connected contour lattice. From
each position, there are 6 possible links to its six neighbors. Af-
ter majority filtering, the number of the next possible links is

more limited. As shown in Fig. 6, if the current link is in the
horizontal or vertical direction, there are 3 possible directions
for the next link. If the current link is in a diagonal direction,
there are only 2 possible directions for the next link. All other
directional links are not possible. As shown in Fig. 7, we ana-
lyze the impossible links when the last link is in a diagonal di-
rection. If the next contour point is p2, then image pixel i1 be-
longs to an object while image pixels i2, i3, i4, i5, i6 do not be-
long to that object. In this case, this object point will be elimi-
nated during the majority filtering process, because more pixels
(i2, i4 and i6) within the structure element [3], [15] belong to the
background. If the next contour point is p 3 or p4, the last link
will go to these points directly without passing p c. The same
analysis can be done when the last link is in the horizontal or
vertical direction. The same result can be concluded if the last
contour point is at a left position. As shown in Fig. 6, from each
last contour point pL, there are 6 possible directions to current
contour pointpc. Two (2) out of 6 (1/3) of them are in horizontal
direction; and 4 out of 6 (2/3) of them are in diagonal direction.
If the direction is horizontal, there are 2 possible directions for
next contour point; if diagonal, there are 3 possible directions
for the next contour point. If we assume also that each type of
link occurs with equal probability, entropy of the chain code un-
der these constraints will be:

2
3

log2 2 +
1
3

log2 3 = 1.19 bits/link
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Fig. 6. Possible contour links in the proposed contour lattice
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Since there is spatial correlation among contour points, we
use one chain code to represent two consecutive links. The final
chain code is shown in Fig. 8. When the last link is in the hor-
izontal or vertical direction, there are 7 possible combinations
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for the next two contour links. When the last link is in the di-
agonal direction, there are 5 possible combinations for the next
two contour links. In order to reduce the bit-rate for the straight
contour segment, we add two more dashed links. When the con-
tour segment is a straight line in a diagonal direction, one code
can represent 3 or 4 contour links. Without using an entropy
encoder, the bit-rate of the proposed chain code is less than or
equal to 1.5 bits/link.
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We use a context-based arithmetic encoder to encode the
chain code sequence for a higher coding efficiency. The con-
text is the direction of the last contour link. In total, there are
12 contexts shown in Fig. 9 and 10. Six of them begin from a
top position, and the other six begin from a left position. Each
number in the two figures represents a codeword for each con-
tour link combination. The probability of each codeword under
each context is adapted during the coding procedure.

IV. CONTOUR MOTION ESTIMATION AND COMPENSATION

Since a contour sequence has very high correlation in tem-
poral domain as the texture does, a straightforward method to
exploit its temporal redundancy is using motion estimation and
compensation. The contour in the current frame can be pre-
dicted from the contour obtained in the previous frame. The
contour segments which can not be predicted are encoded by the
shape coding technique. This can reduce the bit-rate of shape
coding drastically. In the literature, the contour motion us usu-
ally assumed as translational motion. This approach works well
for image sequences with low speed or simple motion. When
there is zooming and/or rotation, this assumption does not work
well. In this paper, we use two global motion models, a transla-
tional global motion model and an affine global motion model,
to predict the global motion of the contour sequence to be en-
coded. In this contour based motion compensation, two kinds
of contour segments, motion success segment and motion failure
segment, are defined. After motion compensation, when all pix-
els within a contour segment in the current frame match all pix-
els within a motion compensated contour segment in the refer-
ence frame (previous frame), this segment is called motion suc-
cess segment; otherwise, it is called motion failure segment. We
define distance between two contour segments cn−1 and cn as
follows:

dist(cn−1, cn) = max{d(xi,n−1, xj,n)}, (1)
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Fig. 9. 6 contourcontexts and their chain codesbeginning from the left position

(xi,n−1 ∈ cn−1, xj,n ∈ cn)

where d(xi,n−1, xj,n) is the Euclidean distance. The motion
success segment means the distance between motion compen-
sated contour segment and the contour segment in current frame
is zero; otherwise, it is a motion failure segment. This defini-
tion is applied on both the global motion compensation and lo-
cal motion compensation. In the implementation, a threshold,
which defines the minimum length of motion success segment,
is applied in order to prevent segmenting object contour to very
small segments. The overhead for a small motion success seg-
ment, its motion vector and length, makes it less efficient than
the proposed chain coding method.

A. Translational Contour Motion Estimation

In this contour motion estimation/compensation scheme, the
object contour is assumed to undergo a translational motion. A
global motion vector for the whole object contour is searched
according to the number of matched contour points between the
object contour in current frame and the object contour in the pre-
vious frame under this global motion. The whole contour is then
segmented into global motion success segments and global mo-
tion failure segments as shown in Fig. 11. For each global mo-
tion failure segment, local motion vectors, are searched. Each
global motion failure segment is further split into local motion
success segments and local motion failure segments. The global
motion success segment can be represented by its length and the
global motion vector. The local motion success segment can be
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Fig. 10. 6 contour contexts and their chain codes beginning from the top posi-
tion

represented by its length and the local motion vector. The local
motion failure segment is encoded by the two-link chain code
followed by an arithmetic coder.

Motion Predicted Contour
and Contour in Frame I

Dash Contour is the Contour in Frame I

Contour in Frame I-1

Motion Success Segment
Motion Failure Segment

Dot Contour is the Motion Predicted Contour

Fig. 11. Motion success contour segment and motion failure contour segment

B. Affine Contour Motion Estimation

When there is more complex motion such as zoom and/or
rotation, the contour motion can not be well compensated by
a translational motion model. Here we investigate an affine
global motion model for these cases. We use the following six-
parameter affine motion model as the global contour motion
model.

x̂ = a1x + a2y + a3 (2)

ŷ = a4x + a5y + a6 (3)

Contour in current

Contour in previous

frame

frame

Corner

Corner

Corner points

Corner

Motion vectors

LMS

Affine ParametersDetection

Detection

Matching Estimator

Fig. 12. Diagram of the affine motion estimation for a contour sequence

In the above equations, x̂ and ŷ are the coordinates of contour
points in the current frame. x, y are the coordinates of contour
points in the previous frame.

The problem is to estimate the vector [a1, a2, a3, a4, a5, a6]
according to available contours. Since the number of the con-
tour points in the two contours is not necessarily equal, there
is no unique solution to determine which contour point in the
current frame corresponds to the contour point in the previous
frame. Instead of using every contour point in these two con-
tours, we only use some feature points on these two contours,
corner points, to solve Eq. 3. The motion of these feature points
can represent the motion of the whole contour, and the compu-
tational complexity is reduced significantly. The diagram of the
motion estimation process is shown in Fig. 12. First the corner
points of each contour are detected according to their curvature
values. Then, the corner points are matched by a corner match-
ing process [16]. The motion vectors are calculated from the
matched corner pairs. The affine parameters are estimated by
a least median square algorithm [17].

1) Corner Detection: The corner detection technique we
used is from TargetJr package [18]. Corners on a contour are
detected according to their curvature values. The algorithm is
illustrated in Fig. 13. The curvature at a contour point i is de-
fined as shown in Fig. 14:

Gaussian
Smoothing

Smoothed contour Curvature

Input contour Calculate
Curvature

SelectionDistinction
Corner

Corner list

Corner candidates

Local Maximum

Fig. 13. Corner detection

curvature[i] = 1 − cos(θi)
= 1 − (cos(αi+1) cos(αi−1)
+ sin(αi+1) sin(αi−1)) (4)
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i-1

p
i

p
i+1

p

Contour Curvature at point i

i i+1

i

α α

Fig. 14. Definition of the contour curvature

where cos(αi+1), sin(αi+1), cos(αi−1), sin(αi−1) can be
calculated from the coordinates of contour points p i+1, pi and
pi−1. The larger the value of curvature in Eq. 4, the more likely
the contour point pi is a corner.

In order to overcome the digitizationeffect, the contour is first
smoothed by a Gaussian filter. It is equivalent to convolve the
contour with a Gaussian kernel. The curvature at each contour
point is calculated according to Eq. 4. The contour point whose
curvature value is a local maximum and larger than a threshold
is classified as a corner candidate. A corner candidate is a cor-
ner when its direction distribution is significantly different from
that of its neighboring candidates. As shown in Fig. 15, the cur-
vature of contour points between two corner candidates, ci−1

and ci, is treated as a random variable. Its mean value, βi, is
the curvature between two neighboring contour candidates c i−1

and ci; the variance, vari, is calculated from the curvature be-
tween contour points pj , pj+1 and ci. The curvatures of con-
tour points between corner candidates ci and ci+1 is treated as
another random variable. Its mean value, βi+1, is the curvature
between contour candidates ci and ci+1; the variance, vari+1,
is calculated from the curvatures between contour points pj+2,
pj+3 and ci+1. A scalar parameter, peak separation defined in
Eq. 5 below, is used to represent the difference between the di-
rection distribution at both sides of a corner candidate, c i.

ci-1
pj

p
j+1

i

c i+1 ci+2

β i

β i+1

c

p

p
j+3

j+2

Fig. 15. Definition of the direction distribution of a contour segment

peak[i] =
(αi − αi+1)

vari + vari+1
(5)

The complete corner detection algorithm can be summarized
as below:

1) Smooth the contour points with a Gaussian kernel.
2) Calculate the curvature value for each contour point.
3) Select the contour points whose curvature values are the

local maximums and larger than the threshold as corner
candidates.

4) Calculate the peak separation of each corner candidate.
5) Delete the corner candidate with the weakest peak sepa-

ration, and merge the direction distributionof the contour
segments connected to this corner candidate. Update the
peak separation of the neighboring corner candidates.

6) Go back to the last step until the expected number of cor-
ners is reached.

2) Corner Matching: The corner matching algorithm we
used is proposed in [16]. For each corner of the contour in the
current frame, we choose several corners of the contour in the
previous frame as its matching candidates. A matching prob-
ability is defined between each corner pair, the corner and one
of its matching candidate. The pair with a matching probabil-
ity higher than a threshold is identified as a matched pair. The
initial matching probability between each pair of corners is de-
termined by the pattern of branches connected to that pair of cor-
ners according to Eq. 10. At this point, the corner pair with an
initial matching probability higher than the predefined thresh-
old is classified as a matched pair; otherwise, an iterative relax-
ation procedure is applied. Additional matches based on sup-
porting descriptors are gathered from a wider neighborhood of
branches and corners. Specifically, the supporting descriptors
for a given corner i in frame I − 1 with a candidate corner j in
frame I are:

1) The geometry of neighboring corners in frame I − 1 ap-
pears to match that of the neighbors of corner j in frame
I.

2) Motion vectors measured over the same neighborhood of
corners appear to match.

3) The location of corner i relative to the previously matched
corners in frame I − 1 is like that of corner j relative to
the matched corners in frame I.

The matching probability between corner i in frame I − 1 and
corner j in frame I is formulated as below. As illustrated in
Fig. 16, there are M = 4 branches (l0, l1, l2, l3) connected to
corner pi in frame I − 1 and M = 4 branches (l′0, l′1, l′2, l′3) to
p′j in frame I. They form 3 angles (θ0, θ1, θ2) and (θ′0, θ′1, θ′2)
respectively. A cost function C(i, j) expressing the match be-
tween corner i in frame I − 1 and j in frame I is:

C(i, j) = wLeL(i, j) + wθeθ(i, j) (6)

where

eL(i, j) =
M∑

i=1

|li − l′i| (7)

eθ(i, j) =
M−1∑
i=1

|θi − θ′i| (8)
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Fig. 16. The matching probability between a corner pair on two contours

Since C(i, j) is small when the corner pair is close, we trans-
form it to a matching score S(i, j):

S(i, j) = (1 + C(i, j))−1 (9)

Assume that there are M1 corners in frame I − 1. For each
corner i, we choose M2 corners in frame I which are the most
nearest corners to i. The matching scores S(i, j) are calcu-
lated for every pair of (i, j) where i = 1, 2, . . . , M1 and j =
1, 2, . . . , M2. The matching probability P (i, j) is:

P (i, j) =
S(i, j)∑M2

j=1 S(i, j)
(10)

where P (i, j) is a true probability obeying:

0 ≤ P (i, j) ≤ 1 (11)
M2∑
j=1

P (i, j) = 1 (12)

Three supporting descriptors can be formulated as below.
The first one, q1(i, j), describes how well the corners connected
to corner i (in frame I−1) match the corners connected to corner
j (in frame I). Let corner i has N1 connected corners, indexed
l1 = 1, 2, . . . , N1. Similarly, corner j has N2 connected cor-
ners, indexed l2 = 1, 2, . . . , N2. We try to match the groups of
connected corners form frame I−1 with those in frame I by ro-
tating one group relative to the other group until the best match
is found, indicated by the maximum value of:

q1(i, j) =
1

N ′

N′∑
P (l1, l2) (13)

Where the combinations indicated by the right-hand argu-
ment (l1, l2) correspond to the possible rotations allowed in the
matching process. N ′ = min(N1, N2).

The second supporting descriptor, q2(i, j), is the motion of
the neighboring corners. Two neighboring corners of corner i in
frame I − 1 are chosen. Each of those two corners is compared
with the M2 closest corners in frame I. The most likely matched
corner pair, indicated by the maximum matching probability in
Eq. 10, are used to compute the corner motion vectors in x, y
directions. These motion vectors are then averaged over the two
test corners to give an average motion vector vx, vy . The motion

discrepancy of the corner i in frame I−1 to the corner j in frame
I is:

D(i, j) =
√

(vx(i, j) − vx)2 + (vy(i, j) − vy)2 (14)

The second supporting descriptor defined as:

q2(i, j) =
1

1 + µD(i, j)
(15)

The third supporting descriptor, q3(i, j), is defined as the
matching probability by using the nearest matched corners to
corner i. We form a reference corner network by connecting cor-
ner i to its three nearest matched corners. In frame I, the three
counterparts of the matched corners form the network of corner
j. q3(i, j) is defined exactly analogous to S(i, j) in Eq. 9.

The three supporting descriptors are combined to give a
matching update factor Q(i, j):

Q(i, j) =
∑3

m=1 qm(i, j)

1 +
∑3

m=1

∑M2
j=1 qm(i, j)

(16)

This matching update factor is then used to update the matching
probability of each pair of corners. The matching probability in
iteration k + 1 time, P k+1(i, j), is:

P k+1(i, j) =
P k(i, j)(1 + Q(i, j))∑M2

j=1 P k(i, j)(1 + Qk(i, j))
(17)

The matching probability of a real matched corner pair will be
increased by this update factor and that of a non-matched cor-
ner pair will be decreased. When a corner pair has a matching
probabilityhigher than the threshold, it is classified as a matched
pair.

The corner matching algorithm can be summarized as be-
low:

1) For each corner point i in frame I − 1, choose the M2

nearest corners in frame I as its matching candidates.
2) Calculate the initial matching probabilities P 0(i, j) for

each corner pair (i, j). k = 0.
3) If P k(i, j) is higher than the predefined threshold, denote

(i, j) as a matched pair.
4) For each corner which is not matched, calculate its sup-

porting descriptors, update its matching probability. k =
k + 1.

5) go back to step 3 until all corners are matched.
3) Affine Parameters Estimation: After we get all matched

corner pairs, we can calculate the motion vectors between these
matched corner pairs. The motion vectors are then used to es-
timate the affine parameters by the least median square (LMS)
algorithm [17]. The LMS algorithm is robust to the data with
outliers. Since not every corner’s motion is consistent with the
affine model, the LMS algorithm can avoid the effect of these
corners by treating them as outliers.

In order to test the corner matching and the affine motion es-
timation algorithms, we create shape images undergoing trans-
lational and affine motion from an available shape image. As an
example, we create a new shape image by moving the shape im-
age in frame 0 of the Akiyo sequence with motion vector (5,-5).
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Then we create another shape image by an affine motion with
affine parameters [0,−0.055, 0, 0.055, 0, 0]. This corresponds
to turning the shape image centered at (0,0) with an angle of 3.2
degree. The actual motion parameters and the estimated motion
parameters are listed in Table I. The number of correctly pre-
dicted contour points by the decompressed motion parameters
are listed in Table II. We can see that the estimated affine pa-
rameters are fairly accurate. When the object contour is under
an affine motion, the affine model can compensate the motion
better than the translational model.

TABLE I
TRUE AND ESTIMATED AFFINE PARAMETERS

a1 a2 a3

True 0. -.055 -5.
Estimated 0.0017 -0.0535 -5.07

True 0. 0. -5.
Estimated 0. 0. -5.

a4 a5 a6

True .055 0. 5.
Estimated 0.0592 -0.0007 3.90

True 0. 0. 5.
Estimated 0. 0. 5.

TABLE II
NUMBER OF PIXELS WHICH ARE CORRECTLY PREDICTED

Corrected Pixels Total Pixels
Translational 129 514

Affine 408 514

V. PROPOSED MOTION COMPENSATED CHAIN CODING

SYSTEM

There are two coding modes: the intra mode and the inter
mode in our proposed shape coding scheme. The contour in the
first frame within a GOP (group of pictures) is encoded by the
intra mode. The contours in other frames are encoded by the
inter mode. The diagrams of the intra mode and the inter mode
contour coding are shown in Fig. 17 and Fig. 18 respectively.
In the intra mode coding, the contour is encoded directly by the
chain coding method proposed in III followed by an arithmetic
coder. In the inter mode coding, global motion parameters and
local motion vectors are first searched. For global motion suc-
cess segments, only the length of the segments are transmitted.
For local motion success segments, the length and local motion
vectors are transmitted. For motion failure segments, chain cod-
ing is applied.

Since the required resolution of affine parameters to be trans-
mitted is high, it consumes more bits to transmit affine param-
eters than translational motion vectors. In real implementation,
each affine parameter required 10 bits. The total number of bits
required for affine parameters are 60 bits compared with the
10 bits required for translational motion vectors. Therefore we
have two modes for global motion estimation: the affine mode

Object Contour

Chain Coding Entropy Coding

Entropy DecodingChain Decoding

Contour
Memory

Fig. 17. Diagram for the intra mode contour coding

Predicted Contour

Chain Coding Entropy Coding

Entropy DecodingChain Decoding

Contour
Memory

Contour
Predictor

Contour
Reconstructor

+
+

-

Object Contour

Reconstructed Object Contour

Decoded Motion Vector

Fig. 18. Diagram for the inter mode contour coding

and the translational mode. When non-translational motion is
significant, the number of correctly predicted contour pixels is
lower. Then we turn on the affine mode. The syntax of the
bitstream is shown in Fig. 19. In the bitstream, the first bit is
the global motion flag, 1 for affine motion, 0 for translational
motion. Following is the affine parameters or the translational
global motion vector depending on the global motion flag. Then
the coordinate of the start point (10 bits for x and 10 bits for y)
is followed by the bitstream for each contour segment. In each
contour segment, the first two bits represent the type of this seg-
ment. For a global motion success segment, only the length of
the segment is transmitted. For a local motion success segment,
the length of the segment and the local motion vector are trans-
mitted. For a motion failure segment, a series of chain codes
follows. An END is used to tell the decoder that the end of this
segment is reached.

Global Motion
    Segment

Local Motion
    Segment

Motion Failure

Segment

Motion Segment

Motion
Type

Motion

Contour Segment

Motion

Type

Chain
End

LengthType

Vector
Segment
Length

Code

Global Motion Flag Global Motion
Vector

Start
Point

Motion
Type

Bitstream Next Segment

Motion Type: 00   -- Global Motion

01   -- Local Motion

10   -- Motion Failure

11   -- End

Bit Stream

Fig. 19. Bitstream syntax for contour coding

VI. EXPERIMENTAL RESULTS

We test the performance of the proposed algorithm by coding
several widely used MPEG-4 test shape sequences: the Akiyo
and Weather sequences in QCIF and CIF format with frame rate
of 30 fps. The total length of the sequences is 300 frames. We
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code the sequences in both the intra mode and the inter mode.
First the shape image is transformed into an object contour de-
fined on the contour lattice. Then the contour links are encoded
by the proposed chain coding technique.

For the intra mode coding, the average bits used for cod-
ing each frame of these sequences are listed in Table III. From
the data in Table III, the coder reached the bit-rate at 0.8-1.0
bits/link for lossless contour coding.

TABLE III
AVERAGE BIT USAGE FOR INTRA MODE CONTOUR CODING

Sequence Bit Used Total Links bits/link bits/pixel
Akiyo(QCIF) 454 508 0.89 0.0484
Akiyo(CIF) 857 1022 0.84 0.0228

Weather(QCIF) 425 447 0.95 0.0749
Weather(CIF) 795 918 0.863 0.0351

We compare the performance of our proposed shape coding
technique with the CAE and baseline-based coder [7]. The re-
sults are listed in Table IV. From Table IV, the performance of
our algorithm is better than that of the CAE and the baseline-
based technique.

TABLE IV
COMPARISON OF SHAPE CODING TECHNIQUES IN INTRA MODE

Sequence Frame Format CAE † Baseline † Proposed
algorithm

Akiyo 0 QCIF 0.06059 N/A 0.0576
Akiyo 0 CIF 0.03657 N/A 0.0260

Weather 0 QCIF 0.05581 N/A 0.0574
Weather 30 QCIF 0.0801 0.0745 0.0579
Weather 0 CIF 0.03167 N/A 0.0252
†Algorithm does not require a contour smoothing before encoding.

In the inter mode coding, we apply the proposed technique
on the same sequences. The average bits used for each frame of
these sequences are listed in Table V.

TABLE V
AVERAGE BIT USED FOR INTER MODE CONTOUR CODING

Sequence Bit Used Total Links bits/link bits/pixel
Akiyo(QCIF) 179 508 0.35 0.0191
Akiyo(CIF) 469 1022 0.46 0.0125

Weather(QCIF) 288 447 0.63 0.052
Weather(CIF) 620 918 0.67 0.0276

We also compare the performance of our proposed shape cod-
ing technique with the CAE and another motion compensated
contour-based technique, GPSC [5]. The results are listed in Ta-
ble VI. From Table VI, the performance of our algorithm is bet-
ter than that of the CAE and GPSC technique.

VII. CONCLUSION

In this paper, we present our new two-link chain coding
method for 2-D shape coding. The contour points are defined on
the contour lattice, a 6-connected image. We impose a smooth
constraint on the object contour by applying a majority filter to
improve the coding efficiency. We test the performance of the

TABLE VI
COMPARISON OF SHAPE CODING TECHNIQUES IN INTER MODE

(BITS/FRAME)

Sequence Format frame rate CAE † GPSC Proposed
algorithm

Weather QCIF 30 fps 303 N/A 288
Weather QCIF 10 fps 382 394 356
†Algorithm does not require a contour smoothing before encoding.

proposed technique in several MPEG-4 shape sequences. In the
intra mode, the bit-rate of 0.8-1.0 bits/link can be reached for
lossless coding. In the inter mode, we investigate the transla-
tional and affine-model based motion compensated chain cod-
ing scheme for shape sequence coding. The corners on a con-
tour are detected as the feature points. A corner matching al-
gorithm is used to match corresponding feature points between
contours. The affine global motion parameters are estimated
from the motion vectors at the feature points. The experimen-
tal results show that affine motion model works well for more
complicated global motion than the traditional translational mo-
tion model. The experimental results show that our proposed
scheme uses fewer bits than that of the CAE technique which is
applied in MPEG-4 VM7.0.
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