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Abstract

We propose an embedded, block-based, image wavelet transform coding algorithm of low complexity. It uses
a recursive set-partitioning procedure to sort subsets of wavelet coefficients by maximum magnitude with respect to
thresholdsthat are integer powers of two. It exploits two fundamental characteristics of an image transform—the well
defined hierarchical structure, and energy clustering in frequency and in space. The two partition strategies allow for
versatile and efficient coding of several image transform structures, including dyadic, blocks inside subbands, wavelet
packets, and DCT (discrete cosine transform). We describe the use of this coding algorithm in several implementations,
including reversible (lossless) coding and its adaptation for color images, and show extensive comparisons with other
state-of-the-art coders, such as SPIHT and JPEG2000. We conclude that this algorithm, in addition to being very flex-
ible, retains al the desirable features of these algorithms and is highly competitive to them in compression efficiency.

Keywords: image coding, color image coding, lossess coding, wavelet coding, hierarchical coding, embedded
coding, entropy coding

I. INTRODUCTION

Effective and computationally simple techniques of transform-based image coding have been realized using set
partitioning and significance testing on hierarchical structures of transformed images. Said and Pearlman [4] introduced
such atechnique in their SPIHT (Set Partitioning In Hierarchical Trees) algorithm, in their successful effort to extend
and improve Shapiro’s EZW (Embedded Zerotree Wavelet) algorithm [3]. The SPIHT algorithm has since become a
standard benchmark in image compression.

The SPIHT scheme employs an iterative partitioning or splitting of sets or groups of pixels (or transform coeffi-
cients), in which the tested set is divided when the maximum magnitude within it exceeds a certain threshold. When
the set passes the test and is hence divided, it is said to be significant. Otherwise it is said to be insignificant. Insignif-
icant sets are repeatedly tested at successively lowered thresholds until isolated significant pixels are identified. This
procedure sorts sets and pixels by the level of their threshold of significance. The results of these so-called significance
tests describe the path taken by the coder to code the source samples. Since the binary outcomes of these tests are put
into the bit stream asa ‘1’ or ‘0, the decoder at the destination can duplicate the execution path of the encoder.

The principle of set partitioning and sorting by significance is the key to excellent coding performance with very
low computational complexity. This recognition has spawned more algorithms in this category, among which are
Amplitude and Group Partitioning (AGP) [5], SWEET [7], NQS[13], and Set Partitioning Embedded bloCK (SPECK),
which is the subject of this paper. An important characteristic that this class of coders possesses is the capability of
progressive transmission and embeddedness. Progressive transmission refers to the transmission of information in
decreasing order of itsinformation content. In other words, the coefficients with the highest magnitudes are transmitted
first. Since these coding schemes transmit value information in decreasing order of significance, this ensures that the
transmission is progressive. Schemes like EZW, SPIHT, and the herein to be described SPECK maintain a list of
significant pixels, so that their bits can be sent in decreasing bit plane order. Such a transmission scheme makes it
possible for the bitstream to be embedded, i.e., asingle coded file can used to decode the image at almost any rate less
than or equal to the coded rate, to give the best reconstruction possible with the particular coding scheme.
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The SPECK image coding scheme has its roots primarily in the ideas developed in the SPIHT [4], AGP [5], and
SWEET [7] image coding agorithms. An algorithm similar to SPECK was independently developed by Munteanu et
al. [2]. SPECK isdifferent from SPIHT and EZW in that it does not use trees which span and exploit the similarity
across different subbands of a wavelet decomposition; rather, like AGP, SWEET,and NQS, it makes use of setsin the
form of blocks of contiguous coefficients within subbands. A more detailed discussion describing the position of this
coding scheme with respect to these coders is given in Section I11-E. The main idea is to exploit the clustering of
energy in frequency and space in hierarchical structures of transformed images.

The SPECK a gorithm has been utilized in several successful image coders. SPECK wasfirst introduced in July 1998
by Islam and Pearlman as alow complexity option for JFPEG2000 [11] and was reported publicly in a conference paper
in January 1999 [16]. In March 1999, it was again presented before the JIPEG2000 Working Group with additional data
on comparative run-times with JPEG2000's VM 3.2A (Verification Model, version 3.2A) [15], which was essentially
the EBCOT coder by Taubman [1]. These tests showed that SPECK was 4.6 to 15.7 faster than VM 3.2A in encoding
and 8.1 to 12.1 faster in decoding on the average over a set of four images and a set of four rates, 0.25, 0.50, 1.0,
and 2.0 bits per pel. The range of runtime factors resulted from the different versions of scalability and use or non-
use of back-end entropy coding used in the tests. Because of the simplicity of these coders, there were reductions
of PSNR from that of VM 3.2A ranging from a minimum of 0.48 dB for entropy-coded versions to a maximum of
0.85 dB for non-entropy-coded versions. Later that year in June, SPECK was incorporated into the JPEG2000 coding
framework, where a simple command line switch initiated the SPECK coding engine in place of EBCOT [17]. This
implementation was named Subband Hierarchical Block Partitioning (SBHP). The programming and tests were carried
out at Hewlett Packard Laboratories, but there were contributors from Texas Instruments, Canon Information Systems
Research in Australia (CISRA), Terdogic, and Rensselaer Polytechnic Institute. The work was later published in
condensed form in the ICASSP2000 Proceedings [18]. SBHP used a very simple fixed Huffman code of 15 symbols
for encoding the significance map bits delivered by the SPECK agorithm. As with SPECK, the other types of hits,
the magnitude refinement and sign bits, were not further encoded. Extensive tests showed that for natural images,
such as photographic and medical images, the reductions in PSNR from VM 4.2 were in the range of 0.4-0.5 dB.
SBHP showed losses in bit rate at the same PSNR level from 5-10% for lossy compression and only 1-2% for lossless
compression. Yet encoding time was about 4 times faster and decoding time about 6 to 8 times faster for the embedded
version and as much as 11 times faster for the non-embedded version, in which case the complexity of SBHP becomes
close to baseline JPEG. In fact, embedded SBHP proved to be faster even than SPIHT with unencoded output in
these experiments. The non-embedded coding is actually progressive by value of bitplane threshold, so that higher
magnitude wavelet coefficients are encoded into the bitstream before lower values. There is no counterpart of this
additional functionality in JPEG2000.

A higher complexity variant of SPECK, called EZBC (Embedded Zero Block Coding), was reported by Hsiang
and Woods [20]. EZBC uses the SPECK agorithm to produce the significance map, magnitude refinement and sign
bits, but then uses the context-based adaptive, arithmetic coding of EBCOT to encode all these kinds of bits. EZBC
outperformed SPECK, on the average over several natural images and rates up to 1.0 bit per pel by about 0.45 dB,
because of this additional encoding. In fact, it aso outperformed JPEG2000 VM 3.1A in most cases. Although
higher in complexity than basic SPECK, EZBC is still somewhat lower in complexity than JPEG2000, because at each
threshold it only needs to pass through coefficients that have previously become significant. The JPEG2000 coder
requires passage through all coefficients at each threshold.

In this paper, we shall describe the SPECK a gorithm, its characteristic features, and the implementation and perfor-
mance of itslow complexity formsin monochrome and color still image compression. The paper is organized into the
following sections. Section Il provides the terminology and methodology used in the agorithm, followed by Section 111
which explains and lists in pseudo-code the actual algorithm. The sub-section of 111-E provides the motivation behind
SPECK and explains its position among the class of similar hierarchical coding schemes. The final sub-section I11-F
gives the numerical and visua results obtained with this and other competing coding schemes. In Section 1V, we
present an embedded color implementation of SPECK and show that its performance is comparable to or superior than
SPIHT and JPEG 2000 on YUV frames extracted from standard MPEG-4 video sequences. SBHP, a SPECK variant
implemented in the JPEG2000 platform, is then described in Section V and compared to JPEG2000, followed by the
concluding statements in Section VI.



Il. THE CODING METHODOLOGY

In this section, we explain the idea of the SPECK coding scheme and its terminology. Consider an image X
which has been adequately transformed using an appropriate subband transformation (most commonly, the discrete
wavelet transform). The transformed image is said to exhibit a hierarchical pyramidal structure defined by the levels
of decomposition, with the topmost level being the root. The finest pixels lie at the bottom level of the pyramid
while the coarsest pixels lie at the top (root) level. The image X is represented by an indexed set of transformed
coefficients {¢; ;}, located at pixel position (i, j) in the transformed image. The terms coefficients and pixels will be
used interchangeably, since there isusuallly no need to distinguish between value and position when referencing them.
Pixels are grouped together in sets which comprise regions in the transformed image. Following the ideas of SPIHT,
we say that aset 7 of pixelsissignificant with respect to n if

max {|¢; ;|} > 2"
ma flei ) >

otherwise it isinsignificant. We can write the significance of aset 7 as

1, if2" < max |¢; | < 2"!

rnm:{o y T )

The SPECK agorithm makes use of rectangular regions of image. These regions or sets, henceforth referred to as
sets of type S, can be of varying dimensions. The dimension of aset S depends on the dimension of the original image
and the subband level of the pyramidal structure at which the set lies.

We define the size of a set to be the cardinality C of the set, i.e., the number of elements (pixels) in the set.

sze(S) =C(S) = |S| ()

During the course of the algorithm, sets of various sizes will be formed, depending on the characteristics of pixels
in the original set. Note that a set of size 1 consists of just one pixel.

The other type of sets used in the SPECK algorithm are referred to as sets of type Z. These sets are obtained by
chopping off a small square region from the top left portion of alarger square region. A typical set 7 isillustrated in
Fig. 3. A set 7 isaways decomposed into S setsin a prescribed way, so asto progress through the transformed image
from coarser to finer resolution subbands. The coding part of SPECK always takes place on the S sets.

To encode an S set, the SPECK algorithm follows closely the methodology used in the SPIHT agorithm [4]. The
difference liesin the sorting pass where instead of using spatial orientation trees for significance testing, we use sets of
type S as defined above. The motivation behind thisisto exploit the clustering of energy found in transformed images
and concentrate on those areas of the set which have high energy. This ensures that pixels with high information
content are coded first.

We maintain two linked lists: LIS — List of Insignificant Sets, and LSP — List of Significant Pixels. The former
contains sets of type S of varying sizes which have not yet been found significant against a threshold » while the latter
obvioudly contains those pixels which have tested significant against n. Alternatively, as will become obvious later on,
we can use an array of smaller lists of type LIS, each containing sets of type S of afixed size, instead of using asingle
large list having sets S of varying sizes. These smaller lists are ordered by size from smallest single pixel sets first
(top) to largest sets last (bottom). This ordering is the functional equivalent of separating the LISinto two lists, an LIP
(list of insignificant points) and an LIS (list of insignificant multi-point sets), as done in SPIHT. Use of multiple lists
will speed up the encoding/decoding process.

I1l. THE SPECK ALGORITHM

Having set-up and defined the terminology used in the SPECK coding method, we are now in aposition to understand
the actual algorithm.



1) Initialization
o Partition image transform X’ intotwo sets: S =root,andZ = X — S (Fig. 3).
o OUtpUt Nyy00 = [log, (maX(m)eX leiil)]
e AddStoLISandset LSP= ¢
2) Sorting Pass
« Inincreasing order of size |S| of sets (smaller setsfirst)
— foreachsetS € LISdoProcessS(S)
o if Z#0,Processl()
3) Refinement Pass
- foreach (i,j) € LSP, exceptthoseincluded in the last sorting pass, output the n-th MSB of |c; ;|
4) Quantization Step
o decrementn by 1, and go to step 2

Fig. 1. The SPECK Algorithm.

The main body of the SPECK coding algorithm is presented in pseudo-code in Fig. 1. It consists of four steps: the
initialization step; the sorting pass; the refinement pass; and the quantization step. These steps call four functions,
ProcessS(),CodeS(),Processl () and Codel (), which are described in Fig. 2.

We shall now describe the operations of the SPECK agorithm presented in Fig. 1. We start with our source, a
rectangular image X, that has undergone an appropriate subband transformation. Theimage X’ consists of transformed
coefficients {c; ; }, located at pixel position (7, 7). Such an image exhibits a hierarchical pyramidal structure having
subbands at different levels of its decomposition. The topmost band is the root of the pyramid.

The algorithm starts by partitioning the image into two sets: set S which is the root of the pyramid, and set Z which
is everything that is left of the image after taking out the root (see Fig. 3). To start the algorithm, set S is added to the
LIS. We keep anote of the maximum threshold 7,4, Such that ¢; ; isinsignificant with respect to 7,4, + 1, Ve; j € X,
but at least one¢; ; € X is significant against the threshold 7,44.-

A. Quadtree Partitioning

Set S in LISis processed by testing it for significance against the threshold n = 7,4, (function Pr ocess S()). If
not significant, it staysin the LIS. If S is significant, it is quadrisected, i.e., partitioned into four subsets O(S), each
having size approximately one-fourth the size of the parent set S (function Code S()). Fig. 4 givesanillustration of this
partitioning process. In the following procedure Code S(), each of these offspring sets O(S) is tested for significance
for the same n and, if significant, is quadrisected once more. If not significant, it is added to the LIS.

Each significant subset is, in turn, treated as a set of type S and processed recursively, via ProcessS() and
CodeS(), until pixel-level is reached where the pixels that are significant in the original set S are located and thereby
coded. The pixels/sets that are found insignificant during this selection process are added to LIS to be tested later
against the next lower threshold.

The binary result of every significance test is sent to the code bitstream. Whenever aset S of size greater than oneis
significant, tests of four offspring sets follow, so that the binary significance decision paths map onto a quadtree. The
motivation for this so-called quadtree partitioning of such sets achieves two goals. (1) to quickly identify the areas of
high energy (magnitude) in the set S and code them first; and (2) to locate structured groups of coefficients that are
below a decreasing sequence of magnitude thresholds, so asto limit the number of bits needed for their representation.

B. Octave Band Partitioning

At this stage of the algorithm, all current sets of type S have been tested against n. The set 7 is processed next, by
testing it against the same threshold n (function Pr ocessl (). If it isfound to be significant, it is partitioned by yet
another partitioning scheme—the octave band partitioning. Fig. 5 gives an illustration of this partitioning scheme. Set
7 is partitioned into four sets—three sets of type S and one of type Z (function Codel ()). The size of each of these
three sets S is the same as that of the chopped portion of X'. The new set 7 that is formed by this partitioning process
isnow reduced in size.



Procedure Pr ocess S(S)

1) outputT',,(S)

2) ifT,(S) =1
o if Sisapixel, then output sign of S and add S to LSP
o €else CodeS(S)
o if S € LIS, thenremoveS from LIS

3) ese
o ifS¢LIS thenaddStoLIS

4) return

Procedure Code S(S)
1) Partition S into four equal subsets O(S) (see Fig. 4)
2) foreachsatS; € O(S) i=0,1,2,3)
o output ', (S;)
o ifT,(S) =1
— if S; isapixel, output its sign and add S; to LSP
— eseCodeS(S;)
o €else
— add S; to LIS
3) return

Procedure Pr ocessl ()
1) outputT',,(7)

2) ifT',(2)=1
« Codel ()
3) return

Procedure Codel ()
1) Partition Z into four sets—three S; and one 7 (see Fig. 5)
2) for each of thethreesets S; (i = 0,1, 2)
e ProcessS(s;)
3) Processl ()
4) return

Fig. 2. The functions used by the SPECK Algorithm.
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Fig. 3. Partitioning of image X’ into setsS and Z.

O(S) = {80,81782783}
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Fig. 4. Partitioning of set S.
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Fig. 5. Partitioning of set 7.

The idea behind this partitioning scheme is to exploit the hierarchical pyramidal structure of the subband decompo-
sition, where it is more likely that energy is concentrated at the top most levels of the pyramid and as one goes down
the pyramid, the energy content decreases gradually. If aset 7 is significant against some threshold n, it is more likely
that the pixels that cause Z to be significant lie in the top left regions of Z. These regions are decomposed into sets of
type S, and are put next in line for processing.

In thisway, regions that are likely to contain significant pixels are grouped into relatively smaller sets and processed
first, while regions that are likely to contain insignificant pixels are grouped into a large set. A single bit may be
enough to code this large region against the particular threshold. Hence, once the set 7 is partitioned by the octave
band partitioning method, the three sets S are processed in the regular image-scanning order, after which the newly
formed reduced set 7 is processed.

It should be noted that processing the set 7 is arecursive process, and depending on the characteristics of the image,
at some point in the algorithm, the set Z will cover only the lower-most (bottom) level of the pyramidal structure.
When, at this point, the set 7 tests significant against some threshold, it will be broken down into three sets S but there
will be no new reduced set Z. To be precise, the new set Z will be an empty set. Hence, the functions Pr ocessl ()
and Codel () will have no meaning in the SPECK algorithm after this event. This octave band partitioning is done
only during the initial sorting pass at the highest significance level n = 7,44

Once al the sets have been processed for a particular threshold n, the refinement pass is initiated which refines the
guantization of the pixelsin the LSP, i.e., those pixels that had tested significant during the previous sorting passes.
Once this is done, the threshold is lowered and the sequence of sorting and refinement passes is repeated for sets in
the LIS against this lower threshold. This process is repeated until the desired rate is achieved or, in case of lossless or
nearly lossless compression, all the thresholds up to the last, corresponding to n. = 0, are tested.

It should be mentioned at this point that sometimes embedded bit plane coding, as described, is not needed or
desired for various reasons. In this case, one can bypass the refinement passes and output a binary code for the value
of apoint immediately upon its being found significant. Then there is no need to maintain an LSP. The values sent to
the bit stream are still partially ordered according to significance threshold, so the bitstream has a partially embedded
character. Furthermore, although the finely embedded property is lost, the encoding and decoding are faster and
simpler.

C. Processing Order of Sets

An important step in the execution of the sorting pass comes after the first run of the algorithm. Once one pass has
occurred, sets of type S of varying sizes are added to LIS. During the next lower threshold, these sets are processed
in a particular order. Thelist LIS is not traversed sequentialy for processing sets S; rather, the sets are processed in
increasing order of their size. In other words, say for a square image, sets of size 1 (i.e. pixels) are processed first, sets
of size 4 (blocks of 2x 2 pixels) are processed next, and so on.

The idea behind this strategy is that during the course of its execution, the algorithm sends those pixels to LIS
whose immediate neighbors have tested significant against some threshold » but they themselves have not tested
significant against that particular threshold. Chances are, because of energy clustering in the transform domain, that
these insignificant pixels would have magnitudes close to the magnitudes of their neighboring pixels already tested
significant, although lesser. Soit islikely that these pixels will test positive to some nearby lower threshold and add to
the reduction in the overal distortion of the coded image.



Moreover, the overhead involved in testing asingle pixel and moving it to the LSP is much lower than that involved
in testing a group of pixels and moving the significant ones within it to the LSP. Of course, if a whole sorting pass
has completed, this scheme offers no advantage since all the sets of type S in the L1S would be tested in either case.
However, if the coding algorithm were to stop in the middle of a sorting pass, asit might if the desired rate is achieved,
and the setsin the LIS are processed in increasing order of their size, then we certainly get performance improvement.

It may seem that processing sets of type S inincreasing order of their size involves a sorting mechani sm—something
which is not desirable in fast implementation of coders. However, there is a simple way of completely avoiding this
sorting procedure. Note that the way sets S are constructed, they lie completely within a subband. Thus, every set
S islocated at a particular level of the pyramida structure. The size of the four offspring O(S) of a quadrisected
set S corresponds to that of the subbands one level down in the pyramid. Hence, the size of aset S for an arbitrary
image corresponds to a particular level of the pyramid. If we use an array of lists, each corresponding to alevel of the
pyramid, then each list stores sets of afixed size. Processing the lists in an order that corresponds to increasing size
of sets completely eliminates the need for any sorting mechanism for processing the sets S. Thus, we do not need to
compromise the speed of the agorithm by employing some kind of sorting mechanism.

It should be noted that using an array of lists does not place any extra burden on the memory requirements for the
coder, as opposed to using asingle list. Thisis because the total number of sets S that are formed during the coding
process remain the same. Instead of storing these setsin one large list, we are storing them in several smaller listswith
the aim of speeding up the coding process.

The decoder uses the same mechanism as the encoder. It receives significance test results from the coded bitstream
and builds up the same list structure during the execution of the algorithm. Hence, it is able to follow the same
execution paths for the significance tests of the different sets, and reconstructs the image progressively as the algorithm
proceeds.

A numerical example of the SPECK algorithm, worked out in detail for two complete passes, with coding actions
and contents of the LIS and L SP tabulated, may be viewed or downloaded from

http://ww. ci pr.rpi.edu/ ™ pearl man/ speck_exanpl e. pdf.

D. Entropy Coding

Entropy coding of the significance map is done using arithmetic coding with simple context-based models. The
significance maps are the paths in the quadtree created by the recursive partitioning process. Referring to the coding
algorithm of Sec. Ill, in the function Code$S(), the significance test results of the four subsets O(S) of set S (see
Fig. 4) comprising a quadtree node are not coded separately—rather, they are al coded together first before further
processing the subsets. We use conditional coding for coding the significance test result of this four-subset group.
In other words, the significance test result of the first subset is coded without any context, while the significance test
result of the second subset is coded using the context of the first coded subset, and so on. In this way, previously coded
subsets form the context for the subset being currently coded.

Also, we make use of thefact that if aset S issignificant and itsfirst three subsets are insignificant, then this ensures
that the fourth subset is significant and we do not have to send the significance test result of the last subset. Thisfactis
utilized in reducing the bit budget. Results have shown that because of the nature of energy clustering in the pyramidal
structure, the number of scenarios of the above mentioned type occur slightly moreif the four-subset group is coded in
reverse-scanning order than in the usual forward-scanning order. This saves some overhead in bit budget and provides
corresponding gains.

We have chosen here not to entropy-code the sign and magnitude refinement bits, as small coding gains are achieved
only with substantial increase in complexity. The SPECK variant, EZBC [20], has chosen this route, along with a
more complicated context for the significance map quadtree coding. The application will dictate whether the increase
in coding performance is worth the added complexity.

E. Discussion

The SPECK algorithm is motivated by the features inherent in the SPIHT, SWEET and AGP algorithms, and al-
though it uses ideas from all these coding schemes, it is different from these coders in various respects.
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The SPIHT coding scheme works by grouping pixels together in the form of spatial orientation trees. It is well
known that a subband pyramid exhibits similarities across its subbands at the same spatia orientation. This property
can be seen to be well illustrated if we partition the image transform in the form of spatial orientation trees. The SPIHT
algorithm exploits this characteristic of the image transform by grouping pixels together into such structures.

The ASSP (or AGP) algorithm, on the other hand, is a block-based coding algorithm and partitions the image
transform in the form of blocks. The blocks are recursively and adaptively partitioned such that high energy areas are
grouped together into small sets whereas low energy areas are grouped together in large sets. Such atype of adaptive
quadtree partitioning results in efficient coding of the source samples. The SWEET coding algorithm is aso block
based and uses octave-band partitioning to exploit the pyramidal structure of image transforms.

Whereas SPIHT is atree-based fully embedded coder which employs progressive transmission by coding bit planes
in decreasing order, the AGP and SWEET coding algorithms are block-based coders which are not embedded and do
not employ progressive transmission. SWEET codes a block up to a certain bit-depth, n,,;,,, before moving on to the
next one. Different rates of compressed images are obtained by appropriately choosing the minimum bit-plane, n,,,
to which to encode. Finer sets of compression ratios are obtained by scaling the image transform by some factor prior
to the coefficient coding. The AGP algorithm is a block entropy coder employing quadtree partitioning via a group
(node) maximum rule. The node maxima have to be found and encoded for transmission. The quadtree partitioning
rule in NQS (Nested Quadratic Split) is similar to that of AGP, but the coding of the coefficients and maxima are
different [14]. In AGP, once a partition reduces to a 2x 2 block, the pixelsin the block can be encoded altogether if the
maximum is sufficiently small. Otherwise, they can be encoded singly or in two 2x 1 blocks.

Block-based coding is an efficient technique for exploiting the clustering of energy found in image transforms. Itisa
known fact that the statistics of an image transform vary markedly as one moves from one spatial region to another. By
grouping transform source samples in the form of blocks and coding those blocks independently, one is able to exploit
the statistics of each block in an appropriate manner. This is one of the reasons that block-based coders work quite
well. However, there is an increasing demand for some desirable properties for image coders, such as embeddedness
and progressive transmission, which are very useful and much needed in the fast growing multimedia and networking
environment. Both SWEET and AGP, although very efficient, do not possess these desirable properties.

The SPECK coding algorithm solves this problem by exhibiting these important properties lacking in amost all
block-based coding schemes. It is a fully embedded block-based coder which employs progressive transmission by
coding bit planes in decreasing order. It employs octave-band partitioning of SWEET to exploit the hierarchical struc-
ture of the subband pyramid and concentrate more on potentially high energy subbands. It makes use of the adaptive
quadtree splitting scheme of AGP to zoom into high energy areas within aregion to code them with minimum signifi-
cance maps. And it uses the significance map schemes of EZW and SPIHT to code the image transform progressively
in decreasing bit-plane order. All this makes SPECK avery efficient block-based embedded image coding scheme.

We remark that the EBCOT coding method found in JPEG2000 is also an embedded, block-based coder. It encodes
subblocks of wavelet subbands through context-based, adaptive arithmetic coding of bit planes. Other than encoding
blocks, the methods of SPECK and EBCOT are quite different. We aso remark that these block-based, quadtree
methods for encoding subband blocks can also be used for encoding other transform blocks, such as those of the DCT
and LOT (lapped othogonal transform), or even origina image blocks. AGP coding of DCT and LOT blocks has
achieved performance comparable to the best coders [5], [6]. In fact, the results obtained with the DCT were better
than those of any known DCT coding method. There is no reason to doubt that any of the block-based, quadtree
methods would obtain similarly excellent results.

F. Numerical Results

We present two sets of results: the first with the three standard monochrome, 8 bpp, 512 x 512 images, Lena,
Barbara, and Goldhill; and the second with four large images from the JPEG2000 test set. We used 5-level pyramids
constructed with the 9/7 tap biorthogonal filters [8] and using areflection extension at the image edges. The bit rates
are calculated from the actual size of the compressed files. Since the codec is embedded, the results for various bit
rates are obtained from a single encoded file.

Table | shows the PSNR obtained by this coding method at the rates 0.25, 0.5 and 1.0 bpp for the first set of three
images ‘Lenad, ‘Barbara and ‘Goldhill’. These results are obtained by arithmetic coding of the significance decision
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Fig. 6. Comparative evaluation of the new coding method at low rates

TABLEI
COMPARISON OF Lossy CODING METHODS FOR COMMON TEST IMAGES

Coding PSNR (dB)
method || 0.25bpp [ 0.5 bpp | 1.0 bpp
\ Lenaimage (512 x 512) |
EZW 33.17 36.28 39.55
AGP 34.10 37.21 40.38
SPIHT 34.11 37.21 40.44
SPECK 34.03 37.10 40.25
\ Barbaraimage (512 x 512) |
EZW 26.77 30.53 35.14
AGP 27.81 3161 36.55
SPIHT 27.58 31.40 36.41
SPECK 27.76 3154 36.49
\ Goldhill image (512 x 512) |
EZW 30.31 32.87 36.20
AGP 30.53 33.13 36.53
SPIHT 30.56 33.13 36.55
SPECK 30.50 33.03 36.36

bits output by the coding scheme. A similar result is aso included for the EZW, SPIHT and AGP coding schemes,
which also employ entropy coding of the significance map.

The rate-distortion curves for SPECK, SPIHT, and EZW are also plotted in Fig. 6 for the three images at rates up
to 1 bpp. The curves and tables show that SPECK is comparable to SPIHT and AGP, being slightly worse than both
for Lenaand Goldhill, but slightly better than SPIHT, and a little worse than AGP for Barbara. In Fig. 7, we show the
reconstructions of Barbara for SPECK, SPIHT, and JPEG2000 (VM 8.5) encodings at 0.25 bits/pel. For this image,
JPEG2000 has the upper hand, showing slightly more detail in the patterns than SPECK or SPIHT.

For the second set of results in Table I on JPEG2000 test images, we include more rates and comparison to
JPEG2000 VM 4.1, generic scalable mode with 64 x 64 code blocks, and EZBC. (The EZBC results are taken from
[21].) Alsoincluded in Tablell is SBHP, alower complexity form of SPECK to be described later. For lossless coding,
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TABLEII
COMPARISON OF METHODS FOR LOSSY AND LOSSLESS CODING OF JPEG2000 TEST IMAGES

Coding PSNR (dB) Lossless
method || 0.0625bpp | 0.125bpp | 0.25bpp | 0.5bpp | 1.0bpp | 2.0bpp || rate (bpp)

| Bike image (2048 x 2560) |
JP2K 23.74 26.31 29.56 33.43 37.99 43.95 4.520
SBHP 23.02 25.36 28.53 32.39 37.07 43.04 4,724
EZBC 23.75 26.11 29.58 3353 38.25 44.33 4.359
SPIHT 23.44 25.89 29.12 33.01 37.70 43.80 4.480
SPECK 23.31 25.59 28.84 32.69 37.33 431 4.492

| Cafeimage (2048 x 2560) |
JP2K 19.03 20.77 23.10 26.76 31.96 39.01 5.384
SBHP 18.76 20.49 22.64 26.01 31.08 38.26 5.466
EZBC 19.11 20.87 23.32 27.00 3243 39.62 5.125
SPIHT 18.95 20.67 23.03 26.49 3174 38.91 5.277
SPECK 18.93 20.61 22.87 26.31 3147 38.75 5.286

| Woman image (2048 x 2560) |
JP2K 25.59 27.33 29.95 33.57 38.28 43.97 4.541
SBHP 25.26 27.09 29.59 3311 37.98 43.69 4.636
EZBC 25.71 2754 30.31 34.00 38.82 44.48 4.291
SPIHT 25.43 27.33 29.95 33.59 38.28 43.99 4.419
SPECK 25.50 27.34 29.88 33.46 38.07 43.73 4.396

| Aerial2 image (2048 x 2048) |
JP2K 24.60 26.47 28.54 30.60 33.23 38.05 5471
SBHP 24.42 26.34 28.15 30.40 33.03 37.70 5.502
EZBC 24.76 26.65 28.70 30.79 33.49 38.51 5.203
SPIHT 24.63 26.52 28.49 30.60 33.32 38.22 5.331
SPECK 24.60 26.49 28.45 30.59 33.25 38.26 5.259

the S+P C filter is used for SPECK and EZBC, while the integer (5,3) is used in VM 4.1 and SBHP. The winner in
these results for lossy coding is EZBC, which, you will recall, is a higher complexity version of SPECK that utilizes
context-based, adaptive arithmetic coding for sign and refinement bits in addition to the same for the significance map
bits. SPECK, SPIHT, and JPEG2000 are fairly comparable, with JIPEG2000 showing slightly better performance for
the Bike image. We show in Fig. 8 the original Bike image compared to reconstructions from SPECK, SPIHT, and
JPEG2000 encoded at 0.25 bpp. Because this image has such high resolution where differences are not discernible, we
show in the following Fig. 9 a 284x284 section from the original and these reconstructions. Referring again to Tablell,
averaged over al rates and the four images, EZBC beats JPEG2000 by 0.25 dB, while JPEG2000 beats SPIHT and
SPECK by 0.1 dB and 0.18 dB, respectively. Clearly, these results are quite close. SBHP is the laggard, but only by
0.2 dB from SPECK.

For lossless coding, EZBC is the best overall once again, showing the lowest rate on all four images. The perfor-
mance order of the methodsin terms of efficiency lossfrom EZBC, averaged over the four images, are SPECK at 2.4 %,
SPIHT at 2.8%, JPEG2000 at 4.3%, and SBHP at 7.1%. Surprisingly, considering its considerably higher complexity,
JPEG2000 is not as efficient as SPECK or SPIHT and is only more efficient than SBHP for lossless coding.

IV. COLORIMAGE CODING
A. Introduction

This section investigates lossy color embedded image compression with SPECK. Following the philosophy of re-
taining embeddedness in color representation as has been done with SPIHT, we propose alossy color embedded image
coding scheme using SPECK, called CSPECK. Its performance is evaluated with respect to some of the other famous
color-embedded image coders such as Predictive EZW (PEZW), SPIHT and JPEG2000. Here, asin SPIHT, thereisno
bitstream reorganization needed to achieve color-embedding, asisneeded for JPEG2000. Furthermore, no explicit rate
alocation among color planes is needed. In order to take advantage of the interdependencies of the color components
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for a given color space, the set-partitioning scheme of SPECK is extended across the color components and coding is
done in such away asto retain embeddedness.

B. Color Spaces

Images are represented in a tristimulus color space for viewing on a CRT or projection display. The normal tris-
timulus colors are designated as red (R), green (G) and blue (B), called RGB space, or as cyan (C), yellow (Y), and
magenta (M), called CYM space. These color planes are usually highly correlated, so that transformation to a less
correlated space is mandatory for efficient compression. The most popular of these are the luminance-chrominance
spaces YUV, used mainly in video, and Y CrCb, used mostly for still images. The luminance component Y isthe same
in these two spaces, but the two chrominance components signifying hue and saturation, U and V in one and Cr and
Cb in the other, are dightly different. From a compression standpoint, it does not seem to matter which of these two
spaces is used. Video sequences are stored in YUV format with the display device doing the work to convert to RGB
or CYM format for viewing. Here we shall code directly YUV frames extracted from video sequences. These frames
arein CIF or QCIF 4:2:0 format, with sizes 352 x 288 and 176 x 144 respectively, with U and V planes subsampled
by two both in horizontal and vertical directions.

C. Color Image Coding: CSPECK

A simple application of SPECK to a color image would be to code each color space plane separately as does a
conventional color image coder. Then, the generated bit-stream of each plane would be serially concatenated. However,
this simple method would require bit alocation among color components, losing precise rate control and would fail
to meet the requirement of full embeddedness of the image codec, since the decoder needs to wait until the full bit-
stream arrives to reconstruct and display. Instead, one can treat al color planes as one unit at the coding stage, and
generate one mixed bit-stream so that we can stop at any point of the bit-stream and reconstruct the color image of
the best quality at the bit-rate. In addition, it will automatically allocate bits optimally among the color planes. By
doing so, we still maintain full embeddedness and precise rate control of SPECK. We call this scheme Color-SPECK
(CSPECK). The generated hit-stream of both methods is depicted in Fig. 10, where the first one shows a conventional
color bit-stream, while the second shows how the color embedded bit-stream is generated, from which it is clear that,
except for very early in the bitstream, we can stop at any point and still reconstruct a color image at that bit-rate as
opposed to the first case.

Let us consider the color space YUV (4:2:0 format) where the chrominance U and V planes are one-quarter the
size of the luminance Y plane. Each plane is separately wavelet transformed (using 9/7 filter) to the same number of
decomposition levels. Then each color planeisinitially partitioned into sets S and Z asshown in Fig. 11. In thisfigure
we show two levels of wavel et decomposition for ease of illustration, whereas three levels were used in our simulations.
An LISismaintained for each of the three transform planes, each one initialized with the corner coordinates of its top
level S. Thereisjust one LSP list. The coding proceeds as in the normal SPECK algorithm starting with Y, but
then crosses to U and then V at the same significance threshold, as depicted in Fig. 11. Starting with the maximal
significance level n among the color planes (almost always the maximum in Y), SPECK’s first sorting pass proceeds
for the whole Y plane. Then at the same n, this sorting pass is enacted in turn on the full U and V planes. Significant
points among the three planes are mixed in the single L SP. Then, the significance level isloweredton — 1, and the LIS
setsof Y, U, and V are visited in turn on the three lists for the SPECK sorting passes. After completion of these passes
a level n — 1, the refinement pass takes place on the single LSP by sending the n-level bits of the binary expansion
of the magnitude of points found significant in previous passes. As before, the procedure repeats at lower significance
levels until the bit budget is exhausted or al bits have been sent in the lowest bit plane.

D. Smulation and Results

In this section, extensive simulations on various types of color test imageswill be performed. Color imagesare Y UV
4:2:0 chrominance downsampled versions from the first frames (intraframes) of standard MPEG-4 test sequences. It
seems that there are not many reports of color image coding in theliterature, since it has been believed that chrominance
components are usually easy to code. Consequently, not much attention has been devoted to set up standard criteria
for evaluating color image compression. Notwithstanding, here we report the results of color image compression in
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terms of PSNR of each color plane. We will compare the CSPECK agorithm with other embedded image a gorithms
such as Predictive Embedded Zero-tree Wavelet (PEZW), which is an improved version of the original EZW and is
currently the standard for the texture mode in MPEG-4 [23], SPIHT and JPEG2000 VM 8.0. The test results of PEZW
for various types of color images were obtained via private communication [22]. We tried to match the number of
bits, type of filters, and number of decompositions as closely as possible for fair comparisons to those of PEZW. With
CSPECK and SPIHT, we were able to match the bit numbers exactly, and came as close as possible with JPEG2000,
whaose generic scalable mode has coarser granularity than CSPECK or SPIHT. The 9/7 bi-orthogona Daubechies' filter
in [8] isused for the 2-D wavelet decomposition. Our test images are the first frames of MPEG-4 standard test video
sequences with QCIF (176 x 144), and CIF (352 x 288) format.

In Tables 11 and IV, comprehensive simulation results on various color test images at various bit-rates with QCIF
and CIF formats are shown, where the results of CSPECK have been compared with SPIHT, JPEG2000 and PEZW on
color Akiyo image in QCIF and CIF formats at various bit-rates. In general, CSPECK outperforms other codecs for
the luminance Y component with again of (0.1-2.7 dB) except for the Coast Guard image. The chrominmance U and
V components show somewhat lower PSNR values than the other coders, due to the different nature of bit allocation
among the color components in these coders. In CSPECK, we leave the U and V components unscaled, so that their
magnitudes alone determine the bit assignments. In SPIHT and other algorithms, there is explicit or implicit scaling to
affect the rate allocation among the different color components. But since the human eye is more sensitive to changes
in brightness, we claim that the gain in dB for the Y component as obtained from CSPECK yields visually better
results. Thisisin accordance with the images shownin Fig. 12 and Fig 13. Clearly, CSPECK is superior to JPEG2000
in the subjective quality of the reconstructed image. For example, the background shadow edge of Foreman seems to
be jagged for JPEG2000, whereas with CSPECK, the shadow line is preserved.

V. SBHP, A Low COMPLEXITY ALTERNATIVE TO JPEG2000

We now describe a SPECK variant called Subband Block Hierarchical Partioning (SBHP) that was originally pro-
posed as alow complexity alternative to JPEG2000. There were other SPECK variants, mentioned in the Introduction,
that preceded SBHP, but SBHP captures the essence of those contributions. From a functional point of view, SBHP
does exactly the same tasks executed by the entropy coding routines used in every JPEG2000 Verification Model (VM).
In consequence, every single feature and mode of operation supported by the VM continues to be available with SBHP.
SBHP operates in the EBCOT [1], [10] framework chosen for the JPEG2000 standard. Like EBCOT and other en-
coders, SBHPis applied to blocks of wavelet coefficients extracted from inside subbands. It produces afully embedded
bit stream that is suitable for several forms of progressive transmission, and for one-pass rate control. Except for the
fact that it does not use the arithmetic encoder, it does not require any change in any of the VM functions outside
entropy coding.

A. SBHP in the JPEG2000 Framework

The JPEG2000 coding framework was dictated by the necessity to support many features. Among its requirements
were the usage of small memory and the capability of encoding images of ailmost any size. In particular, aline-based
wavelet transform method and independent encoding of small subband blocks were identified as essentia fairly early
in the process. The details of the wavelet transform need not concern us here. The subbands of the wavelet transform
of the full image are considered to be divided into square blocks, no larger than typically 64 x 64 or 128 x 128. Small
or odd-size subbands will have smaller or odd-shaped blocks at the boundaries. Anyway, the basic coding unit is a
sub-block of a subband, called a code block. In EBCOT coding of these blocks, once the maxima non-all-zero bit
plane of a block is found, the context-based, adaptive binary arithmetic coding of this and lower bit planes passes
through all coefficients in the code block. As an aside, the maximal bit plane numbers of all code blocks (deemed
tag-trees) are encoded by a quadtree coder similar to SPECK and put into the compressed bit stream. The entropy
coding in EBCOT is quite complex. Starting from the maximal non-empty bit plane to alow bitplane such as 2 (for
lossy coding), every coefficient in the subblock is visited three (originally four) times to determine its logic in the
given bit plane and to gather its significance context among its neighbors. The three passses through each bit plane are
needed to calculate context for three different logic states and cumul ative probabilities for the given context needed for
the adaptive arithmetic coding of the bit planes.
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TABLE Il
COMPREHENSIVE RESULTS OF MPEG-4 TEST COLOR QCIF IMAGES (FIRST FRAMES)

PEZW SPIHT JP2K (VM 8) CSPECK
bits PSNR bits PSNR bits PSNR bits PSNR
(dB) (dB) (dB) (dB)

| Akiyo |
10256 | Y:32.3 | 10256 | Y:32.6 | 10208 | Y:30.8 | 10256 | Y:335
U: 34.2 U: 35.0 U: 374 U: 344
V: 36.9 V: 38.3 V: 38.8 V: 36.6
20816 | Y: 375 | 20816 | Y:38.4 | 20768 | Y:36.9 | 20816 | Y:39.1
U: 39.1 U: 40.7 U: 433 U. 38.7
V:41.0 V. 41.7 V: 43.8 V: 39.8
29240 | Y:40.8 | 29240 | Y:41.7 | 29160 | Y:40.6 | 29240 | Y:41.9
U: 415 U: 434 U:46.1 U:43.1
V:42.6 V:44.0 V: 46.6 V: 43.6

| News |
10536 | Y:27.5 | 10536 | Y:27.8 | 10200 | Y:26.7 | 10536 | Y:28.6
U: 325 U: 33.6 U: 348 U: 30.8
V:34.2 V: 34.7 V: 36.2 V: 31.6
20472 | Y:32.0 | 20472 | Y:325 | 20280 | Y:31.6 | 20472 | Y:33.0
U: 359 U: 36.6 U: 38.0 U:34.1
V:37.4 V: 37.8 V: 39.5 V: 35.0
30304 | Y:355 | 30304 | Y:36.2 | 30176 | Y:35.3 | 30304 | Y:36.5
U: 38.3 U: 38.7 U: 415 u: 37.7
V:39.4 V: 40.0 V:42.2 V: 38.6

| Hall |
10256 | Y:28.8 | 10256 | Y:29.3 | 10384 | Y:28.8 | 10256 | Y:29.8
U: 36.3 U: 36.2 U: 37.1 U: 334
V: 39.2 V: 38.8 V:40.0 V: 36.8
20832 | Y:348 | 20832 | Y:35.3 | 20608 | Y:34.6 | 20832 | Y:35.7
U: 38.1 U: 385 U: 40.3 U: 36.4
V:40.9 V:41.0 V:42.3 V: 38.8
30448 | Y:385 | 30448 | Y:39.0 | 30664 | Y:38.5 | 30448 | Y:39.3
U: 40.0 U:41.0 U:43.2 U: 38.6
V: 425 V: 42.8 V: 44.3 V:41.0

The SBHP coding replaced EBCOT in coding the codeblocks of the subbands. In fact, the SBHP encoder was
integrated into VM 4.2, so that one could choose by a command line switch to run either EBCOT or SBHP when
encoding the codeblocks. SBHP uses SPECK’s octave-band partitioning method on these codebl ocks and encodes the
S sets with the quadrature splitting codeS(S) procedure of SPECK. Minor differences are that SBHP uses a separate
List of Insignificant Pixels (LIP) for insignificant isolated pixels. But the LIPis visited first and then the LIS in order
of increasing size sets. Therefore, the two lists LIP and LIS are functionally equivalent to the one LISlist in SPECK.

The partitioning of the codeblock mimics the octave band partitioning in SPECK by starting with a2 x 2 block S at
the upper left with the rest of the block, the Z set. The coding proceedsin the block just asit does for the full-transform
SPECK described earlier until the block’s target file size is reached. Then the procedure is repeated on the next block
until all blocks of the transform in each subband is coded. The subbands are visited in order from lowest to highest
frequency in the same order dictated by the octave band splitting in the full-transform SPECK.

When a set is split, the probability that a generated subset is significant is smaller than 1/2. Thisfact is exploited to
reduce the number of compressed bits with simple entropy coding. Since there are four subsets or pixels, we can code
them together. We have chosen a Huffman code with 15 symbols, corresponding to all the possible outcomes. (A set
is split when at least one of the subset is significant, so not all subsets can be insignificant after splitting.) No type of
entropy coding is used to code the sign and the refinement bits. Of course, this results in compression loss, but it is
observed that it is very hard to compress these bits efficiently, and nothing is simpler than just moving those “raw” bits
to the compressed stream. To optimize the rate-distortion properties of the embedded bit stream we sort the elements
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TABLE IV
COMPREHENSIVE RESULTS OF MPEG-4 TEST COLOR CIF IMAGES (FIRST FRAMES)

PEZW SPIHT JP2K (VM 8) CSPECK
bits PSNR bits PSNR bits PSNR bits PSNR
(dB) (dB) (dB) (dB)

| Akiyo |
25112 | Y:34.7 | 25112 | Y:353 | 24928 | Y:34.4 | 25112 | Y:35.7
U. 37.7 U: 38.7 U: 415 U: 37.3
V:40.1 V: 40.9 V:42.1 V:39.0
49016 | Y:39.3 | 49016 | Y:40.3 | 49336 | Y:39.8 | 49016 | Y:404
U:41.3 U:42.6 U:45.1 U: 40.7
V:43.6 V: 44.0 V: 46.2 V:42.4
70448 | Y:422 | 70448 | Y:43.2 | 70424 | Y:425 | 70448 | Y:43.0
U: 43.2 U: 449 U: 475 U:. 444
V:45.2 V: 46.2 V:48.3 V:45.8

| Coast |
25248 | Y:27.9 | 25248 | Y:28.2 | 25184 | Y:28.3 | 25248 | Y:28.3
U: 435 U:41.9 U: 43.9 uU: 37.3
V:45.2 V:43.3 V:45.3 V:42.2
49312 | Y:30.2 | 49312 | Y:30.6 | 49176 | Y:30.9 | 49312 | Y:30.6
U:44.0 U: 43.6 U: 445 U:42.1
V: 455 V: 455 V:46.1 V:43.3
51600 | Y:30.4 | 51600 | Y:30.7 | 50864 | Y:31.1 | 51600 | Y:30.8
U: 44.0 U: 436 U: 44.6 U:42.1
V: 455 V: 455 V:46.1 V:43.3

| News |
25528 | Y:29.3 | 25528 | Y:29.7 | 25224 | Y:29.1 | 25528 | Y:30.0
U: 345 U: 345 U: 36.3 U: 32.8
V:36.3 V:36.4 V:38.1 V:34.3
50168 | Y:33.6 | 50168 | Y:34.3 | 50544 | Y:33.9 | 50168 | Y:34.4
U: 37.6 U: 375 U: 40.0 U: 35.6
V:39.1 V: 38.9 V:41.1 V:37.1
70912 | Y:35.9 | 70912 | Y:37.1 | 70400 | Y:36.5 | 70912 | Y:37.0
U: 40.1 U: 39.7 U: 42.6 U: 39.1
V: 415 V: 40.7 V: 43.2 V:40.3

inthe LIS, LIPand LSP.
o LSPand LIP: pixels added first are coded first (FIFO).
o LIS: sets with smallest number of elements are processed first. When sets have the same number of elements,
those added first are coded first.
The FIFO is actualy the most efficient for list management. As described in SPECK earlier, the sorting of LIS sets
by size is accomplished by keeping several sub-lists.

B. Rate-Distortion Optimization

Since the codeblocks are encoded independently, they are al separately embedded. However, if their codes were
put sequentialy into the compressed bitstream, the composite bitstream would no longer be embedded. But if the bits
belonging to the same threshold from every codeblock are put into the bitstream starting from the highest to the lowest
threshold, then the composite bitstream would be embedded. The JPEG2000 platform takes care of this bitsteam
reorgani zation.

The other issue is the size of each codeblock’s bitstream or rate control. The wavelet coefficient magnitude dis-
tribution will vary among the codeblocks, so each will contribute a different number of bits in order to minimize the
distortion for a given overall code rate. The one-pass bit-rate control in VM 4.2 requires sorting the data according to
itsrate distortion properties. The coding function returns the increase in bit rate and the decrease in distortion for each
bit-plane coding pass. The computation of the number of bits is a trivial matter, but the computation of decrease in
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distortion is not. Exact computation of the squared-error would require computation of square values for each coded
pixel.

SBHP can use two properties to simplify this computation. First, the derivative of the rate-distortion function (re-
quired to be equal among the nonzero rate blocks for optimality) can be predicted with high precision at the beginning
of each refinement pass (where exactly one bit is used for each pixel and the distortion reduction pretty much follows a
simple statistical model). The second property comes from the fact that each coding action corresponds to alist entry.
It happens that the average reduction in distortion can be reliably estimated as a function of the number of elementsin
the LIS, LIPand LSP.

For each bit plane n, SBHP computes rate-distortion information at three points in the coding process. This infor-
mation is the total number of bits (5; ,,) used so far, and the average decrease in distortion per coded bit (derivative of
the rate distortion curve, 6D; ;). For that purpose SBHP also records F, ,,, the number of pixelsin the LSP.

The first point, corresponding to the moment when SBHP finishes coding pixels in the LIP, is represented by
(Bon, Po,n); the second, when all sets in the LIS had been coded is (B, ,,, P ,,), and the third, at the end of the
refinement pass, is (Ba n, Popn).

For athreshold 2", we found that § D; ,, can be approximated by

6Don = —2.08(Pyn — Poynt1)2*"/(Bon — Bans1) 3
6D1, = —1.85(Pi, — Py,)2*"/(B1y — Bon) (4
6D2, = —0.24P5;,,12*"/(Bay — Biy) 5

The numerical constants are found by experimental refinements from an initial rate-distortion model. Linear interpo-
lation is used to estimate the derivative of the rate-distortion for any bit in the embedded bit-stream. For example, we

Can use
(B - Bi,n)(5Di+1,n - 5Dz,n)

(Bit1,n — Bin)
A unidimensional search for the optimal valuein the derivative (6 D(B)) is used to find the optimal truncation of the
bit-streams (B), which are then combined in a single file with the desired size [1].

C. Complexity Analysis

The SBHP (or SPECK) encoder first visits al pixels to gather information about bits in al bit planes (preprocess
pass). This pass is actually quite simple, requiring one bitwise OR operation per pixel, following a predetermined
sequence, and some analysis of partial results. All other bit-plane coding algorithms must compute the same data to
determine the first significant bit plane with at least one non-zero bit.

The set-partitioning process uses exactly one bit to indicate when all bits in a group inside a bit plane are equal to
zero. The information about these groups is gathered in the preprocess pass, so only one comparison is required (the
decoder just reads the bit) per bit in the compressed stream. This property can be used to easily show how SBHP
minimizes the coding complexity and how it is asymptotically optimal.

We can roughly measure the complexity of coding a bit plane by counting the number of bit comparisons (equal to
0 or 1?) used to test the bits in the bit plane. A direct method of compression needsto visit al pixels, so its complexity
is proportional to the number of pixels (multiple passes may increase complexity proportionally). SBHP, on the other
hand, tests only the elements in its lists. The absolute minimum number of comparisons is unknown, but can be
computed by the entropy of the hit plane. Since SBHP uses one compressed bit per comparison, and the number of
bits generated per bit planeis equal to the number of comparisons, we can conclude that its number of comparisonsis
very near the optimal (or we would not have good compression).

Only the most basic operations, like memory access, bit shifts, additions, and comparisons are required by the
encoder/decoder. No multiplication or division isrequired (even in approximate form), smplifying a hardware imple-
mentations.

Code profiling has shown that the computational effort is well distributed among the tasks of data access, list man-
agement, and writing raw bits to the compressed stream.

The fastest possible hardware and software implementations are achieved with the non-embedded mode of the
coder [17]. In this way, there is no need for multiple passes within a block. This form of coding can run in approxi-
mately the same time as baseline JPEG, around 11 times faster than the VM 4.2 on the decoder side. One good reason
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for that is that the largest Huffman code is of length 6 bits and we can use lookup tables instead of binary trees to
decode.

The decoder is usually faster than the encoder. The encoder always needs to visit all pixelsin a block, unlike the
decoder, which can skip over large blocks of zero coefficients.

The complexity analysis of SBHP can be divided in two parts: dependent and independent of the bit rate. The last
oneisrelated to the time to preprocess a block before encoding or decoding, and is not really related to entropy coding.
The encoder needs one pass to identify the maximum magnitude values of all sets. Each pixel has to be visited only
once. A bitwise OR operation is necessary for each pixel, and for each set. The number of setsin SBHP is 1/3 the
number of pixels, so we need about 4/3 accesses per pixel. (All bit-plane coders need a similar pass to identify the
top bit-plane.) The key point for evaluating the coding complexity of SBHP is the fact that all time-related complexity
measures for the algorithm, like number of operations, clock cycles, memory access, etc., are proportional to the
number of compressed bits. Our experiment shows that thisis indeed a good approximation.

Three facts are important in the list-management complexity analysis. First, the algorithm works with small blocks,
so the list memory can be assigned in advance, and no time-consuming memory control is required. Second, the lists
are updated in FIFO mode, so they are stored simply as arrays. Third, the lists grow exponentially for each bit-plane
pass, and for al bit rates the complexity is mostly determined by the last pass. In other words, even if coding requires
several passes, the complexity istypically lessthan atwo-pass (per block) algorithm (and much less than several passes
per-bit plane).

It is easy to evaluate the complexity of testing elements in the LSP: for each entry, a bit of a wavelet coefficient is
moved to the compressed bit stream. There is no need to move elementsin or out of the list. Processing the elementsin
the LIPis not much more complex. If amagnitude bit (significance) is zero, then the entry staysin the LIP. Otherwise,
the coefficient sign is written, and the entry moves to the LSP.

For the most common bit rates, most of the computational effort is spent processing the LIS. Here there is a more
pronounced asymmetry depending on the significance test. If a coefficient is insignificant, then it is just left on the
LIS. Otherwise, it has to be partitioned into four subsets, with additional operations. If the set is hot decomposed into
individual pixels, then only new set entries have to be added to the LIS. The decomposition to individual pixels may
require coding of the sign bit.

D. Test Results

The SBHP implementation, in the embedded version is substantially faster than VM 4.2. On the encoder side it is
around 4 times faster on both PA-RISC and Pentium-11 processors. On the decoder side it is around 6 times faster on
the PA-RISC platform and around 8 times faster on the Pentium-I1 processor. Of course those numbers vary depending
on the image and the bit rate. In the non-embedded version of the agorithm the decoder can be as much as 11 times
faster on the Pentium-I1, in which case the complexity of SBHP becomes very close to that of baseline JPEG.

We have aready shown in Table |1 coding results of SBHP among those of the other state of the art coders on
four JPEG2000 test images at various rates. SBHP is the simplest of these coders, yet comes close to their PSNR
performance, as already noted. We provide now experimental results for 7 different 8-bit gray scale images, (Aeria2,
Bike, Cafe, Woman, Gold, Hotel, Txtr2) from the JPEG2000 test set, comparing the performance of SBHP with
respect to the verification model (VM 4.2). The characteristics of the first four are presented in Table 1l. Gold isthe
full 720x576 Goldhill, Hotel isa720x576 picture of aresort hotel, and Txtr2 isa 1024x1024 aerial image of lush farm
and forest land. We use the bit allocation algorithm described above to truncate the bit stream to the desired rate after
compression. The results can be seen in Table V. For other types of images such as compound documents the results
may not be as good. But for compound documents JPEG2000 is not agood choice; approaches such asthe onein [19]
based on segmentations are needed.

Analysis of the experimental results shows that for most images, such as photographic, medical, etc., the SBHP
PSNR is only about 0.4-0.5 dB below the VM. As an aternative way to compare the compression ratio loss, we
measure SBHP file sizes compared to the VM, for the same quality. The humbers show that SBHP loses only 5-10%
in bit rate for lossy compression and, only 1-2% for lossless compression for photographic images.

The results are more favorable when SBHP is used in conjunction with simple filters (5,3). In this case the average
loss with respect to VM 4.2, which varies with the bit rate, is no more than 0.5 dB. Interestingly enough this config-
uration leads to the lowest possible complexity both in terms of memory and in terms of numerical operations. The
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TABLEV
AVERAGE RESULTS FOR SBHP ON SEVEN TEST IMAGES COMPARED TO JPEG2000.

Rate Decrease in PSNR (dB) || Increasein bit rate (%)
(bpp) 5x3filters | 9x 7 filters || 5x3filters | 9x7 filters
0.0625 0.28 0.33 5.85 8.08
0.125 0.32 0.36 5.89 7.71
0.25 0.36 0.41 564 7.06
0.5 0.41 0.46 5.29 6.45
1 0.41 0.46 4.37 539
2 0.37 0.43 3.12 3.90
Lossless NA NA 1.13 NA

image “Bike" gives the worst comparative results with “Aerial2” giving the best. For lossless compression, there isan
average loss anywhere from 1% to 2%.

V1. CONCLUSIONS

We introduced a new set-partitioning, block-based embedded image coding scheme, the SPECK image coder. The
key to the agorithm is to properly and efficiently sort sets of transform coefficients according to their maximum
magnitude with respect to a sequence of declining thresholds. The sorting mechanism is partitioning by quadrisection
guided by threshold significance tests. This allows processing of different regions of the transformed image based on
their energy content. The SPECK image coding scheme has al the properties desirable in modern image compression
schemes. In particular, it exhibits the following properties:

« Itis completely embedded — a single coded bitstream can be used to decode the image at any rate less than or

equal to the coded rate, to give the best reconstruction of the image possible with the particular coding scheme.

« It employs progressive transmission — source samples are coded in decreasing order of their information content.

« It haslow computational complexity —the algorithm is very simple, consisting mainly of comparisons, and does
not require any complex computation.

« It has low dynamic memory requirements — at any given time during the coding process, only one connected
region (e.g., a32 x 32 block lying completely within a subband) is processed.

« It has fast encoding/decoding — this is due to the low-complexity nature of the algorithm, plus the fact that it can
work with data that fits completely in the CPU’s fast cache memory, minimizing access to slow memory.

« Itisefficient in awide range of compression ratios — depending on the choice of the transform, the algorithm is
efficient for lossless and nearly lossless coding, as well as for the extreme ranges of lossy image coding, in all
cases comparable to low-complexity algorithms available today.

Although the algorithm was stated and tested here for the wavelet transform, it can be used effectively for coding
blocks of atransform of any kind or even image blocks. Different implementations of back-end entropy coding were
shown to give gainsin compression efficiency at the expense of greater computational load. We have concentrated here
on the simpler entropy coding realizations, SBHP and the original SPECK, which encode only the significance map
with fixed Huffman and adaptive arithmetic coding, respectively. Both gave very good results competitive with the very
best yet attained, and were very fast in encoding and decoding. Even EZBC, the most complex with context-based,
adaptive arithmetic coding of sign, refinement, and significance map bits, surpasses JPEG2000 in al cases and is till
less complex than JPEG2000, because it does not pass through all pixels severa timesin each bit plane. We explained
the operation of SPECK in various modes of computational and memory complexity and presented extensive coding
simulation results for lossy and lossless coding of monochrome images and lossy coding of color images. State of the
art performance and features of embeddedness and scalability were achieved with relatively low complexity.
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Fig. 7. Comparative coding results of Barbaraimage at 0.25 bpp: Origina (top left), SPECK (top right), SPIHT (bottom left), and JPEG2000
(bottom right).
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Fig. 8. Comparative coding results of Bike image at 0.25 bpp: Origina (top left), SPECK (top right), SPIHT (bottom left), and JPEG2000
(bottom right).
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Fig. 9. Comparison of same 284x284 section in original and coded Bike images in Fig. 8: Original (top left), SPECK (27.23 dB PSNR)(top
right), SPIHT (27.36 dB PSNR)(bottom left), and JPEG2000 (27.78 PSNR)(bottom right).
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|— Only Y component available at this point
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|— Y, U, and V components available at this point
Fig. 10. Compressed color bitstreams. conventional (top) and embedded (bottom).
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Y (YUV 4:2:0 assumed)

Fig. 11. Set partitioning and color plane traversal for CSPECK. Coding proceeds in order of Y, U, and V at the same significance threshold.

Fig. 12. Reconstructions of first frame of Foreman sequence compressed to 19,300 bits: Original (top left), CSPECK (top right), SPIHT
(bottom left), and JPEG2000 (bottom right).
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Fig. 13. Recontructions of first frame of Hall Monitor sequence compressed to 28,500 bits: Origina (top left), CSPECK (top right), SPIHT
(bottom left), and JPEG2000 (bottom right).



