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ABSTRACT
An information-theoretic approach is used to determine the
amount of information that may be safely transferred over a
steganographic channel with a passive adversary. A stegano-
graphic channel, or stego-channel is a pair consisting of
the channel transition probabilities and a detection func-
tion. When a message is sent it first encounters a distortion
(due to the channel), then is subject to inspection by a pas-
sive adversary (using the detection function). This paper
presents results on the amount of information that may be
transferred over an arbitrary stego-channel with vanishing
probabilities of error and detection.
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1. INTRODUCTION

1.1 Background
Shannon’s pioneering work provides bounds on the amount

of information that can be transmitted over a noisy chan-
nel. His results show that capacity is an intrinsic property
of the channel itself. This work takes a similar viewpoint
in seeking to find the amount of information that may be
transferred over a stego-channel as seen in Figure 1.

The stego-channel is equivalent to the classic channel with
the addition of the detection function. For the classic chan-
nel, a transmission is considered successful if the decoder
properly determines which message the encoder has sent.
In the stego-channel a transmission is successful not only if
the decoder properly determines the sent message, but if the
detection function is not triggered as well.

This additional constraint on the channel use leads to the
fundamental view that the capacity of a stego-channel is an
intrinsic property of both the channel and the detection func-
tion. That is, the properties of the detection function influ-
ence the capacity just as much as the noise in the channel.
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1.2 Previous Work
There have been a number of applications of informa-

tion theory to the steganographic capacity problem[10, 11].
These works give capacity results under distortion constraints
on the hider as well as active adversary. The additional con-
straint that the stego-signal retain the same distribution as
the cover-signal serves as the steganalysis detection function.

Somewhat less work exists exploring capacity with arbi-
trary detection functions. These works are written from
a steganalysis perspective[1, 9] and accordingly give heavy
consideration to the detection function.

This work differs from previous work in a number of as-
pects. Most notable is the use of information-spectrum
methods that allow for the analysis of arbitrary detection
algorithms. This eliminates the need to restrict interest to
detection algorithms that operate on sample averages or be-
have consistently. Instead the detection functions may be
instantaneous, that is, the properties of a detector for n
samples need not have any relation to the same detector for
n + 1 samples.

Another substantial difference is the presence of noise be-
fore the detector. This placement enables the modeling of
common signal processing distortions such as compression,
quantization, etc. The location of the noise adds complexity
not only because of confusion at the decoder, but also a sig-
nal, carefully crafted to avoid detection, may be corrupted
into one that will trigger the detector.

Finally, the consideration of a cover-signal and distortion
constraint in the encoding function is omitted. This is due
to the view that steganographic capacity is a property of
the channel and the detection function. This viewpoint,
along with the above differences, make a direct comparison
to previous work somewhat difficult, although possible with
a number of simplifications explored in Section 6.

2. PRELIMINARIES

2.1 Random Variables
Random variables are denoted by capital letters, e.g. X.

Realizations of these random variables are denoted as low-
ercase letters, e.g. x. Each random variable is defined over
a domain denoted with a script X . A sequence of n random
variables is denoted with Xn = (X1, . . . , Xn). Similarly, an
n-length sequence of random variable realizations is denoted
x = (x1, . . . , xn) ∈ Xn. The probability of X taking value
x ∈ X is PX(x).

The space of all channel inputs (stego-signals) is denoted
X and the space of channel outputs (corrupted stego-signals)
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Figure 1: Passive System with Noise

is Y. Similarly the space of n-length channel inputs and
outputs are denoted as Xn and Yn respectively.

2.2 Detection Function

Definition 1. The steganalysis detection function is a func-
tion gn : Yn → {0, 1} that classifies a channel output into
one of two categories: containing steganographic informa-
tion, and not containing steganographic information.

The function is defined as follows for all y ∈ Yn,

gn (y) =

�
1, if y is steganographic
0, if y is not steganographic

(1)

The specific type of function may be that of support vector
machine or a Bayesian, etc. When no confusion can occur,
g is written in place of gn.

Definition 2. A detection function sequence is denoted as,

g := {g1, g2, g3, . . .}, (2)

where gn : Yn → {0, 1}.

The set of all n-length detection functions is denoted Gn.

2.3 Permissible Set
For any detection function gn, the space of signals Yn

is split into the permissible set and the impermissible set,
defined below.

Definition 3. The permissible set, Pgn
⊆ Yn, is the in-

verse image of 0 under gn.

That is,

Pgn
:= g−1

n ({0}) = {y ∈ Yn : gn (y) = 0}. (3)

The permissible set is the set of all channel outputs that the
given detection function, gn will classify as non-steganographic.

As a detection function is completely specified by its per-
missible set, we may describe a detection function sequence
as,

g = {P1,P2,P3, . . .},

where Pn ⊆ Yn is the permissible set for gn.

g−1

n
({1})

g−1

n
({0})

Ign

Yn

gn

{0, 1}Pgn

Figure 2: Permissible and Impermissible Sets

2.4 Impermissible Set

Definition 4. The impermissible set, Ign
⊆ Yn, is the in-

verse image of 1 under gn.

That is,

Ign
:= g−1

n ({1}) = {y ∈ Yn : gn (y) = 1}. (4)

For a given gn the impermissible set is the set of all channel
outputs that gn will classify as steganographic.

Note that two sets are related as follows,

Ig = Yn \ Pg := Pc
g . (5)

The permissible set and impermissible set are shown in Fig-
ure 2.

2.5 Memoryless Detection Functions

Definition 5. A memoryless detection function, g = {gn}∞n=1

is one where each gn is defined for y = (y1, y2, . . . , yn) as,

gn(y) =

�
1, if ∃i ∈ {1, 2, . . . , n} such that g(yi) = 1
0, if g(yi) = 0 ∀ i ∈ {1, 2, . . . , n}

(6)
where g ∈ G1 is said to specify gn (and g).

To denote a detection function sequence is memoryless the
following notation will be used g = {g}.

For a memoryless detection function g = {g}, we have
that,

Pgn
=

nY
i=1

Pg. (7)

That is, the permissible set of gn is defined by the n-dimensional
product of Pg.



2.6 Channels
The channel is denoted as W n where W n : Yn × Xn →

[0, 1] and has the following property for all x ∈ Xn,

W n (Yn|x) :=
X

y∈Yn

W n (y|x) = 1.

The channel represents the conditional probabilities of re-
ceiving y ∈ Yn when x ∈ Xn is sent, that is W n (y|x) :=
PY n|Xn(y|x).

The random variable, Y resulting from transmitting X
through the channel W will be denoted as Y = W (X) or

the relation reinforced by noting X
W→ Y .

Definition 6. A general channel is a sequence,

W := {W 1, W 2, W 3, . . .},
where each W n is the n-length channel transition probabil-
ity.

In the case where channel distortions act independently and
identically on each input letter xi, we say it is a memoryless
channel. In this instance the n-length transition probabili-
ties can be written as,

W n (y|x) =
nY

i=1

W (yi|xi), (8)

where W is said to define the channel. To denote a channel
is memoryless and defined by W we will write W = {W}.

2.7 Encoder and Decoder
The purpose of the encoder and decoder is to transmit and

receive information across a channel. The information to be
transferred is assumed to be from a uniformly distributed
message set denoted Mn, with a cardinality of Mn.

The encoding function embeds a message into a stego-
signal. That is, fn : Mn → Xn. The element of Xn that
the ith message maps to is called the codeword for i and is
denoted, ui. That is,

fn(i) = ui, i ∈ {1, . . . , Mn}.
The collection of codewords, Cn = {u1, . . . ,uMn

} is called
the code. The rate of an encoding function is given as,

Rn :=
1

n
log Mn.

The decoding function, φn : Yn → Mn, maps a corrupted
stego-signal to a message. The decoder is defined by a set
of decoding regions: D1, . . . ,DMn

. The decoding regions are
disjoint sets that cover Yn and are defined such that,

φ−1
n ({m}) = Dm

:= {F ⊆ Yn : φn(y) = m, ∀ y ∈ F} ,

for m = 1, . . . , Mn.
Next, two important terms are presented that allow for

the analysis of steganographic systems. The first is the
probability of error and the second is the probability of de-
tection. In both cases they are calculated for a given code
C = {u1, . . . ,uMn

}, channel W n, and impermissible set Ign

(corresponding to some gn).
The probability of error can be found as,

ǫn =
1

Mn

MnX
i=1

W n (Dc
i |ui) . (9)

Similarly the probability of detection is calculated as,

δn =
1

Mn

MnX
i=1

W n (Ign
|ui) . (10)

2.8 Stego-Channel

Definition 7. A steganographic channel or stego-channel
is a pair (W, g), where W is a general channel and g is a
detection function sequence.

To reinforce the notion that a stego-channel is defined
by a sequence of pairs we will typically write (W,g) =
{(W n, gn)}∞n=1.

Definition 8. A discrete stego-channel is one where at least
one of the following holds: |X | < ∞, |Y| < ∞, or |Pgn

| <
∞ ∀n.

Definition 9. A discrete memoryless stego-channel (DMSC)
is a stego-channel where,

1. (W,g) is discrete

2. W is memoryless

3. g is memoryless

A DMSC is said to be defined by the pair (W,g) and will
be denoted (W,g) = {(W, g)}.

2.9 Steganographic Capacity

Definition 10. An (n, Mn, ǫn, δn)-code (for a given stego-
channel) consists of an encoder and decoder. The encoder
and decoder are capable of transferring one of Mn messages
in n uses of the channel with an average probability of error
of ǫn and a probability of detection of δn.

Definition 11. A rate R is said to be securely achievable
for a stego-channel (W, g) = {(W n, gn)}∞n=1, if there exists
a sequence of (n, Mn, ǫn, δn)-codes such that:

1. limn→∞ ǫn = 0

2. lim infn→∞
1
n

log Mn ≥ R

3. limn→∞ δn = 0

Definition 12. The secure capacity of a stego-channel (W,g)
is denoted as C(W,g). This is defined as the supremum of
all securely achievable rates for (W, g).

Definition 13. A rate R is said to be (ǫ, δ)-securely achiev-
able for a stego-channel (W,g) = {(W n, gn)}∞n=1, if there
exists a sequence of (n, Mn, ǫn, δn)-codes such that:

1. lim supn→∞ ǫn ≤ ǫ

2. lim infn→∞
1
n

log Mn ≥ R

3. lim supn→∞ δn ≤ δ

Definition 14. The (ǫ, δ) secure capacity of a stego-channel
(W, g) is denoted as C(ǫ, δ|W, g). This is defined as the
supremum of all (ǫ, δ)-securely achievable rates for (W, g).



3. SECURE CAPACITY FORMULA

3.1 Information-Spectrum Methods
The information-spectrum method[4, 5, 6, 7, 13] is a gen-

eralization of information theory created to apply to systems
where either the channel or its inputs are not necessarily er-
godic or stationary. Its use is required in this work because
the detection function is not assumed to have any ergodic
or stationary properties.

The information-spectrum method uses the general source
(or general sequence) defined as,

X :=
n

Xn = (X
(n)
1 , X

(n)
2 , . . . , X(n)

n )
o∞

n=1
, (11)

where each X
(n)
m is a random variable defined over alphabet

X . It is important to note that the general source makes no
assumptions about consistency, ergodicity, or stationarity.

The information-spectrum method also uses two novel
quantities defined for sequences of random variables, called
the lim sup and lim inf in probability.

The limsup in probability of a sequence of random vari-
ables, {Zn}∞n=1 is defined as,

p- lim sup Zn := inf
n

α : lim
n→∞

Pr {Zn > α} = 0
o

.

Similarly, the liminf in probability of a sequence of random
variables, {Zn}∞n=1 is,

p- lim inf Zn := sup
n

β : lim
n→∞

Pr {Zn < β} = 0
o

.

The spectral sup-entropy rate of a general source X =
{Xn}∞n=1 is defined as,

H(X) := p- lim sup
n→∞

1

n
log

1

PXn(Xn)
. (12)

Analogously, the spectral inf-entropy rate of a general source
X = {Xn}∞n=1 is defined as,

H(X) := p- lim inf
n→∞

1

n
log

1

PXn(Xn)
. (13)

The spectral entropy rates are the information-spectrum
counterparts to the Shannon entropy and share a number
of its natural properties. For instance, H(X) ≥ H(X) ≥ 0
for any X [6, 13].

The spectral sup-mutual information rate for the pair of
general sequences (X,Y) = {(Xn, Y n)}∞n=1 is defined as,

I(X;Y) := p- lim sup
n→∞

1

n
i(Xn; Y n), (14)

where,

i(Xn; Y n) := log
W n (Y n|Xn)

PY n(Y n)
. (15)

Likewise the spectral inf-mutual information rate for the
pair of general sequences (X,Y) = {(Xn, Y n)}∞n=1 is defined
as,

I(X;Y) := p- lim inf
n→∞

1

n
i(Xn; Y n). (16)

The spectral mutual information rates share a number
of properties with the classic mutual information such as
I(X;Y) = I(Y;X) ≥ 0 [6, 13]. A number of useful in-
equalities for the spectral mutual information are listed in
Appendix A.

A rate R (for a general channel W) is said to be ǫ-achievable
if there exists a sequence of (n, Mn, ǫn)-codes such that:

1. lim supn→∞ ǫn ≤ ǫ

2. lim infn→∞
1
n

log Mn ≥ R

The ǫ-capacity of a general channel W, denoted C(ǫ|W),
is the supremum of ǫ-achievable rates.

3.2 Secure distributions

Definition 15. An output distribution Y = {Y n}∞n=1 is
called a δ-secure output if for a given detection function se-
quence g = {gn}∞n=1,

lim sup
n→∞

Pr {gn(Y n) = 1} ≤ δ, (17)

or either of the equivalent conditions,

lim sup
n→∞

PY n(Ign
) ≤ δ, (18)

lim inf
n→∞

PY n(Pgn
) ≥ 1 − δ. (19)

The set of all general output sequences that are δ-secure
outputs is denoted Tδ, that is,

Tδ :=

�
Y = {Y n}∞n=1 : lim sup

n→∞
PY n(Ign

) ≤ δ

�
. (20)

Definition 16. The set of all δ-secure outputs for δ = 0 is
called the secure output set and denoted T0.

Definition 17. A general source X = {Xn}∞n=1 is called
a δ-secure input (for a given stego-channel) if the resulting
output sequence, Y, is a δ-secure output, i.e. W(X) = Y ∈
Tδ.

The set of all general sources that are δ-secure inputs is
denoted Sδ, that is,

Sδ :=

(
X = {Xn}∞n=1 : lim sup

n→∞

X
x∈Xn

W n (Ign
|x)PXn(x) ≤ δ

)
.

(21)

Definition 18. The set of all δ-secure inputs for δ = 0 is
called the secure input set and denoted S0.

3.3 (ǫ, δ)-Channel Capacity
We are now prepared to derive the first fundamental re-

sult: the (ǫ, δ)-Channel Capacity. This capacity will make
use of the following definition,

J (R|X) := lim sup
n→∞

Pr

�
1

n
i(Xn; Y n) ≤ R

�
= lim sup

n→∞
Pr

�
1

n
log

W n (Y n|Xn)

PY n(Y n)
≤ R

�
.

Theorem 1 ((ǫ, δ)-Channel Capacity). The (ǫ, δ)-channel
capacity of a stego-channel (W, g) is given by,

C(ǫ, δ|W, g) = sup
X∈Sδ

sup {R : J (R|X) ≤ ǫ} , (22)

for any 0 ≤ ǫ < 1 and 0 ≤ δ < 1.



Proof. From [6, 13] we have that for the general channel
W the ǫ-capacity is,

C(ǫ|W) = sup
X

sup {R : J (R|X) ≤ ǫ} .

In order for the probability of detection δn → 0, we must
restrict the channel inputs to the δ-secure input set, thus the
sup is restricted to X ∈ Sδ.

3.4 Secure Channel Capacity
The next result deals with a special case of (ǫ, δ)-capacity,

namely the one where ǫ = δ = 0. The secure channel capac-
ity is the maximum amount of information that may be sent
over a channel with arbitrarily small probabilities of error
and detection.

Theorem 2 (Secure Channel Capacity). The secure
channel capacity of a stego-channel (W,g) is given by,

C(W, g) = sup
X∈S0

I(X;Y). (23)

Proof. We apply Theorem 1 with ǫ = 0 and δ = 0. This
gives,

C(W, g) = C(0, 0|W, g) (24a)

= sup
X∈S0

sup {R : J (R|X) ≤ 0} (24b)

= sup
X∈S0

sup

�
R : lim sup

n→∞
Pr

�
1

n
i(Xn; Y n) ≤ R

�
≤ 0

�
(24c)

= sup
X∈S0

I(X;Y) (24d)

Here the last line is due to the definitions of p- lim inf and
the spectral inf-information rate.

3.5 Strong Converse of Secure Capacity
A stego-channel (W,g) is said to satisfy the strong con-

verse property if for any R > C(W,g), every (n, Mn, ǫn, δn)-
code with,

lim inf
n→∞

1

n
log Mn ≥ R and lim

n→∞
δn = 0,

we have,

lim
n→∞

ǫn = 1.

Theorem 3 (Strong Converse). A stego-channel
(W, g) satisfies the strong converse property if and only if,

sup
X∈S0

I(X;Y) = sup
X∈S0

I(X;Y). (25)

Proof. A general channel satisfies the strong converse if
and only if[6, 13],

sup
X

I(X;Y) = sup
X

I(X;Y). (26)

By our constraint we have that δn → 0, thus the sup is over
the secure input set.

3.6 Maximum Bounds
We now derive a number of useful bounds on the spectral-

entropy of an output sequence in relation to the permissible
set. These bounds will then be used to prove general bounds
for steganographic systems.

Theorem 4 (Spectral inf-entropy bound). For a
discrete g = {Pn}∞n=1 with corresponding secure output set
T0,

sup
Y∈T0

H(Y) = lim inf
n→∞

1

n
log |Pn|. (27)

Proof. Let U(A) represent the uniform distribution on a
set A.
Since Y∗ = {U(Pn)}∞i=1 ∈ T0 we have,

sup
Y∈T0

H(Y) ≥ H(Y∗) (28a)

= lim inf
n→∞

1

n
log |Pn| (28b)

Now assume there exists Y ∈ T0 with Y = {Ȳ n}∞n=1, such
that,

H(Y) = H(Y∗) + 3γ, (29)

for any γ > 0.
This means that,

lim
n→∞

Pr

�
1

n
log

1

PȲ n(Ȳ n)
< H(Y∗) + 2γ

�
= 0 (30)

By (28b) we have H(Y∗) = lim infn→∞
1
n

log |Pn| and
from the definition of lim inf we may find a subsequence in-
dexed by kn such that,

H(Y∗) + 2γ ≥ 1

kn

log |Pkn
| + γ. (31a)

For any kn (31a) holds and we have,

Pr

�
1

kn

log
1

PȲ kn (Ȳ kn)
<

1

kn

log |Pkn
| + γ

�
≤

Pr

�
1

kn

log
1

PȲ kn (Ȳ kn)
< H(Y∗) + 2γ

�
.

Applying (30) to this result we have,

lim
n→∞

Pr

�
1

kn

log
1

PȲ kn (Ȳ kn)
<

1

kn

log |Pkn
| + γ

�
= 0.

(32)
Rearranging the inner term we have,

lim
n→∞

Pr

�
PȲ kn (Ȳ kn) >

e−knγ

|Pkn
|

�
= 0. (33)

Thus given any ǫ > 0 there exists n0 such that when
n > n0,

Pr

�
PȲ kn (Ȳ kn) >

e−knγ

Pkn

�
< ǫ. (34)

Let,

Akn
=

�
y ∈ Yn : PȲ kn (Ȳ kn) >

e−knγ

|Pkn
|

�
, (35)

so for all n > n0,

PȲ kn (Akn
) < ǫ. (36)



For n > n0 we may calculate the probability of the per-
missible set (for the subsequence) as,

PȲ kn (Pkn
) =

X
y∈Pkn

PȲ kn (y)

=
X

y∈Pkn
∩Ac

kn

PȲ kn (y) +
X

y∈Pkn
∩Akn

PȲ kn (y)

≤
X

y∈Pkn
∩Ac

kn

e−knγ

|Pkn
| +

X
y∈Pkn

∩Akn

PȲ kn (y)

≤
X

y∈Pkn

e−knγ

|Pkn
| +

X
y∈Pkn

∩Akn

PȲ kn (y)

= e−knγ +
X

y∈Pkn
∩Akn

PȲ kn (y)

≤ e−knγ +
X

y∈Akn

PȲ kn (y)

< e−knγ + ǫ

Thus for the subsequence,

lim sup
n→∞

PȲ kn (Pkn
) < ǫ, (37)

for all ǫ > 0 so clearly,

lim
n→∞

PȲ n(Pn) = 1, (38)

is impossible.
Thus from (19) we have a contradiction as the above im-

plies that Y /∈ T0.

Theorem 5 (Spectral sup-entropy bound). For dis-
crete g = {Pn}∞n=1 with corresponding secure output set T0,

sup
Y∈T0

H(Y) = lim sup
n→∞

1

n
log |Pn|. (39)

The proof is similar to Theorem 4, and given in Appendix B.

3.7 Capacity Bounds
This section presents a number of fundamental bounds on

the secure capacity of a stego-channel based on the proper-
ties of that channel.

The first gives an upperbound based on the sup-entropy
of the secure input set.

Theorem 6 (Input Sup-Entropy Bound). For a stego-
channel (W,g) the secure capacity is bounded as,

C(W,g) ≤ sup
X∈S0

H(X). (40)

Proof. Using Theorem 14 and the property that H(X|Y) ≥
0 we have,

C(W,g) = sup
X∈S0

I(X;Y) (41a)

≤ sup
X∈S0

�
H(X) − H(X|Y)

	
(41b)

≤ sup
X∈S0

H(X) (41c)

The following corollary specializes the previous result with
the restriction that the input alphabet is finite.

Corollary 1. For a given stego-channel (W, g) with a
discrete input set (|X | < ∞) the secure capacity is bounded
from above as,

C(W, g) ≤ log |X | . (42)

Proof. We make use of Theorem 6,

C(W, g) ≤ sup
X∈S0

H(X) (43a)

≤ sup
X

H(X) (43b)

= log |X | (43c)

The next theorem gives two upper bounds on the capacity
based on the sup-entropy of the secure input and output sets.

Theorem 7 (Output Sup-Entropy Bounds). For a
stego-channel (W,g) the secure capacity is bounded as,

C(W, g) ≤ sup
X∈S0

H(Y) (44a)

≤ sup
Y∈T0

H(Y) (44b)

Proof. Using Theorem 14 and the property that
H(Y|X) ≥ 0 we have,

C(W, g) = sup
X∈S0

I(X;Y) (45a)

≤ sup
X∈S0

�
H(Y) − H(Y|X)

	
(45b)

≤ sup
X∈S0

H(Y) (45c)

≤ sup
Y∈T0

H(Y) (45d)

Here the final line follows since if X ∈ S0 then Y = W(X) ∈
T0.

The next corollary specializes the above theorem when the
permissible set is finite.

Corollary 2 (Discrete Permissible Set Bound).
For a given discrete stego-channel (W, g) = {(W n,Pgn

)}∞n=1

the secure capacity is bounded from above as,

C(W, g) ≤ lim sup
n→∞

1

n
log |Pgn

| (46)

Proof. Combining Theorem 5 and line (44b) of Theo-
rem 7 gives the desired result.

The next theorem provides an intuitive result dealing with
the capacity of two stego-channels having related detection
functions.

Theorem 8 (Permissible Set Relation). For a given
channel W = {W n}∞n=1 and two detection functions g =
{gn}∞n=1 and v = {vn}∞n=1, if Pgn

⊆ Pvn
for all but finitely

many n, then,

C(W, g) ≤ C(W,v). (47)
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Proof. Let {fn}∞n=1 and {φn}∞n=1 be a sequence of en-
coding and decoding functions that achieves C(W, g). Such
a sequence exists by the definition of secure capacity. It suf-
fices to show that this sequence is secure for C(W, v).

The following definitions will be used for i = 1, . . . , Mn,

ui = fn(i),

Di = φ−1
n ({i}) ..

The probability of error for this sequence is given by (9),

ǫn =
1

Mn

MnX
i=1

W n (Dc
i |ui) .

Clearly, this value is independent of the permissible sets
and if ǫn → 0 for the stego-channel (W,g) then it also goes
to zero for (W,v).

Next we know that the probability of detection for (W, g)
is given by (10),

δg
n =

1

Mn

MnX
i=1

W n (Ign
|ui) ,

and that δg
n → 0.

Since Pgn
⊆ Pvn

for all n > n0, we have that, Ign
⊇ Ivn

if n > n0 and thus,

W n (Ign
|x) ≥ W n (Ivn

|x) , ∀n > n0,x ∈ Xn. (48)

Using this we may bound the probability of detection for
(W, v) and n > n0 as,

δv
n =

1

Mn

MnX
i=1

W n (Ivn
|ui) (49a)

≤ 1

Mn

MnX
i=1

W n (Ign
|ui) (49b)

= δg
n (49c)

Since δg
n → 0 we see that δv

n → 0 as well.

4. NOISELESS CHANNELS
This section investigates the capacity of the system shown

in Figure 3. The system is a special case of the general
passive adversary shown in Figure 1 with the condition that
there is no noise after the encoder.

This section finds the perfectly secure capacity of this sys-
tem, and then derives a number of intuitive bounds relating
to this capacity. We begin with a definition of noiseless
channel.

4.1 Noiseless Channel
Consider the case where there is no distortion after the

embedding, that is Y n = Xn. If this is true, the channel
transition probabilities reduce to,

W n (y|x) =

�
1, if y = x

0, if y 6= x
(50)

In this case both the detection function and the decoder re-
ceive the stego-signal exactly as the encoder has constructed
it.

If W n is noiseless for all n then the general channel W =
{W n}∞n=1 is said to be a noiseless channel.

Definition 19. A stego-channel (W, g) is said to be a noise-
less stego-channel if W is noiseless.

4.2 Noiseless Channel Information-Spectrum
Properties

This first Lemma shows that due to the noiseless prop-
erty, the spectral mutual information rate and the spectral
entropy rate coincide.

Lemma 1. For the noiseless channel W, and any general
source X = {Xn}∞n=1,

I(X;Y) = H(X), (51)

I(X;Y) = H(X). (52)

Proof. Since W n(x|x) = 1 for all x ∈ Xn and Xn = Y n

we see that,

i(Xn; Y n) = log
W n (Y n|Xn)

PY n(Y n)
= log

1

PXn(Xn)
. (53)

So the spectral inf-mutual information rate reduces to,

I(X;Y) = p- lim inf
n→∞

1

n
i(Xn; Y n)

= p- lim inf
n→∞

1

n
log

1

PXn(Xn)
= H(X). (54)

Similarly for the spectral sup-mutual information rate,

I(X;Y) = p- lim sup
n→∞

1

n
i(Xn; Y n)

= p- lim sup
n→∞

1

n
log

1

PXn(Xn)
= H(X). (55)

The second useful Lemma is an extension of Theorems 4
and 5 under the noiseless conditions. It shows the rela-
tion between the supremum of the spectral entropy rate for
secure-inputs and the permissible set size.

Lemma 2. For a discrete noiseless stego-channel defined
by g = {Pgn

}∞n=1,

sup
X∈S0

H(X) = lim inf
n→∞

1

n
log |Pgn

| , (56)

sup
X∈S0

H(X) = lim sup
n→∞

1

n
log |Pgn

| . (57)

Proof. As the channel is noiseless we have that X = Y

and S0 = T0 so we may apply Theorems 4 and 5 for the
desired results.



4.3 Secure Noiseless Capacity
The majority of the work in deriving a formula for the

secure capacity of a discrete noiseless system has been done
in Theorem 4 (Lemma 2) and Lemma 1. These results are
combined with the general secure capacity formula of The-
orem 2 in the following fundamental formula.

Theorem 9 (Secure Noiseless Capacity). For a dis-
crete noiseless channel (W,g) = {(W n, gn)}∞n=1 the secure
channel capacity is given by,

C(W, g) = lim inf
n→∞

1

n
log |Pgn

| . (58)

Proof. By Theorem 2 we have,

C(W, g) = sup
X∈S0

I(X;Y) (59)

= sup
X∈S0

H(X) (60)

= lim inf
n→∞

1

n
log |Pgn

| (61)

Where the final two lines are due to Lemma 1 and Lemma 2
respectively.

4.4 Strong Converse for Noiseless Channels
We now present a fundamental result for discrete noiseless

channels regarding the strong converse property. It gives
the necessary and sufficient conditions for a noiseless stego-
channel to satisfy the strong converse property.

Theorem 10 (Noiseless Strong Converse). A dis-
crete noiseless stego-channel (W, g) satisfies the strong con-
verse property if and only if,

lim
n→∞

1

n
log |Pgn

| , (62)

exists.
Furthermore the secure capacity is equal to this limit,

C(W,g) = lim
n→∞

1

n
log |Pgn

| . (63)

Proof. First assume that the stego-channel satisfies the
strong converse property. By Theorem 3 we have,

sup
X∈S0

I(X;Y) = sup
X∈S0

I(X;Y) (64)

This gives,

sup
X∈S0

I(X;Y) = lim inf
n→∞

1

n
log |Pgn

| (65a)

= sup
X∈S0

I(X;Y) (65b)

= sup
X∈S0

H(X) (65c)

= lim sup
n→∞

1

n
log |Pgn

| (65d)

Here the equality of (65a) is due to Theorem 9, (65b) is
by assumption, (65c) is by Lemma 1 and (65d) is from
Lemma 2.

This shows that,

C(W, g) = lim inf
n→∞

1

n
log |Pgn

|

= lim sup
n→∞

1

n
log |Pgn

| = lim
n→∞

1

n
log |Pgn

| .

For the other direction assume that
C(W, g) = limn→∞

1
n

log |Pgn
| thus we have,

C(W, g) = sup
X∈S0

I(X;Y) (66)

= lim
n→∞

1

n
log |Pgn

| (67)

= lim sup
n→∞

1

n
log |Pgn

| (68)

= sup
X∈S0

H(X) (69)

= sup
X∈S0

I(X;Y) (70)

Where we have used Lemma 2 for line (69) and Lemma 1
for (70).

Thus, supX∈S0
I(X;Y) = supX∈S0

I(X;Y) and by The-
orem 3 the stego-channel satisfies the strong-converse prop-
erty.

4.5 Capacity of the Noiseless DMSC
In this section we briefly investigate the secure capacity

of the discrete memoryless stego-channel.

Theorem 11 (Noiseless DMSC Secure Capacity).
For a noiseless DMSC defined by g = {g} the secure capacity
is equal to,

C(W, g) = log |Pg| , (71)

and furthermore this stego-channel satisfies the strong con-
verse.

Proof. As the channel is noiseless and the input alphabet
is finite we may use Theorem 9,

C(W, g) = lim inf
n→∞

1

n
log |Pgn

| . (72)

Note that by (7) we have for all n,

1

n
log |Pgn

| =
1

n
log

�������Pg × Pg × · · · × Pg| {z }
n

�������
=

1

n
log |Pg|n

= log |Pg| .

Thus,

C(W, g) = log |Pg| .
We also have that,

C(W, g) = lim inf
n→∞

1

n
log |Pgn

| = log |Pg| = lim
n→∞

1

n
log |Pgn

| ,
(73)

thus by Theorem 10 the stego-channel satisfies the strong
converse.
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5. NOISY EXAMPLE
In this section we evaluate the capacity of particular stego-

channel. The channel is the commonly studied additive
white Gaussian noise one. The detector is motivated by the
use of spread spectrum steganography[8] or more generally
stochastic modulation[3].

5.1 Additive Gaussian Channel
The channel to be considered is called the additive white

Gaussian noise channel and is shown in Figure 4. For a
stego-signal, x = (x1, . . . , xn), the corrupted stego-signal is
given by,

y = (x1 + n1, . . . , xn + nn),

where each ni ∼ N (0, σ2), and all are independent.
The transition probabilities of this channel are given by,

W n (y|x) =
1

(2πσ2)
n

2

exp

(
− 1

2σ2

nX
i=1

(yi − xi)
2

)
. (74)

5.2 Variance Detector
In stochastic modulation a pseudo-noise is modulated by

a message and added to the cover signal. This is done as
the introduction of noise in signal processing applications is
a common occurrence.

If the passive adversary has a knowledge of the distrib-
ution of the cover-signal and knows that the hider is using
stochastic modulation, they also know that the variance of a
cover-signal will differ from the variance of a stego-signal. If
the passive adversary knows that the variance of the cover-
distribution they could design a detector to trigger if the
variance of a test signal is higher than this threshold.

For example, when testing the signal y = (y1, . . . , yn) the
variance detector operates as,

gn(y) =

�
1, if 1

n

Pn

i=1 y2
i > c

0, else
(75)

Thus, if the empirical variance of a test signal is above a
certain threshold, the signal is considered steganographic.

5.3 Channel Properties
Let N = {N} denote the channel noise where each N

is i.i.d. Gaussian with zero mean and variance σ2. For a
general source X = {Xn}∞n=1 define the general source of
their sum as N + X := {Nn + Xn}∞n=1.

Using this notation the corrupted stego-signal is expressed
as Y = N + X.

Since N is independent of X we have that,

H(Y|X) = p- lim sup
1

n
log

1

PY n|Xn(Y n|Xn)

= p- lim sup
1

n
log

1

PY n|Xn(Nn + Xn|Xn)

= p- lim sup
1

n
log

1

PNn (Nn)

= H(N)

= p- lim sup− 1

n
log

nX
i=1

PN(Ni)

= H(N)

=
1

2
log 2πeσ2

This gives the following useful simplification,

H(Y|X) = H(N) = H(N) =
1

2
log 2πeσ2. (76)

5.4 Secure Capacity
We now derive the secure capacity of the above stego-

channel.

Theorem 12. For the stego-channel (W,g) = {(W n, gn)}∞n=1

with W n defined by (74) and gn defined by (75) the secure
capacity is,

C(W, g) =
1

2
log

c

σ2
. (77)

Proof. Achievability:

Using Theorem 15 to show a lowerbound on the secure ca-
pacity,

C(W, g) = sup
X∈S0

I(X;Y) (78a)

≥ sup
X∈S0

�
H(Y) − H(Y|X)

	
(78b)

= sup
X∈S0

{H(Y) − H (N)} (78c)

= sup
X∈S0

�
H(Y) − 1

2
log
�
2πeσ2�� (78d)

= sup
X∈S0

H(Y) − 1

2
log
�
2πeσ2

�
(78e)

Here line (78d) is due to the additive noise simplification
of (76).

Now assume that X is i.i.d. Gaussian with variance of
c−σ2. So for Y = X+N we have that Y is i.i.d. Gaussian
with variance c. From this we have that X ∈ S0 since,

Pr

�
1

n

X
y2

i > c

�
= Pr

�
1

n

X
(xi + ni)

2 > c

�
→ 0.

(79)
Also note that the inf-entropy of Y is,

H(Y) = H(X + N) =
1

2
log (2πec) . (80)

Applying this result to (78e) we see,

C(W,g) ≥ H(Y) − 1

2
log
�
2πeσ2� (81a)

=
1

2
log (2πec) − 1

2
log
�
2πeσ2

�
(81b)

=
1

2
log

c

σ2
(81c)



Converse:

To find the upperbound we will make use of a number of
simple lemmas:

Lemma 3. For Y n = (Y
(n)
1 , Y

(n)
2 , . . . , Y

(n)
n ) let K

(n)
ij :=

EY
(n)

i Y
(n)

j . For the stego-channel defined above, if Y =
{Y n}∞n=1 ∈ T0 we have for any γ > 0 there exists some n0

such that for all n > n0,

1

n

nX
i=1

K
(n)
ii < c + γ. (82)

Proof. To show this assume that no such n0 exists, thus
we have a subsequence nk such that,

1

nk

nkX
i=1

K
(nk)
ii ≥ c + γ. (83)

This means that,

1

nk

nkX
i=1

K
(nk)
ii = E

(
1

nk

nkX
i=1

y2
i

)
≥ c + γ,

which in turn implies that,

Pr {gnk
(Y nk ) = 0} → 0.

This is a contradiction in that Y = {Y n}∞n=1 ∈ T0.

Lemma 4. For any Y ∈ T0 and any ǫ > 0 we have,

lim inf
n→∞

1

n
H(Y n) <

1

2
log 2πec + ǫ. (84)

Proof. Let any ǫ > 0 be given and choose γ > 0 such
that,

γ ≤ c
�
e2ǫ − 1

�
,

this gives,

1

2
log 2πe (c + γ) ≤ 1

2
log 2πec + ǫ. (85)

For all but a finite number of n we have,

1

n
H(Y n) ≤ 1

2n
log(2πe)n

nY
i=1

K
(n)
ii (86)

≤ 1

2n
log(2πe)n

 
1

n

nX
i=1

K
(n)
ii

!n

(87)

<
1

2n
log(2πe)n (c + γ)n (88)

=
1

2
log 2πe (c + γ) (89)

≤ 1

2
log 2πec + ǫ (90)

where we have used the fact that for any Y n = (Y
(n)
1 , . . . , Y

(n)
n )

with K
(n)
ij = EY

(n)
i Y

(n)
j we have [2, Chap. 9.6],

H(Y n) ≤ 1

2
log(2πe)n

nY
i=1

K
(n)
ii , (91)

as well as the arithmetic-geometric inequality in (87).

We now show the upperbound:

C(W,g) = sup
X∈S0

I(X;Y) (92a)

≤ sup
Y∈S0

I(X;Y) (92b)

≤ sup
Y∈T0

lim inf
n→∞

1

n
I(Xn; Y n) (92c)

= sup
Y∈T0

lim inf
n→∞

1

n
{H(Y n) − H(Y n|Xn)} (92d)

= sup
Y∈T0

lim inf
n→∞

�
1

n
H(Y n)

�
− H(N) (92e)

<
1

2
log 2πec + ǫ − 1

2
log 2πeσ2 (92f)

=
1

2
log

c

σ2
+ ǫ (92g)

Here line (92b) is due to the fact that for any X ∈ S0, we
have Y = W(X) ∈ T0. Next, line (92c) is from Theorem 16
and the inequality of (92f) is due to Lemma 4.

Thus combining (81c) and (92g) we have for any ǫ > 0,

1

2
log

c

σ2
≤ C(W, g) <

1

2
log

c

σ2
+ ǫ,

and we see that C(W, g) = 1
2

log c

σ2 .

6. COMPARISON TO PREVIOUS WORK

6.1 Cachin Perfect Security
In Cachin’s definition of perfect security the cover-signal

distribution and the stego-signal distribution are each re-
quired to be independent and identically distributed. This
gives the following secure-input set,

S0 =

�
X = {X} : lim

n→∞

1

n
D (Sn||Xn) = 0

�
. (93)

The i.i.d. property means that D (Sn||Xn) = nD (S||X)
so we see that the above is equivalent to,

S0 = {X = {X} : D (S||X) = 0} (94)

= {X = {X} : PS = PX} (95)

Since Cachin’s definition does not model noise, we may
consider it as noiseless and apply Theorem 9,

C(W, g) = sup
X∈S0

H(X) = H(S). (96)

This result states that in a system that is perfectly secure
(in Cachin’s definition) the limit on the amount of infor-
mation that may be transferred each channel use is equal
to the entropy of the source. This is intuitive because in
Cachin’s definition the output distribution of the encoder is
constrained to be equal to the cover distribution.

6.2 Empirical Distribution Detection Function
The empirical distribution detection function is motivated

by the fact that the empirical distribution from a stationary
memoryless source converges to the actual distribution of
that source. Accordingly, if a test signals empirical distrib-
ution converges to the cover-signal distribution is it consid-
ered to be non-steganographic.

Assume that PS is a discrete distribution over the finite
alphabet S . Let a sequence, {sn}∞n=1 with each sn ∈ Sn be
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used to specify the detection function for a test signal x as,

gn(x) =

�
0 if P[sn] = P[x],
1 if P[sn] 6= P[x].

(97)

where P[x] is the empirical distribution of x.
The permissible set for gn is equal to the type class of

P[sn], i.e.,

Pgn
= T (P[sn]) :=

�
x ∈ Xn : P[x] = P[sn]

	
. (98)

6.3 Moulin Steganographic Capacity
Moulin’s formulation[11] of the stego-channel is shown in

Figure 5. This is somewhat different than the formulation
shown in Figure 1, most notable is the presence of distor-
tion constraints and an active adversary. Additionally there
is an absence of a distortion function prior to the detec-
tion function. Also in this model the detection function is
fixed as the previously discussed empirical distribution de-
tection function. The sequence of sn to specify the detection
function is drawn i.i.d. as S. In order to have the two for-
mulations coincide a number of simplifications are needed
for each model.
For our model,

• The stego-channel is noiseless

• The detection function is the empirical distribution

For Moulin’s model,

• Passive Adversary (D2 = 0)

• No distortion constraint on encoder (D1 = ∞)

These changes produce the stego-channel shown in Fig-
ure 6.

Theorem 13. For the stego-channel shown in Figure 6,
the capacities of this work and Moulin’s agree. That is,

C(W,g) = CSTEG(∞, 0) = H (S) . (99)

Proof. Since the channel is noiseless we may apply The-
orem 9.

C(W,g) = lim inf
n→∞

1

n
log |Pgn

| (100a)

= lim inf
n→∞

1

n
log |T (sn)| (100b)

= H(S) (100c)

Here we have used the fact that the permissible set for the
empirical distribution detection function is the type class
in (100b). Additionally, by the Glivenko-Cantelli Theorem[12],
P[sn](x) → PS(x) almost surely (here the convergence is uni-
form in x as well). This allows for the use of the type class-
entropy bound from Appendix C that provides the final result.

We now show Moulin’s capacity is equal to this value. In
the case of a passive adversary (D2 = 0), the following is
the capacity of the stego-channel[11],

CSTEG(D1, 0) = sup
Q′∈Q′

H(X|S) (101)

where a p ∈ Q′ is feasible if,X
s,x

p(x|s)PS(s)d(s, x) ≤ D1, (102)

and X
s

p(x|s)PS(s) = PS(x). (103)

First we upper-bound the secure capacity as,

CSTEG(∞, 0) = sup
p(x|s)∈Q′

H(X|S) (104a)

≤ sup
p(x)∈Q′

H(X) (104b)

= H(S) (104c)

Where the final line comes from the requirement that if p ∈
Q′ and p(x|s) = p(x) then p(x) = PS(x) for all x, to sat-
isfy (103).

For the lower-bound we let Let PX̃S(x, s) = PX̃|S(x|s)PS(s) =

PS(x)PS(s), i.e. X̃ ∼ PS. This defines a feasible covert-
channel as (102) is trivially satisfied (since D1 = ∞) and (103)
is as well since,X

s

PX̃|S(x|s)PS(s) =
X

s

PS(x)PS(s) = PS(x). (105)

This gives,

CSTEG(∞, 0) = sup
p(x|s)∈Q′

H(X|S) (106a)

≥ H(X̃|S) (106b)

= H(X̃) (106c)

= H(S) (106d)

Here (106c) is because X̃ and S are independent (PX̃S(x, s) =
PX̃(x)PS(s)).



7. CONCLUSIONS
A framework for evaluating the capacity of steganographic

channels under a passive adversary has been introduced.
The system considers a noise corrupting the signal before
the detection function in order to model real-world distor-
tions such as compression, quantization, etc.

Constraints on the encoder dealing with distortion and
a cover-signal are not considered. Instead, the focus is to
develop the theory necessary to analyze the interplay be-
tween the channel and detection function that results in the
steganographic capacity.

The method uses an information-spectrum approach that
allows for the analysis of arbitrary detection functions and
channels. This provides machinery necessary to analyze a
very broad range of steganographic channels.

In addition to offering insight into the limits of perfor-
mance for steganographic algorithms, this formulation of
capacity can be used to analyze a different, and fundamen-
tally important, facet of steganalysis. While false alarms
and missed signals have rightfully dominated the steganaly-
sis literature, very little is known about the amount of infor-
mation that can be sent past these algorithms. This work
presents a theory to shed light onto this important quantity
called steganographic capacity.

8. ACKNOWLEDGMENTS
The support of the Center for Integrated Transmission

and Exploitation (CITE) and the Information Directorate of
the Air Force Research Laboratory, Rome, NY is gratefully
acknowledged.

The authors would also like to thank the reviewers for
their valuable input.

9. REFERENCES
[1] R. Chandramouli and N. Memon. Steganography

capacity: a steganalysis perspective. In Proc. SPIE
Electronic Imaging 5022, Santa Clara, CA, Jan.
21–24, 2003.

[2] T. M. Cover and J. A. Thomas. Elements of
information theory. Wiley-Interscience, 1991.

[3] J. Fridrich and M. Goljan. Digital image
steganography using stochastic modulation. In Proc.
SPIE Electronic Imaging 5022, Santa Clara, CA, Jan.
21–24, 2003.

[4] T. S. Han. An information-spectrum approach to
source coding theorems with a fidelity criterion. IEEE
Trans. on Information Theory, 43(4):1145–1164, July
1997.

[5] T. S. Han. Hypothesis testing with the general source.
IEEE Trans. on Information Theory, 46(7):2415–2427,
Nov. 2000.

[6] T. S. Han. Information-Spectrum Methods in
Information Theory, volume 50 of Applications of
Mathematics. Springer-Verilog, Berlin, Germany, 2003.

[7] T. S. Han and S. Verdú. Generalizing the Fano
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APPENDIX

A. SPECTRAL INFORMATION PROPER-
TIES

The following two theorems are basic information-spectrum
properties[6, Chap. 3.2] and Theorem 8 of [13].

Theorem 14.

I(X;Y) ≤ H(Y) − H(Y|X) (107)

where,

H(Y|X) := p- lim sup
n→∞

1

n
log

1

PY n|Xn(Y n|Xn)
. (108)

Theorem 15.

I(X;Y) ≥ H(Y) − H(Y|X). (109)

The following relation is Theorem 3.5.2 of [6, Chap. 3.5]
as well as Theorem 8 of [13],

Theorem 16. For X = {Xn}∞n=1 and Y = {Y n}∞n=1, the
following inequality holds,

I(X;Y) ≤ lim inf
n→∞

1

n
I(Xn; Y n). (110)

B. THEOREM 5 PROOF

Proof. Since Y∗ = {U(Pn)}∞i=1 ∈ T0 we have,

sup
Y∈T0

H(Y) ≥ H(Y∗) (111a)

= lim sup
n→∞

1

n
log |Pn| (111b)

Now assume there exists Y ∈ T0, with Y = {Ȳ n}∞n=1 such
that,

H(Y) = H(Y∗) +
γ

2
, (112)

for any γ > 0.
This means that,

lim
n→∞

Pr

�
1

n
log

1

PȲ n(Ȳ n)
> H(Y) +

γ

2

�
= 0 (113)

Thus for some subsequence kn we have,

1

kn

log |Pkn
| + γ > H(Y) +

γ

2
(114)



and

lim
n→∞

Pr

�
1

kn

log
1

PȲ kn (Ȳ kn)
>

1

kn

log |Pkn
| + γ

�
= 0.

(115)
Rewriting we have,

lim
n→∞

Pr

�
PȲ kn (Ȳ kn) <

e−knγ

|Pkn
|

�
= 0 (116)

Let,

Akn
:=

�
y ∈ Xn : PȲ kn (Ȳ kn) <

e−knγ

|Pkn
|

�
(117)

and given any ǫ > 0 we may find n0 so for n > n0,

PȲ kn (Akn
) < ǫ. (118)

For n > n0 the probability of the permissible set (in this
subsequence) is,

PȲ kn (Pkn
) =

X
x∈Pkn

PȲ kn (y)

=
X

y∈Pkn
∩Akn

PȲ kn (y) +
X

y∈Pkn
∩Akn

PȲ kn (y)

≤ e−knγ

|Pkn
|

X
y∈Pkn

∩Akn

+
X

y∈Pkn
∩Akn

PȲ kn (y)

≤ e−knγ +
X

y∈Pkn
∩Akn

PȲ kn (y)

≤ e−knγ +
X

y∈Akn

PȲ kn (y)

< e−knγ + ǫ

This gives,

lim sup
n→∞

PȲ kn (Pkn
) < ǫ, (120)

for any ǫ > 0. Since the subsequence above does not con-
verge to 1 it is impossible for,

lim
n→∞

PȲ n(Pn) = 1, (121)

and by (19) we see Y /∈ T0.

C. TYPE CLASS BOUNDS

Theorem 17. Let (p1, p2, . . .) be a sequence of types de-
fined over the finite alphabet X where pn ∈ Pn. Assume this
sequence satisfies the following:

1. pn → p

2. pn ≺≺ p, ∀n

Then,

lim inf
n→∞

1

n
log |T (pn)| = H(p). (122)

Proof. We first show,

lim inf
n→∞

1

n
log |T (pn)| ≥ H(p). (123)

A sharpening of Stirling’s approximation states that,

n! =
√

2πnn+ 1

2 e−neλn

with 1
12n+1

< λn < 1
12

.

Let the empirical distribution, pn be specified by (n1, . . . , nKn
).

That is, if we enumerate the outcomes as (a1, . . . , aKn
) we

have that,

pn(ai) =
ni

n
.

By definition
PKn

i=1 ni = n, and from the above condition
of absolute continuity we have that Kn ≤ s(p) for all n,
where s(p) is the support of the final distribution.

log |T (pn)| = log

�
n!

n1!, n2!, . . . , nKn
!

�
= log

n!QKn

i=1 ni!

= log

√
2πnn+ 1

2 e−neλnQKn

i=1

�√
2πn

ni+
1

2

i e−nieλni

�
= log

√
2πnn+ 1

2 e−neλn

−
KnX
i=1

log

�√
2πn

ni+
1

2

i e−nieλni

�
= log

√
2πnn+ 1

2 eλn −
KnX
i=1

log

�√
2πn

ni+
1

2

i eλni

�
= n log n −

KnX
i=1

ni log ni + log
√

2πneλn

−
KnX
i=1

log
�√

2πnie
λni

�
= nH (pn) + log

√
2πneλn −

KnX
i=1

log
�√

2πnie
λni

�
≥ nH (pn) −

KnX
i=1

log
�√

2πne
1

12

�
≥ nH (pn) − Kn log

�√
2πne

1

12

�
This implies that,

1

n
log |T (pn)| ≥ H (pn) − s(p)

n
log
�√

2πne
1

12

�
.

Taking the lim inf of each side,

lim inf
n→∞

1

n
log |T (pn)| ≥ lim inf

n→∞
H (pn) = H(p). (124)

Now we have from the type class upper-bound[2] that,

|T (pn)| ≤ enH(pn), (125)

so
1

n
log |T (pn)| ≤ H(pn). (126)

Taking the lim sup of each side gives,

lim sup
n→∞

1

n
log |T (pn)| ≤ lim sup

n→∞
H(pn) = H(p). (127)



Finally combining (124) and (127) we have,

H(p) ≥ lim sup
n→∞

1

n
log |T (pn)| (128)

≥ lim inf
n→∞

1

n
log |T (pn)| ≥ H(p), (129)

so,

H(p) = lim inf
n→∞

1

n
log |T (pn)| . (130)


