SPIHT IMAGE COMPRESSION WITHOUT LISTS

Frederick W. Wheeler and William A. Pearlman

Rensselaer Polytechnic Institute
Electrical, Computer and Systems Engineering Dept.
Troy, NY 12180, USA
wheeler@cipr.rpi.edu, pearlman@ecse.rpi.edu

ABSTRACT

A variant of the SPTHT image compression algorithm called
No List SPTHT (NLS) is presented. NLS operates without
linked lists and is suitable for a fast, simple hardware im-
plementation. NLS has a fixed predetermined memory re-
quirement about 50% larger than that needed for the image
alone. Instead of lists, a state table with four bits per coeffi-
cient keeps track of the set partitions and what information
has been encoded. NLS sparsely marks selected descen-
dant nodes of insignificant trees in the state table in such
a way that large groups of predictably insignificant pixels
are easily identified and skipped during coding passes. The
image data is stored in a one dimensional recursive zig-zag
array for computational efficiency and algorithmic simplic-
ity. Performance of the algorithm on standard test images
is nearly the same as SPTHT.

1. INTRODUCTION

The EZW [1] and SPIHT algorithms [2] are fast and ef-
fective techniques for image compression. Both are spatial
tree-based and exploit magnitude correlation across bands
of the decomposition. Each generates a fidelity progressive
bitstream by encoding, in turn, each bitplane of a quan-
tized dyadic subband decomposition. Both use significance
tests on sets of coefficients combined with set partitioning
to efficiently isolate and encode high magnitude coefficients.

An important difference between EZW and SPIHT is in
their set partitioning rules. SPTHT has an additional parti-
tioning step in which a descendant (type A) set is split into
four individual child coefficient sets and a granddescendant
(type B) set.

EZW explicitly performs a breadth first search of the
hierarchical trees, moving from the coarse to fine bands.
Though it is not explicit, SPIHT does a roughly breadth
first search as well. After partitioning a granddescendant
set, SPTHT places the four new descendant sets at the end
of the LIS, or list of insignificant sets. It is the append-
ing to the LIS that results in the approximate breadth first
traversal. Breadth first, as opposed to depth first, scanning
improves performance because coefficients more likely to be
significant are tested first.

This work was supported in part by the National Sci-
ence Foundation under grant numbers NCR-9523767 and EEC-
9812706, and by a fellowship from Sun Microsystems.

It is more complex to implement a zerotree codec that
does a breadth first search for significant coefficients. The
codec needs to determine whether each node of the tree
encountered during the search must be tested and coded or
can be skipped because it is a member of an insignificant
set. It would be inefficient to repeatedly look up the tree
for an ancestor that is the root of a zerotree. Other means
have been developed.

SPIHT uses list structures to keep track of which sets
must be tested. However, the use of lists in SPTHT causes
a variable, data dependent, memory requirement, and the
need for memory management as list nodes are added, re-
moved and moved. At high rates, there can be as many list
nodes as coefficients. This may be undesirable in hardware
implementations.

We have developed a new image coder called No List
SPIHT (NLS) that uses the set partitioning rules of SPTHT,
and does an explicit breadth first search without using lists.
State information is kept in a fixed size array that corre-
sponds to the array of coefficient values, with about four
bits per coefficient to enable fast scanning of the bitplanes.

In NLS, instead of searching up the tree to find pre-
dictable insignificance, special markers are placed in the
state table on certain lower nodes of insignificant trees when
the trees are created. These sparse markers are updated
when new insignificant trees are formed by partitioning.
With this sparse marking scheme, large sections of the im-
age are skipped at once as the breadth first scan moves
through the lower nodes of the spatial trees.

Lin et al. have developed listless zerotree codecs for im-
ages [3] and video [4] that also make use of fixed size state
tables. However, in some passes, their codecs perform a
depth first search of the trees.

In NLS, efficient skipping of blocks of insignificant co-
efficients is accomplished using a recursive zig-zag image
indexing scheme. Instead of indexing the array of coeffi-
cients using two indices we move the two dimensional ar-
ray to a one dimensional array. This particular format of-
fers several computational and organizational advantages.
Seetharaman et al. [5] have used this same linear coefficient
ordering in image segmentation applications.

2. LINEAR INDEXING

The linear indexing technique uses a single number to repre-
sent the index of a coefficient instead of two. Let R = C =

2 3 4 5 6 7

4|5 (16|17|20|21

6| 7Q18|19|22]23

wfjrnw]|o]e
ofw]|r]|+~

12|1324|25]|28]29

1011414152627 |30|31

32|33|36]|3748|49]52]53

34|35|38]|3950|51|54]|55

401411444556 |57|60|61

R N =]

42143]146|47]58|59|62]63

Figure 1: Linear indexing with R = 8, C = 8, and two
subband levels with bands delimited by thick lines.

2% be the number of rows and columns of the square image,
and let r and ¢ be zero-based row and column indices. Rep-
resent the row index in binary r = [rr,—1,...,71,70], where
each of the r,, is a bit, and do the same for the column index.
For an index (7, ¢) the linear index is defined by ¢ = [rr, -1,
CL,-1, ---, T1, C1, To, Co]. The bits of r and ¢ are simply
interleaved. The linear index ¢ ranges from 0 to I —1, where
I = RC. Fig. 1 shows an example of this indexing scheme.
Notice that the children on a spatial tree have 4 consecu-
tive indices, the grandchildren have 16 consecutive indices,
and so on. We will take advantage of this property when
skipping past lower nodes of insignificant trees.

Another important property of the linear index is that
it efficiently supports the operations on coefficient positions
needed for tree-based algorithms with one operation instead
of two, assuming the usual subband data arrangement of
Fig. 1. Also, the linear index naturally facilitates a breadth
first search of the hierarchical trees.

Given either coordinates (r, ¢) or 4, suppose we must find
the index of the first child (indicated with subscript ¢) in the
spatial tree. Using row and column indices, we need r. =
2r, and ¢, = 2¢. For the linear index the single operation
is ic = 44. To find the location of the parent coefficient
(indicated with subscript p) using row and column indices,
we need rp, = |r/2], and ¢, = |¢/2]. With the linear index,
the single required operation is i, = |4/4|. Iterating over
four siblings in a tree is another common operation. With
row and column indices, the iteration can be represented
by rn = r,7 +1 and ¢, = ¢,c + 1. Using the linear index,
only a single level of iteration is needed, using ¢, = 4,7 +
1,74 2,7+ 3. All multiplication here (and throughout) is by
integral powers of 2 and can be implemented by bit shifting.

Image data is usually stored in raster order, so index
conversion must be done for each coefficient once by the
encoder and once by the decoder. The interleaving and
deinterleaving required to convert between index modes is
trivial in custom hardware, but not directly supported by
general purpose CPUs. For an efficient software conversion,
we use a fixed 256 entry lookup table that maps one byte to
two bytes, with zero bits padded between the original bits.
This bit spreader table combined with shift and bitwise OR
operations makes the conversion simple and fast [5].

3. NO LIST SPIHT

NLS uses the same set structures and partitioning rules as
SPIHT. The trees are tested for significance breadth first.
Significance tests are made in a different order than SPTHT

because SPTHT performs significance tests roughly breadth
first, while NLS performs the tests strictly breadth first.
Because the set splitting rules are the same, each coder
produces the exact same output bits, though in a different
order. For the coefficients in the 8 by 8 example image
given in [1], NLS and SPIHT happen to produce identical
bitstreams.

There are three passes per bitplane. First, the insignif-
icant pixel (IP) pass which corresponds to SPIHT’s LIP
pass tests each lone insignificant pixel for significance. The
significant set (IS) pass, like SPIHT’s LIS pass, tests each
multiple-pixel set for significance, splitting and repeating as
needed. Finally, the refinement (REF) pass, like SPTHT’s
LSP pass, refines pixels found significant in previous bit-
planes.

3.1. Storage

The number of coefficients in the DC band is Iy = R4c.Clc,
where Rge = R27Y, C4o = C 27, and L is the number of
subband decomposition levels. The coefficients are stored
in a single array of length I. For convenience, we will refer
to the magnitude part with the array val and the sign part
with array sign. The state table is an array, named mark,
of length I, with 4 bits per coefficient. There is a one-to-one
correspondence between val and mark.

Zerotree encoders can optionally trade memory for com-
putation by precomputing and storing the maximum magni-
tude of all possible descendant and granddescendant sets [6].
For NLS, the precomputed maximum descendant magni-
tude array, dmax, has length /4, and the maximum grand-
descendant magnitude array, gmax, has length I/16. These
arrays can be eliminated at the expense of repeated search-
ing over insignificant trees for significant coefficients.

If each subband coefficient is stored in W bytes, the to-
tal bulk storage memory needed is: RCW for the subband
data, RCW /4 for the maximum descendant array, RCW /16
for the maximum granddescendant array, and RC/2 (half
byte per pixel) for the state table. For a 512 by 512 image
using 2 bytes per coefficient, and using the optional pre-
computed maximum descendant arrays, this is 800k bytes,
or 56% more than is needed for the image alone. This is all
of the significant memory needed for this algorithm. The
amount of memory required is fixed given the size of the
image. We are not counting the memory required for the
subband transform, but this part of the system can be han-
dled efficiently by a rolling line-based transform.

3.2. State Table Markers

The following markers are placed in the 4 bit per coefficient
state table, mark, to keep track of the set partitions. Each
element of mark, if set, indicates something about the cor-
responding element in the val image array. Each marker
and its meaning is listed below.
M*P Each of these first four markers are for a lone pixel.
MIP The pixel is insignificant or untested for this bit-
plane.
MNP The pixel is newly significant so it will not be
refined for this bitplane.
MSP The pixel is significant and will be refined in this
bitplane.

MCP Like MIP, but applied during partitioning in the
IS pass so the new pixel set will be tested for signif-
icance immediately during the same IS pass, while
MIP pixels are skipped.

MD The pixel is the first (lowest index) child in a set con-
sisting of all descendants of its parent.

MG The pixel is the first (lowest index) grandchild in a
set consisting of all granddescendants of its grandpar-
ent pixel, but not including the grandparent or the
children of the grandparent.

MN* The following markers are used on the leading node of
each lower level of an insignificant tree. As the image
is scanned, these markers indicate that the next block
of pixels is insignificant.

MN2 The pixel is the first grandchild of a MD set. This
pixel and its 16 (4 by 4) 1st cousins can be skipped.

MN3 The pixel is the first great grandchild of a MD or
MG set. This pixel and its 64 (8 by 8) 2nd cousins
can be skipped.

MN6 The pixel is the first 6th generation descendant of
a MD or MG set. This pixel and its 4096 (64 by
64) 5th cousins can be skipped.

The markers MD and MG are similar in meaning to the
SPIHT set types A and B. These set markers are associated
directly with a pixel that is in the set, while in SPTHT, types
A and B are associated with the root pixel of a set, which
is not actually in the set.

The edge markers, MN*, are used to keep track of which
pixels are members of insignificant sets with roots at higher
levels of the tree. With linear indexing, when a MN2 marker
is reached during a scan we simply advance the scan index
by 16. When a MN3 marker is reached we advance 64, etc.

3.3. Initialization

A dyadic subband transform is performed on the image with
about L = 5 levels, and the floating point transform coef-
ficients are quantized to integers. Next, the image is read
into the linear array val. For each (r,c), find 7 by bit in-
terleaving and move the coefficient. The mean of the DC
band is removed and transmitted.

If encoding, the two maximum descendant magnitude
arrays are computed. The maximum magnitude of the de-
scendant set rooted at coefficient ¢ is dmax[é], and the max-
imum magnitude of the granddescendant set rooted at co-
efficient ¢ is gmax[f]. This data is computed in advance
by scanning the first quarter of the linear array backwards
and using the equations gmax[i] = max(dmax[47], dmax[4: +
1], dmax[47 + 2], dmax[4¢ + 3]) and dmax[i] = max(val[4d],
val[4i + 1], val[4i + 2], val[4i + 3], gmax[i]). Zero is substi-
tuted for gmax[i] when ¢ > I/16 because these nodes have
no granddescendants. These arrays are actually computed
via bitwise OR instead of the max function.

The most significant non-zero bitplane, B, is found by
scanning the DC band and a small section of dmax, and
transmitted.

The function push, in pseudo-code below, is used to
insert MN* markers where needed to the lowest tree level
after a new descendant set is created.

define push(i)
mark[4i] = MN2; mark[16i] = MN3; ---

A 5 level descendant tree has 1364 pixels, but only 4
need to be marked by the push function. When scanning
the image, only the top level MD marker and 4 MN* markers
associated with the tree will be encountered. So, a great
number of predictably insignificant coefficients are skipped
with little processing.

The state table is initialized by marking each DC co-
efficient with MIP, and each full-size spatial tree with MD.
For each initial tree and each decomposition level, the lead-
ing pixel is marked with an appropriate MN*, as shown in
the initialization pseudo-code below. Very few of the coef-
ficients are marked during initialization.

fori=0,...,I5—1
mark[i] = MIP

fori = Idc; e 74Idc
mark[i] = MD; push(z)

A small constant lookup table, skip, tells how many
coefficients to skip if a marker is encountered and no pro-
cessing needs to be done for that section in this pass. Val-
ues of skip are skip[M*P] = 1, skip[MD] = 4, skip[MG] =
16, skip[MN2] = 16, skip[MN3] = 64, skip[MN4] = 256,
skip[MN5] = 1024, etc. Another table, isskip, is used in
the IS pass. It is the same as skip, except for skip[MIP] =
skip[MNP] = skip[MSP] = 4. Because of the partitioning
rules, if a pixel with one of these markers is encountered
during the IS pass, each of its siblings can be skipped.

3.4. Main Algorithm

The main encoder algorithm in pseudo-code below is per-
formed for each bitplane, b, starting with B and decrement-
ing to 0, or until a bit budget is met. The significance level
for each bitplane is s = 2°. Significance checks are always
done with bitwise AND.

The decoder follows the same overall procedure as the
encoder with some low-level changes. To decode, use input
instead of output, and set the bits and signs of coefficients
with bitwise OR instead of testing them with bitwise AND.
The decoder performs midtread dequantization for coeffi-
cients that are not fully decoded.

In each pass, the coefficient array val, and the precom-
puted maximum descendant magnitude arrays are exam-
ined in the linear array order. The push function necessarily
sets elements of mark ahead of the index.

Though the pseudo-code below for the main algorithm
and above for the push function use multiplication and di-
vision for clarity, all multiplication and division operations
are by integral powers of 2 and are implemented by bit
shifting. Further, the addition operations needed during
set partitioning are done with bitwise OR. Actual addition
is only needed when advancing the main index 4.

INSIGNIFICANT PIXEL PASS
1 =0,whilei < I
if mark[i] = MIP

start the IP pass
insignificant pixel

output(d = (val[:] AND s)) send bit
ifd
output(sign[i]) send the sign
mark[i] = MNP pixel now newly significant
t=1+1 move to next pixel

else
i = 1 + skip[mark][i]]
INSIGNIFICANT SET PASS
t=0,while¢ < [
if mark[i] = MD
output(d = (dmax[|7/4]|] AND s))
ifd if the set is significant
mark[i] = mark[i + 1] = MCP split into 4 children
mark[i+2] = mark[i+3] = MCP (will test these next)

move past set/block

start the IS pass
a set of descendants

mark[4i] = MG and the granddescendants

no increment here so new MCP pixels processed next
else

i=i+4+4 move past the siblings in this set

elseif mark[i] = MG a set of granddescendants
output(d = (gmax[|7/16]] AND s))
ifd if the set is significant
mark[i] = mark[i + 4] = MD split into 4 sets
mark[i+8] = mark[i+12] = MD (will test these next)
mark the borders of these new sets
push(z), push(i + 4), push(i + 8), push(z + 12)
no increment here so new MD sets processed next
else
i=i+16
elseif mark[i] = MCP
output(d = (val[i] AND s))
ifd if the pixel is significant
output(sign[i]) send the sign of the pixel

move past the cousins in this set
an insignificant pixel

mark[i] = MNP the pixel is now newly significant
else
mark[i] = MIP the pixel is insignificant
i=1+1 move past this pixel
else

i = i+ isskip[mark[{]]
REFINEMENT PASS
t=0,while¢ < [

if mark[¢] = MSP
output(vall[i] AND s)

move past set/block

start the refinement pass
significant pixel
refine the pixel

i=1+1 move past the pixel
elseif mark[i] = MNP newly significant pixel

mark[i] = MSP significant pixel in next plane

i=1+1 move past the pixel
else

i = i + skip[mark[:]] move past set/block

4. RESULTS AND CONCLUSIONS

Coding results for the 512 by 512 grayscale lena, goldhill
and barbara images are plotted in Fig. 2. For these ex-
periments, we used a five level decomposition with the 9/7
biorthogonal wavelet [7]. The solid lines show rate vs. dis-
tortion performance for SPTHT without arithmetic coding.
The dash-dot line shows the performance of NLS without
arithmetic coding. All decoded images for each curve were
recovered from a single fidelity embedded encoded file, trun-
cated at the desired rate.

NLS and SPIHT produce bitstreams with the same bits
in different order. SPIHT’s ordering offers slightly better
performance at certain points in the bitstream during the
set significance (IS/LIS) passes. During refinement the re-
sults are practically identical. At the end of each bitplane,
the results are perfectly identical.

T
A4 [: :
A3 |t e e

42 f e

ol I Rt A S

40 feee e
BSOS N 7o

38 -
37
36—
35 i
i
3B ;
[EESSSNYSSNON 1S000 7SS WU S SO
31 i ‘ ‘ ‘ ‘
30 | i e

29 b
28*"3@':3"{"{"{"{"‘ : :
ool 1A 0 0
00 02 04 06 08 10 12 14 16 18 20
Rate (bpp)

PSNR (dB)

Figure 2: Coding performance for binary uncoded SPIHT
and NLS on several images.

No arithmetic coding was used on the significance test
or any symbols produced by the SPTHT or NLS algorithms
for these results. Back-end arithmetic coding using contexts
and joint encoding generally improves SPIHT by about
0.5 dB. We expect that improvement for NLS as well.

5. REFERENCES

[1] J. M. Shapiro, “Embedded image coding using zerotrees
of wavelet coefficients,” IEEFE Trans. on Signal Process-
ing, vol. 41, pp. 3445-3462, December 1993.

[2] A. Said and W. A. Pearlman, “A new, fast, and effi-
cient image codec based on set partitioning in hierarchal
trees,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 6, pp. 243-250, June 1996.

[3] W.-K. Lin and N. Burgess, “Listless zerotree coding for
color images,” in Proc. of the 32nd Asilomar Conf. on
Signals, Systems and Computers, vol. 1, pp. 231-235,
November 1998.

[4] W.-K. Lin and N. Burgess, “3D listless zerotree coding
for low bit rate video,” in Proc. of the International
Conf. on Image Processing, October 1999.

[6] G. Seetharaman and B. Zavidovique, “Z-trees: Adap-
tive pyramid algorithms for segmentation,” in Proc. of
the International Conf. on Image Processing, 1998.

[6] J. M. Shapiro, “A fast technique for identifying ze-
rotrees in the EZW algorithm,” in Proc. of the Interna-
tional Conf. on Acoustics, Speech and Signal Processing,
pp. 1455-1458, May 1996.

[7] M. Antonini, M. Barlaud, P. Mathieu, and
I. Daubechies, “Image coding using wavelet trans-
form,” IEEE Trans. on Image Processing, vol. 1,
pp- 205—220, April 1992.

