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Abstract–The performance of optimum vector quantizers subject to a conditional

entropy constraint is studied in this paper. This new class of vector quantizers was

originally suggested by Chou and Lookabaugh. A locally optimal design of this kind

of vector quantizer can be accomplished through a generalization of the well known

entropy-constrained vector quantizer (ECVQ) algorithm. This generalization of the

ECVQ algorithm to a conditional entropy-constrained is called CECVQ, i.e., condi-

tional ECVQ. Furthermore, we have extended the high-rate quantization theory to

this new class of quantizers to obtain a new high-rate performance bound, which is a

generalization of the works of Gersho and Yamada, Tazaki and Gray. The new perfor-

mance bound is compared and shown to be consistent with bounds derived through

conditional rate-distortion theory. Recently, a new algorithm for designing entropy-

constrained vector quantizers was introduced by Garrido, Pearlman and Finamore,

and is named entropy-constrained pairwise nearest neighbor (ECPNN). The algorithm

is basically an entropy-constrained version of the pairwise nearest neighbor (PNN)
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clustering algorithm of Equitz. By a natural extension of the ECPNN algorithm

we develop another algorithm, called CECPNN, that designs conditional entropy-

constrained vector quantizers. Through simulation results on synthetic sources, we

show that CECPNN and CECVQ have very close distortion-rate performance. The

advantages of CECPNN over CECVQ are that the CECPNN enables faster codebook

design, and for the same distortion-rate performance the codebooks generated by

the CECPNN tend to be smaller. We have compared the operational distortion-rate

curves obtained by the quantization of synthetic sources using CECPNN codebooks

with the analytical performance bound. Surprisingly, the theory based on the high-

rate assumption seems to work very well for the tested synthetic sources at lower

rates.

Index Terms - Source coding, vector quantization, rate-distortion theory, information

theory, entropy coding, clustering methods.

1 Introduction

Let us consider an ergodic discrete-time random process {Xn}∞n=1 described by an absolutely con-

tinuous probability density function. We will consider throughout that this process is strict-sense

stationary, or in other words, none of the statistics is affected by a time shift. Let us define an

L−dimensional vector taken from this information source described by a joint probability density

function fX(x), where X = [X1, ..., XL]T ∈ �L, and �L is the L−dimensional Euclidean space. A

memoryless vector quantizer (VQ) with block length L and average rate per vector performance

measured by the output quantizer entropy H(Q(X)) is composed by a collection of M reproduc-

tion vectors C = {y1, ..., yM} ⊂ �L, called the codebook, and by an encoder partition denoted

EP = {P1, ...,PM} of �L, where each Pi is a partition cell. The quantizer entropy is defined to be

H(Q(X)) = −
M∑
i=1

Pi logPi (1)

where Pi is the prior probability that a source vector X is mapped to a particular codevector yi,

and log(.) is the logarithm function defined on the Naperian base and the units of entropy are

nats. Heretofore, the base of all logarithms is the Naperian base and the units of all entropies and

measures of information are nats. The probability mass function Pi is measured by

Pi =
∫
Pi

fX(x)dx. (2)
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Associated with the codebook C and the encoder partition EP is the codeword length set S =

{�1, ..., �M}, where each codeword �i is defined to be the self-entropy of each codevector, i.e.,

�i = − logPi. (3)

Finally, the memoryless vector quantizer Q is defined by

Q(x) = yi if x ∈ Pi. (4)

Given a codebook C and a codeword set S the corresponding partition cell Pi (so called Voronoi

region) can be defined by the biased nearest neighbor rule,

Pi = {x : d(x, yi) + λ�i ≤ d(x, ym) + λ�m; ∀m �= i} (5)

where d(.) is a general distortion criterion and the parameter λ is a Lagrange multiplier that reflects

the relative importance of the codeword length and distortion. In this work we are interested in

difference distortion measures of the form

d(x, y) = ρ(‖ x − y ‖) (6)

where ρ is nondecreasing function of its argument and ‖ . ‖ denotes a norm on �L. The example

widely used in rate-distortion theory is ρ(α) = αr for some r ≥ 1. According to [1] such a distortion

measure is called a norm-based distortion measure. Specifically, let ‖ x ‖ be a norm on �L, that is,

‖ x ‖ ≥ 0, ‖ ax ‖= |a| ‖ x ‖ for a ∈ �, ‖ x ‖= 0 ↔ x = 0,

and

‖ x + y ‖ ≤ ‖ x ‖ + ‖ y ‖,

we can list the following examples of norms: the lν or Hölder norms defined by

‖ x ‖ν=

{
L∑

i=1

|xi|ν
}1/ν

,

where ν = 2 gives the Euclidean norm and ν = ∞ the l∞ norm of

‖ x ‖∞= lim
ν→∞ ‖ x ‖ν= sup

i
|xi|.

Another difference distortion measure of interest is the weighted squared error measure defined as

‖ x− y ‖W= (x− y)TW(x − y),
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where T denotes transpose and W is a L × L symmetric positive definite matrix.

The average distortion D per vector obtained when the source vectors X’s are mapped on

codevectors yi’s is given by

D = E{d(X, Q(X))}=
M∑
i=1

∫
Pi

fX(x)ρ(‖ x− yi ‖)dx. (7)

The quantizer Q(.) as defined is an entropy-constrained vector quantizer and its transmission

rate R is its entropy when its outputs are entropy coded. The design of an entropy-constrained

vector quantizer is generally based on the minimization of the functional

J = D + λH(Q(X)). (8)

We should observe that, if the entropy is not constrained the quantizer Q is called a level-constrained

or minimum distortion vector quantizer, because the rate in nats/vector is allowed to reach its

maximum of R = logM . Note that in this situation each Pi is given through pure distortions

comparisons in equation (5) with λ = 0. We should emphasize that we could use entropy coding in

a level-constrained vector quantizer to operate at the rate of its entropy, but its average distortion

D can be no smaller than the entropy-constrained quantizer in which minimum distortion is sought

over all mapping rules achieving a particular entropy without fixing M .

One algorithm that finds a local minimum of distortion of the M−level quantizer has been

proposed by Linde, Buzo and Gray [2] and is called generalized Lloyd algorithm (GLA). The design

of GLA-quantizers is rather time-consuming. With the purpose of alleviating this problem, Equitz

[3] proposed a recursive algorithm, called pairwise nearest neighbor (PNN), which is an adaptation

to vector quantization of a hierarchical grouping procedure due to Ward [4]. The design of entropy-

constrained vector quantizers using a modified GLA has been proposed by Chou, Lookabaugh and

Gray [5] and is called ECVQ design algorithm. The algorithm approaches a local minimum of the

distortion for a given entropy of the quantizer output. The equations (7) and (8) are the functionals

that are respectively used in the minimization process of the design of memoryless VQ’s carried

out by the GLA and ECVQ design. Recently an entropy constrained version of the PNN design

algorithm was proposed by Garrido, Pearlman and Finamore [6] and is called entropy-constrained

pairwise nearest neighbor, or in short ECPNN.

A new class of non-memoryless vector quantizers was introduced recently by Chou and Look-

abaugh [7]. The biased distortion measure used in the codebook design and the quantization (see

eqn.(14)) was previously used in speech recognition by Huang and Gray [8]. These vector quan-

tizers have the capability to exploit non-memoryless sources more efficiently than the mentioned
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vector quantizers. They named this new class as conditional entropy-constrained vector quantizers

CECVQ’s, and the algorithm that designs these vector quantizers is a modification of the ECVQ

design. The functional used for minimization is defined by

J̃ = E{d(Xk, Q(Xk)}+ λH(Q(Xk)|Q(Xl)) (9)

with,

H(Q(Xk)|Q(Xl)) = −
M∑

k=1

M∑
l=1

Plk logPk|l, (10)

Plk =
∫
Pk

∫
Pl

fXlXk
(xl, xk)dxldxk, (11)

Pl =
∫
Pl

fXl
(xl)dxl, (12)

Pk|l =
Plk

Pl
(13)

where H(Q(Xk)|Q(Xl)) is the first-order conditional block entropy, with Xk as the current

L-dimensional vector to be encoded and Xl as the previous encoded L-dimensional vector. The

quantization rule of CECVQ is non-memoryless since the partition cell Pi is defined by a distortion

measure biased by a probability conditioned on the last reproduction, according to

Pi = {xk : d(xk, yi) − λ logPi|l ≤ d(xk, ym) − λ logPm|l; ∀m �= i}. (14)

When the number of quantizer cells is finite, the conditional block entropy-constrained vector

quantizer as defined can be recognized as a finite-state machine, where the states are the quantizer

cells. Through the above quantizer rule, the expected distortion D = E{Xk, Q(Xk)} is mini-

mized subject to a constraint on the first-order conditional block entropy H(Q(Xk)|Q(Xl)). The

codevector Q(Xk) at time k is noiselessly encoded according to a conditional entropy matched to

Pk|l with l = k − 1 , which changes according to the realization of the previous codevector Q(Xl).

The final remark is that in this work we are mainly interested in optimal VQ’s but we should

point out that conditional entropy constrained VQ’s could be designed based on lattice quantizers.

Lattice quantizers have partitions defined by a regular array that covers the L-dimensional space

uniformly. For example in one dimension a lattice quantizer has a line segment as a geometrical

shape of a partition, and in two dimensions the partition shape can be hexagons, squares or other

polygons. For a detailed treatise on lattices, see [9].

In this paper we present a theoretical study of this class of vector quantizers using high rate

asymptotic theory. With this tool we are able to better understand the performance of such schemes.
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In Section II, the high rate entropy-constrained theory is presented as a prelude to our generalization

to the case when the quantization of the current vector is conditioned on the reproduction of

the previous vector of the same dimension. The link between the high-rate quantization theory

and rate-distortion theory is presented in Section III. In Section IV, we present analytical and

numerical results which quantify the advantage in performance of conditional entropy-constrained

vector quantization compared to memoryless entropy-constrained vector quantization as a function

of the memory between adjacent source blocks. In Section V, we present a modification of the

ECPNN algorithm in order to design conditional entropy-constrained vector quantizers and compare

its results with CECVQ for synthetic data. Finally, in Section VI, we give our conclusions and

directions for future research.

2 Constrained Conditional Entropy High Rate Quantizer Bound

In this section, we derive a lower bound to the asymptotic average distortion D for a given constraint

of conditional entropy quantizer output. This result is an extension of the work of Gersho [10] and

Yamada, Tazaki and Gray [1]. Here is used the approach given by Yamada et al., where the

partitioning Pi of �L space is done by L−dimensional spheres in contrast to L-dimensional optimal

polytopes defined by Gersho. Optimal polytopes are generally unknown and are known in the case

of the mean-square error just for L ≤ 3. Nevertheless the main results of Yamada et al. are

connected with those of Gersho’s. First, we shall present some results on the high rate quantization

theory. For an excellent review of this topic the reader is directed to Chapter 5 in [11].

2.1 High-Rate Quantization Theory

High-rate quantization theory is a useful tool for determining the performance of optimum vector

quantizers. This theory assumes that the number of quantization levels M is large enough and the

probability density function fX(x) is sufficiently smooth to be nearly constant within all bounded

partition cells Pi, i.e.,

fX(x) ∼ fX(yi) if x ∈ Pi.

where yi is the i−th reconstruction vector. Consequently, we can write the probability Pi = Pr[X ∈

Pi] as

Pi =
∫
Pi

fX(x)dx ≈ fX(yi)V (Pi),
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where V (Pi) is the infinitesimal L−dimensional volume,

V (Pi) =
∫
Pi

dx.

Therefore, we are able to write fX(x) ≈ Pi
V (Pi)

if x ∈ Pi. Consider now the distortion integral,

D =
M∑
i=1

∫
Pi

fX(x)ρ(‖ x − y ‖)dx.

Assuming negligible contribution to unbounded partition cells and the approximations above, we

obtain

D ≈
M∑
i=1

Pi

V (Pi)

∫
Pi

ρ(‖ x − yi ‖)dx. (15)

This expression corresponds to the distortion due to source vectors that are mapped onto yi’s

contained in bounded partition cells, or what is also called granular distortion.

Another important concept that is useful for the performance bound derivation is the so called

codevector point density function, γ(x). Let us define γ as a continuous smooth function, with the

following characteristics: ∫
γ(x)dx = 1;

and the integral of γ over a region R times the size of the codebook M produces the number of

codevectors, η, in R, i.e.

η(R) = M

∫
R

γ(x)dx.

For M large enough, so that γ(.) is approximately constant in a partition Pi containing one code-

vector

η(Pi) = 1 = M

∫
Pi

γ(x)dx ≈ Mγ(yi)V (Pi)

and consequently,

V (Pi) =
1

Mγ(yi)
. (16)

The high rate expression for the distortion, (15), and the codevector point density equation, (16),

are used in the derivation of a lower bound to the the average distortion obtained by considering the

optimum partition cell Pi without regard to whether or not a quantizer can have such partitioning.

Yamada et al. [1] shows that the optimal partition shape, i.e., in the sense of minimization of the

distortion expression, (15), is an L-dimensional sphere with respect to the norm used to define

the distortion measure. More precisely, Yamada et al. derive the following lower bound to the

minimum distortion of a level constrained vector quantizer,

D̂lc ≥ D̂lc
L ≥ D̂lb =

L

L + r
V

−r/L
L E{(Mγ(X))−r/L} (17)
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where D̂lc denotes the operational distortion-rate performance per vector for a level constrained

vector quantizer, D̂lc
L the respective lower bound, r is the power to which the norm is raised, and

VL is the volume of the unit sphere. The unit sphere is defined by the set {x :‖ x ‖≤ 1} where ‖ . ‖

denotes the given norm. Consequently, VL is measured by

VL =
∫
x:‖x‖≤1

dx

and for example, according to [1] for lν norms or the ν-th power distortion measure

VL = VL(ν) =
2L(Γ(1/ν))L

LΓ(L/ν)νL−1
, (18)

for l∞ norm

VL = 1,

and for the weighted squared error distortion measure

VL = (det W)−1/2VL(ν), with ν = 2,

where Γ(.) denotes the usual gamma function. Note that if we divide equation (17) by L we obtain

the operational distortion-rate performance per sample, denoted D̂lc
L .

In equation (17), it can be shown ([1] and [10]) that the rightmost equality is achieved iff

γ(x) =
fX(x)L/(L+r)

‖ fX(x) ‖L/(L+r)
L/(L+r)

where here the norm ‖ . ‖ denotes the Lp norm. Next we develop the constrained conditional lower

bound.

2.2 Performance Bound

The quantizer output conditional block entropy given by

H(Q(Xk)|Q(Xl)) = H(Q(Xl), Q(Xk))− H(Q(Xl)), (19)

is the rate of the quantizer. When the number of partition cells M is large and hence the rate is

large, let us assume that

fXlXk
(xl, xk) ∼ fXlXk

(yl, yk) for (xl, xk) ∈ Pl × Pk, (20)

fXl
(xl) ∼ fXl

(yl) for xl ∈ Pl (21)
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where × denotes Cartesian product and y’s are the L-dimensional reproduction levels. Here the as-

sumption is that the joint and marginal densities are slowly varying functions on the partition cells.

We should have in mind that in high rates the partition cells can be represented by infinitesimal

orthotopes (orthogonal figures) in such a way that Cartesian products between two infinitesimal

orthotopes in L dimensions generates a 2L-dimensional infinitesimal orthotope. Therefore, by our

previous assumptions

∫
Pl

∫
Pk

dxldxk =
(∫

Pl

dxl

)(∫
Pk

dxk

)
= V (Pl)V (Pk)

and finally obtain, based on equations (11) and (12), the probability mass functions,

Plk = fXlXk
(yl, yk)V (Pl)V (Pk), (22)

Pl = fXl
(yl)V (Pl), (23)

of the partition cells {Pl × Pk} and Pl, respectively, where we have adopted the equality sign in

the above equations just for convenience. As was discussed, V (Pk) = 1
Mγ(yk) and V (Pl) = 1

Mγ(yl)

and consequently

Plk =
fXlXk

(yl, yk)
M2γ(yl)γ(yk)

, (24)

Pl =
fXl

(yl)
Mγ(yl)

. (25)

At this point some interpretation can be done. Note that,

M2γ(yl)γ(yk)V (Pl)V (Pk) ≈
∫
Pk

∫
Pl

M2γ(xl)γ(xk)dxldxk = η({Pl × Pk}) = 1 (26)

represents the number of codevector points in the region generated by {Pl × Pk} that is of course

equal to one. If we define a function ζ(xl, xk) = γ(xl)γ(xk), it can be interpreted as a joint

codevector point density function, which in the case of a CECVQ can be considered separable,

because of the high rate quantization assumption.

Considering now the first order conditional block entropy, substituting (24) and (25) in (19),

H ≈ −
M∑

k=1

M∑
l=1

fXlXk
(yl, yk)V (Pl)V (Pk) log

fXlXk
(yl, yk)

M2γ(yl)γ(yk)

+
M∑
l=1

fXl
(yl)V (Pl) log

fXl
(yl)

Mγ(yl)

(27)
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which, after some algebra, reduces to

H ≈ −
M∑

k=1

M∑
l=1

fXlXk
(yl, yk) log

(
fXlXk

(yl, yk)
fXl

(yl)

)
V (Pl)V (Pk)

+
M∑

k=1

M∑
l=1

fXlXk
(yl, yk) log(Mγ(yk))V (Pl)V (Pk).

When sums are approximated by integrals, we obtain

H ≈ −
∫ ∫

fXlXk
(xl, xk) log fXk|Xl

(xk|xl)dxldxk − E

{
log

1
Mγ(Xk)

}

or finally,

H ≈ h(Xk|Xl) − LE

{
log

(
1

Mγ(Xk)

)1/L
}

. (28)

where

h(Xk|Xl) = −
∫ ∫

fXlXk
(xl, xk) log fXk|Xl

(xk|xl)dxldxk

is the conditional differential entropy of the current block Xk given the previous block Xl. Now,

consider Jensen’s inequality, E{φ(X)} ≥ φ(E{X}), where φ is a convex cup function and strictly

equality holds iff X has a uniform distribution. Applying this inequality, to the convex cup function

− log, the high rate conditional entropy expression is lower bounded according to

H ≥ h(Xk|Xl) − L log

(
E

{(
1

Mγ(Xk)

)1/L
})

. (29)

Since H is the conditional block entropy in (19), (29) implies

E

{(
1

Mγ(Xk)

)1/L
}

≥ e−
1
L

(H(Q(Xk)|Q(Xl))−h(Xk|Xl)). (30)

Now referring to the equation (17), since xr is a convex cup function of x for r ≥ 1, we can apply

Jensen’s inequality to the lower bound D̂lb to obtain another lower bound

D̂lb ≥
L

L + r
(VL)−r/L

(
E

{(
1

Mγ(Xk)

)1/L
})r

. (31)

Note that the expression above is valid for a conditional entropy-constrained vector quantizer

because the distortion integral depends only on the vector to be encoded. Now, let us combine the

bound in (17) with (31) and (30) to obtain

D̂ce ≥ D̂ce
L ≥ LD̂ce

lb,L =
L

L + r
(VL)−r/Le−

r
L

(H(Q(Xk)|Q(Xl))−h(Xk|Xl)), (32)
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and, according to Jensen’s inequality, the rightmost equality is achieved iff γ(x) is a constant. This

condition is satisfied by high rate lattice vector quantizers because the reproduction vectors are

uniformly distributed over some set having probability 1. Therefore since γ(x) must have unit

integral over the granular region PG with volume V

γ(x) =
1
V
IPG(x) (33)

where I denotes the indicator function.

The high-rate performance of an entropy-constrained vector quantizer per vector is given ac-

cording to [1]:

D̂e ≥ D̂e
L ≥ LD̂e

lb,L =
L

L + r
(VL)−r/Le−

r
L

(H(Q(Xk))−h(Xk)). (34)

The quantity h(Xk) above is the (unconditional) differential entropy of the block Xk.

Consider now the analytical lower bounds D̂ce
lb,L and D̂e

lb,L in (32) and (34) at the same quantizer

rate R = 1
LH(Q(Xk)) = 1

LH(Q(Xk)|Q(Xl)). Since h(Xk|Xl) ≤ h(Xk), we conclude that

D̂ce
lb,L ≤ D̂e

lb,L. (35)

Equality holds if and only if the source vectors are statistically independent.

The constrained conditional entropy high rate quantizer lower bound generalizes the constrained

entropy high rate quantizer lower bound as should be expected. Note, that the bounds (17) and

(34) and (35) are valid for l∞ norm and weighted squared error distortion measure.

At a given average distortion for each system, the conditional entropy R̂ce
L ≤ R̂e

L , the uncondi-

tional entropy. Therefore, at any rate R, the actual average distortions are consistent in relationship

to their bounds, i.e., D̂ce
L ≤ D̂e

L .

Our objective now is to compare a 2L memoryless entropy VQ with an L non-memoryless

conditional entropy VQ, since both methods require access to the same set of source variables. Let

us define now for the lν norms the spherical quantization coefficient as:

Csp(L, r, ν) =
1

L + r
(VL(ν))−r/L. (36)

In Figure 1 is plotted the behavior of the spherical quantization coefficient when we increase the

dimension L for a fixed r and ν. Clearly, the function is monotonically increasing or decreasing

in L, depending on r and ν parameters. Note that for the case that r > ν, the Csp(L, r, ν) is

a non-decreasing function of the dimension L. For this case, the distortion increases with the
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vector dimension L contrary to principles of information theory (see Lookabaugh and Gray in [12]).

Consequently we shall disregard the case r > ν.

Let us assume that ν = r. In this case the spherical quantization coefficient is monotonically

decreasing function in L or

Csp(L, r, r) > Csp(L + δ, r, r) ∀ r ≥ 1 and L ≥ 1

with δ > 0. Note that this case is perhaps the most important one, because with the constraint

ν = r the norm-based distortion measure is additive in a single letter fashion.

The analytical lower bounds to be compared are:

D̂ce
lb,L = Csp(L, r, r)e−

r
L

(H(Q(Xk)|Q(Xl))−h(Xk|Xl))),

D̂e
lb,2L = Csp(2L, r, r)e−

r
2L

(H(Q(Xl,Xk))−h(Xl,Xk)). (37)

at the same rate R = 1
LH(Q(Xk)|Q(Xl)) = 1

2LH(Q(Xl, Xk)).

We shall derive conditions under which L-vector conditional entropy VQ is superior to 2L-

vector unconditional VQ. We shall assume that the bounds D̂e
lb,L and D̂ce

lb,L have the same degree

of multiplicative tightness to their actual functions, D̂e
L and D̂ce

L , respectively, since they were

derived in exactly the same way with just the substitution of conditional entropy for entropy. This

assumption leads to
D̂e

2L

D̂ce
L

=
D̂e

lb,2L

D̂ce
lb,L

. (38)

Therefore, by showing conditions under which

D̂e
lb,2L

D̂ce
lb,L

≥ 1,

we can infer the superiority of the conditional L-vector ECVQ over the unconditional 2L-vector

ECVQ. Forming the ratio of the distortions in (37), equating the rates to

R =
1

2L
H(Q(Xk, Xl)) =

1
L

H(Q(Xk)|Q(Xl)), (39)

and using the formulas for the spherical quantization coefficients in (36) and the unit volume in (18),

properties of gamma functions [13, eq. 6.1.18], and information-theoretic relationships, produce the

following expression
D̂e

lb,2L

D̂ce
lb,L

= G(L/r) · exp(
r

2L
I(Xk; Xl)) (40)
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with I(Xk; Xl) denoting the average mutual information betwwen the source blocks and

G(α) = (
α + 1
α + 1

2

)(
1√
π
·
Γ(α + 1

2)
Γ(α + 1)

)1/2α, α ≥ 0. (41)

Use has been made of the following relations for stationary sources,

I(Xk; Xl) =
1
2
h(Xk, Xl) − h(Xk|Xl)

= h(Xk)− h(Xk|Xl) (42)

Therefore,
D̂e

lb,2L

D̂ce
lb,L

≥ 1 if

1
L

I(Xk; Xl) ≥
2
r

ln
1

G(L/r)
. (43)

The function G(α) is plotted in Fig. 2 for positive values of α. The highest required per-letter

average mutual information or memory between the L-vectors occurs at the feasible minimum of

0.939 of the function G, where α equals 2 and is rational. One could use this minimum to develop

a greatest lower bound on memory in the form

1
L

I(Xk; Xl) ≥
2
r
(.0629). (44)

In the limit as L −→ ∞ for fixed finite r, G(L/r) −→ 1 and 1
LI(Xk; Xl) −→ 0, so that

lim
L→∞

D̂e
2L = lim

L→∞
D̂ce

L .

Since the per letter memory tends to zero in the limit, the conditional entropy coding can gain no

advantage. We shall return in a later section to the quantification of the distortion ratio in (40) as

a function of source memory for finite L.

3 Comparison with Rate-Distortion Theory

Rate-distortion theory provides the unbeatable bounds for compression of information sources. In

this section we compare the results of the last section with the rate-distortion function of a given

stationary process, and draw analogies between the constrained conditional entropy quantization

performance bound and the conditional rate-distortion function.

3.1 An Expected Comparison

In particular, we are interested in the rate-distortion function R(D) for stationary sources with

memory. According to Gray [11, 102-103], the rate-distortion function is defined by

R(D) = lim
L→∞

RL(D), (45)
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with

RL = L−1 inf
f∈FD

I(X; Y),

f
def= fY|X(y|x)

FD =
{

fY|X(y|x) :
∫ ∫

fY|X(y|x)fX(x) dL(x, y) dxdy ≤ D

}
,

I(X, Y) =
∫ ∫

fX(x) fY|X(y|x) log
fY|X(y|x)

fY(y)
dxdy,

where fY|X(y|x) is the conditional probability density for reproducing vectors given source

vectors. Note that we have normalized the rate and distortion by L in the equations above. The

rate-distortion performance R(D) is well defined because it can be shown for stationary sources

that the limit in (45) always exists. With the exception of the Gaussian source, RL(D) is generally

very difficult to evaluate, but it can be bounded in the case of difference-distortion measures by

the so called vector Shannon lower bound if it exists [11, pp. 106-111]. The vector Shannon lower

bound is given by:

RSLB(D) = h(X) + log a(D)− Db(D)

where a(D) and b(D) are the solutions of

a(D)
∫
�L

e−b(D)ρ(‖x‖)dx = 1,

a(D)
∫
�L

ρ(‖ x ‖)e−b(D)ρ(‖x‖)dx = D.

Note that in the equation above, ρ(.) is not normalized in relation to the vector size L. Yamada

et al. have shown for norm-based distortion measures of the class ρ(x) = xrwith r ≥ 1, that the

vector Shannon lower bound in nats per vector is given by

RSLB(D) = h(Xk) −
L

r
log(D/L)− logVL − L

r
log(erΓ(1 + L/r)r/L). (46)

Now normalizing the rate and distortion by the dimension L, we have

RL(D) ≥ RSLB
L (D) =

1
L

h(Xk) −
1
r

log(D)− 1
L

log VL − 1
r

log(erΓ(1 + L/r)r/L). (47)

According to Lin’kov [14], under smoothness constraints on the joint probability density function,

RL(D) = RSLB
L (D), for D ≤ Dε, where Dε corresponds to a small distortion.
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Let us consider the behavior of the high-rate quantization bounds when the vector size L → ∞.

The operational rate-distortion performance per sample of a conditional entropy-constrained VQ

is given by the inversion of (32) with the normalization of D

R̂ce
L (D) ≥ R̂ce

lb,L(D) =
1
L

h(Xk|Xl) −
1
r

log(D) − 1
L

log VL − 1
r

log(r + L). (48)

Now taking the difference between the quantizer lower bound and the Shannon bound, we obtain

∆ = (R̂ce
lb,L(D)− RL(D)) =

1
L

(h(Xk|Xl) − h(Xk)) +
1
L

log


( e

1 + L
r

)(L/r)

Γ
(

1 +
L

r

) (49)

For large L, it is shown in [1] that, using Stirling’s approximation,

log


( e

1 + L
r

)(L/r)

Γ
(
1 +

L

r

) ≈
√

2π

e

(
1 +

L

r

)1/2

.

Now evaluating the limits

lim
L→∞

∆ = lim
L→∞

1
L

[h(Xk|Xl) − h(Xk)] + lim
L→∞

[
1
L

log

(√
2π

e

)
+

1
2L

log
(
1 +

L

r

)]
= 0,

Since the Shannon bound RSLB
L (D) = RL(D) for D ≤ Dε, the quantizer lower bound, R̂ce

lb,L(D)

approaches R(D) in the limit as L tends to infinity in a region of low distortion or high rate.

3.2 Analogies with the Conditional Rate-Distortion Function

In this section, we want to highlight the connection between the high-rate quantization theory

and rate-distortion theory via the conditional rate-distortion function. This branch of the rate-

distortion theory was developed mainly by Gray in [15] and [16]. By definition the L−th order

conditional rate-distortion function of a process with memory is described by:

R
(Xk|Xl)
L (D) = L−1 inf

f∈FD

I(Xk; Y|Xl), (50)

f
def= fY|XkXl

(y|xk, xl)

FD =
{

fY|XkXl
(y|xk, xl) :

∫ ∫ ∫
fY|XkXl

(y|xk, xl)fXlXk(xl, xk) dL(xk, y) dxkdydxl ≤ D

}
,

I(Xk; Y|Xl) =
∫ ∫ ∫

fXlXk(xl, xk) fY|XkXl
(y|xk, xl) log

fXkY|Xl
(xk, y|xl)

fXk |Xl
(xk|xl)fY|Xl

(y|xl)
dxkdydxl,

where fY|XkXl
(y|xk, xl) is the conditional probability density for reproducing vectors given source

vectors. The conditional rate-distortion function can be interpreted as the rate of a source Xk

given Xl subject to a fidelity criterion when the encoder and decoder are allowed to observe side

information in the form of a related source Xl.

The following theorems are of our interest:
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Theorem 1 (Superiority of the conditional scheme) Let {Xn} be a stationary source with memory

and let R
(Xk)
L be the rate-distortion function for the joint source {Xk} = [Xk−L+1, ..., Xk]T with a

single-letter distortion measure then

R
(Xk)
L (D) ≥ R

(Xk|Xl)
L (D) (51)

with equality iff Xl and Xk are independent.

Proof:

The proof is an extension to blocks of the Theorem 3.1 presented by Gray in [16].�

One further remark is that the theorem above holds not just for a single-letter distortion measure

but for compound distortion measures (see discussion [16, pp. 481-482]).

Theorem 2 (Superiority of the conditional scheme revisited) Let {Xn} be a stationary source with

memory and let R
(XlXk)
2L be the rate-distortion function for the joint source {XlXk} = [Xk−2L+1, ..., Xk−L, Xk−L+1, .

with a single-letter distortion measure then

R
(XlXk)
2L (D) =

1
2
R

(XlXk)
L (D) ≥ R

(Xk|Xl)
L (D). (52)

with equality iff Xl and Xk are independent.

Proof:

The proof is an extension for blocks of the Theorem 4.1 presented by Gray in [16].�

For optimal coding of the present block, conditioning on the last source block is always superior

to optimal coding of the joint block of 2L dimensions, since the geometrical constraints of quanti-

zation are not operative. High rate conditional vector quantization and conditional rate-distortion

theories, although based on different formulations, are consistent.

4 Theoretical Performances

In this section we compare the conditional entropy-constrained VQ performance with the entropy-

constrained VQ performance in the high rate region. The definition of the performance gain parallels

a similar development by Lookabaugh and Gray [12]. Let us define two measures of conditional

entropy advantage (CEA): first, the ratio between per-letter distortions obtained by an entropy-

constrained vector quantizer and a conditional entropy-constrained vector quantizer, operating at

the same rate and block size L,

M c
1 (L, r) =

D̂e
L

D̂ce
L

; (53)
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and, secondly, the ratio between per-letter distortions of these same quantizers, except that the

unconditional ECVQ operates on a block size of 2L,

M c
2 (L, r) =

D̂e
2L

D̂ce
L

. (54)

Using the assumption of same multiplicative tightness in (38), the latter CEA is the same as the

distortion ratio in (40), which is

M c
2(L, r) = G(L/r) · exp(

r

2L
I(Xk; Xl)). (55)

The first CEA is then equal to the ratio of the lower bounds in (32) and (34), where the rates are

set equal as in (39), which results in

M c
1(L, r) = exp(

r

L
I(Xk; Xl)). (56)

The CEA quantities, M c
1 (L, r) and M c

2(L, r) will be used to evaluate the potential gains of

conditional entropy-constrained vector quantization over entropy-constrained vector quantization.

Let us consider a well known class of information theoretic sources for our evaluations, the

Gaussian autoregressive sources, which are common tractable models for speech and image data.

An L-dimensional block X from a stationary, zero mean, Gaussian sequence with correlation matrix

RXX has a joint entropy given by

h(X) =
1
2

log(2πe)L det(RXX), (57)

where det(RXX) denotes the determinant of the autocorrelation matrix. Using this fact and the

information identity,

I(Xk; Xl) = 2h(Xl)− h(XkXl), (58)

the conditional entropy advantages in equations (56) and (55) become

M c
1(L, r) =

[
det(RXX

(L))
(det(RXX

(2L)))1/2

]r/L

,

M c
2(L, r) = G(L/r)

[
det(RXX

(L))
(det(RXX

(2L)))1/2

]r/2L

. (59)

According to Dembo, Cover and Thomas [17, pp. 1515], the ratio

(det(RXX
(L)))1/L

(det(RXX
(2L)))1/2L

≥ 1, (60)
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which is essentially the statement that I(Xk; Xl) ≥ 0. Consequently M c
1 (L, r) ≥ 1 always and

M c
2(L, r) ≥ 1, if

(det(RXX
(L)))1/L

(det(RXX
(2L)))1/2L

≥ (G(L/r))−2/r,

consistent with (43).

A first-order Gaussian autoregressive (AR(1)) source is generated by

X(n) = aX(n− 1) + W (n), (61)

where a is the correlation coefficient, and W (n) is an i.i.d zero mean Gaussian random sequence

with variance σ2. We will assume that |a| < 1, so that this information source is in the stationary

regime. It can be shown [18, pp. 116-123] that the correlation sequence is given by

RXX(n) = σ2
Xa|n|

where σ2
X is the variance of the autoregressive source

σ2
X =

σ2

1 − a2
.

A symmetric Toeplitz matrix RXX = [RXX(n2 − n1)] ∀ n1, n2 = 1, ..., L is generated by this

autocorrelation sequence with determinant given by

det(RXX
(L)) = (σ2

X)L(1− a2)L−1,

Evaluating the inter-block mutual information (or memory) in (58) above produces the interesting

result,

I(Xk; Xl) = log(1− a2)−1/2,

which equals the mutual information between the two closest samples from each block. (The per-

letter memory decreases as 1/L.) Consequently the conditional entropy advantages from (59) are

found to be

M c
1 (L, r) = (1 − a2)−r/2L,

M c
2 (L, r) = G(L/r)(1− a2)−r/4L. (62)

Note that when we evaluate limL→∞ M c
1(L, r) and limL→∞ M c

2 (L, r) we obtain the expected unity

gains.

In Figure 3 are plotted these CEA’s for a Gaussian AR(1) source in dB versus the dimension

L, for the case of r = 2 (squared error) and a = 0.9, which is a reasonable correlation coefficient
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for modeling tightly correlated data such as speech and images. Note that for small L, substantial

advantages are possible using conditional entropy, even when the block size for memoryless VQ is

2L.

Another common test sequence [19] is the one generated by an AR(2) Gaussian source, defined

by

X(n) = a1X(n− 1) + a2X(n− 2) + W (n) (63)

where a’s are the regression coefficients and W (n) is the i.i.d zero mean Gaussian random variables

with variance σ2. It can be shown [18, pp. 123-132] that the correlation sequence is given by

RXX(n) = σ2
X

(1 − µ2
2)µ

|n|+1
1 − (1 − µ2

1)µ
|n|+1
2

(µ1 − µ2)(1 + µ1µ2)

where µ1 and µ2 are the roots of the quadratic f(z) = z2 − a1z − a2, with |µ1| < 1 and |µ2| < 1

required for stability, and where the variance σ2
X is equal to

σ2
X =

(1 − a2)σ2

(1 + a2)(1 + a1 − a2)(1− a1 − a2)
.

In Figure 4 are plotted the conditional entropy advantages for the Gaussian AR(2) source and r = 2

with the coefficients a1 = 1.515 and a2 = −0.752. This AR(2) source has often been used to model

long-term statistical behavior of speech. Comparing the last two figures reveals that the potential

gains for the AR(2) source are higher than those for the AR(1) source for the same L.

5 A new algorithm for conditional entropy-constrained VQ design

In this section, we develop a new algorithm for designing conditional entropy-constrained vector

quantizers. We shall assume throughout that the distortion criterion is mean-squared error. The

design algorithm developed here will be called conditional entropy-constrained pairwise nearest

neighbor design, or in short, CECPNN. Before describing the new algorithm, let us introduce

formally a conditional entropy-constrained vector quantizer.

Definition 1 (first-order conditional block entropy-constrained vector quantization)

An L−dimensional, M−level first-order conditional block entropy-constrained quantizer Q, with
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associated encoder partition EP = {P1, ...,PM} and a matrix

S =




�1|1 , ..., �1|M

�2|1 , ..., �2|M
...

. . .
...

�M |1 , ..., �M |M




of codewords lengths conditioned on the previous codevector indexed by l = 1, ..., M , is a mapping

of input vectors xk ∈ �L to output vectors v ∈ C defined as follows

v = yi ∈ C, if d(xk, yi) + λ�i|l ≤ d(xk, ym) + λ�m|l; ∀i �= m, i, m = 1, ..., M ; (64)

where d(.) is the squared error per vector distortion measure between two vectors and the codeword

length �k|l is defined to be the conditional self-entropy, i.e.,

�k|l = − log2 Pk|l.

The last detail to be remembered about the implementation of CECVQ is that the encoder performs

a non-memoryless mapping, so that an initial state must be given to the encoder and decoder.

Throughout this paper we consider that the first vector to be encoded will be quantized by the

assignment of the codebook vector that is closest in the distortion sense, i.e., λ = 0.

The conditional entropy-constrained VQ design, proposed by Chou and Lookabaugh [7], uses

the definition above to design these non-memoryless machines using the familiar iteration based

on Lloyd’s Method I [2] for quantization rule improvement. In what follows, we provide a new

alternative for design of these non-memoryless machines.

5.1 CECPNN Design Algorithm

The modified version of the entropy constrained pairwise nearest neighbor algorithm (ECPNN)

is introduced here. As a standard reference for this kind of algorithm, we cite Equitz [3]. The

ECPNN developed in [6] is an algorithm that designs codebooks by merging the pair of Voronoi

regions which gives the least increase of distortion for a given decrease in entropy. The algorithm

is suboptimal, because the procedure can not guarantee generation of the best quantizer in the

distortion-rate sense. See [6] for a further discussion about this topic. Before describing the

CECPNN algorithm, we introduce first some definitions and notation. Let us define a quantizer

Qj, where the superindex j denotes a given step of the algorithm, with a encoder partition given
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by EP j = {P j
1, ...,P

j
Aj
} where Aj is the total number of partitions. Let Cj = {yj

1, ..., y
j
Aj
} be a

codebook where yj
i ’s are the centroids derived from the training set (TS) T = {x1, ..., xN} which are

contiguous L-dimensional sample vectors of the information source {Xn}. Let the initial codebook

size be A0 = M , where a possible initialization for the codebook is the TS, i.e., y0
i = x0

i with

A0 = N = M .

In order to describe our results in a more convenient way, we will introduce next a notation

for an operator named the “merge operator”. Let us first introduce the notation P j+1(a, b) to

represent the partition cell which is obtained when we replace, in the set EP j , the two partition

cells P j
a and P j

b a, b ∈ Aj (index set) , a �= b, by their union P j
a

⋃P j
b . When the merge operation is

applied to the Aj−level quantizer Qj, indicated by Mab[Qj], it is understood that a new quantizer

Qj+1 = Mab[Qj] is obtained with Aj − 1 levels, that contains the new merged partition cell

P j+1(a, b), is obtained. The quantizer Qj+1(a, b) is said to be the merged (a, b) version of Qj under

operation Mab.

The merging operation results in an increase of distortion per sample ∆Dj+1
ab and a decrease in

rate per sample ∆Rj+1
ab . The increase of distortion is given by:

∆Dj+1
ab =

1
LN

{
∑

x∈Pj
ab

‖ x− yj+1
ab ‖2 −

∑
x∈Pj

a

‖ x − yj
a ‖2 −

∑
x∈Pj

b

‖ x− yj
b ‖

2} (65)

where ‖ . ‖ is the Euclidean norm of the vector and yj
a or b is the centroid of the partition cell

P j
a or b. The vector yj+1

ab denotes the centroid resulted from the merge operator Mab, that is given

by:

yj+1
ab =

1
nj

a + nj
b

(nj
ay

j
a + n

j
by

j
b)

Manipulating the equation (65), see [3] or [6], the increase of distortion takes the following form:

∆Dj+1
ab =

1
LN

nj
an

j
b

nj
a + nj

b

‖ yj
a − yj

b ‖
2, (66)

with nj
k denoting the un-scaled value of the priori probability mass function P j

k , that is stored in

a vector denoted by nj = [nj
k] for k = 1, ..., A0. Note that a symmetric matrix, A0 × A0 could be

associated with the increase of distortion and could be used to describe the merging process. Let
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us define a matrix ∆Dj+1,

∆D =




0 ∆D12 ∆D13 ... ∆D1A0

∆D12 0 ∆D23 ... ∆D2A0

∆D13 ∆D23 0 ... ∆D3A0

...
...

. . . ...
...

∆D1A0 ∆D2A0 ∆D3A0 ... 0




, (67)

where ∆Dab is the increase of distortion as defined before. Note that this symmetric matrix stores

all weighted distances, and the null diagonal reflects the fact that ∆Daa = 0. We can incorporate

this matrix in our design algorithm in the initialization step and in each iteration, since each time

we merge two partition cells, we change the rows a and b and the columns a and b.

When the merge operator is applied on the quantizer Qj there is also a decrease in block

conditional entropy per vector. Initially the conditional entropy associated with Qj is given by:

LRj = −
Aj∑
l=1

Aj∑
k=1

P
j
lk log2 P

j
k|l = −

Aj−2∑
l=1

l �={a,b}

Aj−2∑
k=1

k �={a,b}

P
j
lk log2 P

j
k|l (68)

−
Aj∑
l=1

P j
la log2 P j

a|l −
Aj∑
l=1

P j
lb log2 P j

b|l −
Aj−2∑
k=1

k �={a,b}

P j
ak log2 P j

k|a −
Aj−2∑

k=1

k �={a,b}

P j
bk log2 P j

k|b

and the conditional entropy per vector associated with Qj+1 is

LRj+1 = −
Aj−1∑
l=1

Aj−1∑
k=1

P j+1
lk log2 P j+1

k|l = −
Aj−2∑

l=1
l �=ab

Aj−2∑
k=1

k �=ab

P j+1
lk log2 P j+1

k|l (69)

−
Aj−1∑
l=1

P j+1
lab log2 P j+1

ab|l −
Aj−2∑
k=1

k �=ab

P j+1
abk log2 P j+1

k|ab .

Therefore the total decrease of conditional entropy is given by

∆Rj+1 = Rj − Rj+1 =
1
L

Aj−2∑
k=1


P j+1

abk log2 P j+1
k|ab︸ ︷︷ ︸

k �=ab

−P j
ak log2 P j

k|a︸ ︷︷ ︸
k �={a,b}

−P j
bk log2 P j

k|b︸ ︷︷ ︸
k �={a,b}


 (70)

+
1
L

Aj−1∑
k=1

P j+1
lab log2 P j+1

ab|l − 1
L

Aj∑
k=1

[
P j

la log2 P j
a|l + P j

lb log2 P j
b|l
]

22



In order to simplify the calculation of the drop in entropy given by (70) let us define auxiliary

variables. Define the matrix Nj , the so called contingency table, A0 × A0 that represents the un-

scaled value of the joint probability mass function P j
lk, i.e., Nj = [nj

lk] for k and l = 1, ..., A0. This

matrix multiplied by 1
N produces the joint probability masses. Note that the unscaled values of

the marginal probabilities must follow the relationships:

nj
k =

A0∑
l=1

nj
lk,

nj
l =

A0∑
k=1

nj
lk,

with the index k associated with the unscaled probability value of the vector to be encoded and the

index l associated with the unscaled probability value of the previous encoded vector. Of course,

n
j
k = n

j
l ∀ k = l

and, as was mentioned, these values are stored in a vector nj . We can observe that the rate

decrease equation, (70), depends on the matrix Mab[Nj]. Therefore, for a better understanding,

let us consider the merge operator applied to the matrix Nj in an example. Define a matrix Nj

with size 3× 3 and let a and b indicate the possible codevectors to be merged given as follows:




a
⇓

b
⇓

a⇒ A B C

D E F

b⇒ G H I




after a merge operation Mab[Nj], the matrix takes the following form,




a
⇓

b
⇓

a⇒ A + C + G + I B + H 0

D + F E 0

b⇒ 0 0 0




where the null row and column signifies that the codevector yj
b might be deleted from the

codebook. The merge operation over the vector nj is trivial. We would like to point out, that it is

not necessary to evaluate the logarithms for the evaluation of ∆Rj+1. A better way is to perform

pre-computation of the logarithms from 1 to N and store in a look-up table, and access this table
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as necessary. The use of this table is one of the keys to fast computation. This kind of operation

is not possible for generalized Lloyd type algorithms, such as the CECVQ design algorithm [6].

The average distortion per sample Dj+1(a, b) and the average rate per sample Rj+1(a, b) ob-

tained when the vectors associated with the TS are quantized with Qj+1(a, b) are then,

Dj+1(a, b) = Dj + ∆Dj+1
ab (71)

and

Rj+1(a, b) = Rj − ∆Rj+1
ab . (72)

Now we need to decide which pair (a, b) will give the best quantizer in the PNN sense. To

discuss optimality, let us consider the quantizer Qj with distortion Dj and rate Rj. The next

quantizer in the sequence is a merged (a, b) version Qj+1(a, b) = Mab[Qj], for some value of (a, b)

with a rate Rj+1(a, b). Let us examine in the distortion versus rate plane two quantizers Mab[Qj]

and Ma′b′ [Qj] with respect to Qj. Figure 5 displays the points (Rj, Dj), (Rj+1(a, b), Dj+1(a, b))

and (Rj+1(a′, b′), Dj+1(a′, b′)) in R × D. We can conclude upon examining this figure that, in

the distortion-rate sense, the best sequence of quantizers generated with the merging operation

is obtained by selecting the next member of the sequence in such a way that the line joining the

corresponding (R, D) points has minimum inclination. The optimality of this least ascendent rule

guiding the choice of the next quantizer in the sequence is guaranteed only if the distortion-rate

curves are convex [20].

We will denote the ratio of distortion increment to rate decrement obtained in connection with

quantizer Qj+1(a, b) by

sj+1
ab =

∆Dj+1
ab

∆Rj+1
ab

. (73)

The strategy to choose the new quantizer Qj+1(a, b) = Mab[Qj] is to search all possible s ratios

to find the minimum,

sj+1
αβ = min [sj+1

ab ] ∀ a, b ∈ Aj, a �= b, (74)

where α and β are the pair of partition cells selected for merging.

The new quantizer generated by the procedure above is formed by the previous and newly

merged partition cells and the previous codebook with one deleted codevector.

At this point we can conclude that this procedure is computationally quite intensive when we

operate with a large training set. This problem of large computation can be circumvented if we

initialize the design procedure with a high rate (measured by the conditional entropy) codebook
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instead of the training sequence. A reasonable choice for an initial codebook, as adopted by the

ECVQ and CECVQ, is one designed by the generalized Lloyd algorithm. With this initialization

the initial rate R0 is equal to HGLA (the first order block conditional entropy), and the initial

distortion D0 is equal DGLA. We are now in position to describe the algorithm.

Algorithm

• Step 1 (Initialization)

Set j = 0; A0 = M ; C0 = CGLA; y0
i = yGLA

i , n0 = [nk]GLA, k = 1, . . . , M ; N0 = [nlk]GLA, k =

1, . . . , M and l = 1, . . . , M ; D0 = [∆D0
ab] a = 1, . . . , M and b = 1, . . . , M ; D0 = DGLA; R0 =

HGLA;

• Step 2 (Find the best minimum PNN conditional entropy quantizer Qj+1(a, b))

Get the pair of indices (α, β) for the slope sj+1
αβ such that

sj+1
αβ = min[sj+1

a,b ]

a, b ∈ Aj, a �= b

• Step 3 (Quantizer and encoder partition set update)

Cj+1 = Mαβ[Cj]

Dj+1 = Dj + ∆Dj+1
αβ

Rj+1 = Rj − ∆Rj+1
αβ

Dj+1 = Mαβ[Dj]

nj+1 = Mαβ[nj]

Nj+1 = Mαβ[Nj]

• Step 4 (Recursion Counter)

Set j = j + 1

• Step 5 (Stopping Rule)

If stopping criterion is not met, return to Step 2, else stop.
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One choice for the stopping rule at Step 5 is, for instance: stop if Rj+1 ≤ Rt where Rt is a target

minimum rate. There are, of course, other choices.

Finally, in order to satisfy the quantization rule in (64) for the data outside the design process

we need to define the parameter λ, for each quantizer found by the CECPNN algorithm as

λj = −Dj+1 − Dj−1

Rj+1 − Rj−1
with j = 1, . . . ,J , (75)

where J + 1 is the stopping number of the recursion counter in the algorithm. This parameter has

an interpretation as the slope of a line supporting the convex hull of the L-dimensional operational

conditional entropy-constrained distortion-rate function.

5.2 Experimental Results

The first result presented in this section pictured in the Figure 6 compares the D(R) distortion-rate

function, where D is given in dB, i.e., D(dB) = 10 log10(D) of an AR(1) and AR(2) process, with

source model as given in Section 5, and the theoretical quantizer bound D̂CE
L for L = 4, when

the fidelity criterion is the mean square error. Instead of using the vector Shannon lower bound

for D(R), we have used D(R) itself, since it can be evaluated for stationary Gaussian sources [20],

from the parametric equations given by:

Rθ =
1
2π

∫ π

−π
max

[
0,

1
2

log2

SXX(ω)
θ

]
dω, (76)

Dθ =
1
2π

∫ π

−π
min [θ, SXX(ω)] dω, (77)

where SXX(ω) is the discrete-time source power spectral density (psd) and the nonzero portion

of the R(D) (or D(R)) curve is generated as the parameter θ traverses the interval 0 ≤ θ ≤

ess sup SXX(ω), where ess sup denotes the essential supremum of a function. The theoretical

operational quantizer bound in Figure 6, as expected, lies above the true D(R) at higher rates,

where it is valid, and the portion below the D(R) at low rates, where it is invalid, should be

disregarded. This Figure is provided mainly for comparison with the operational distortion-rate

bound curves given by the implementation of VQ systems presented in this section.

ECPNN, CECPNN and CECVQ codebooks are generated to quantize the output of AR(1) and

AR(2) sources with zero mean (mX = 0) and unit variance (σ2
X = 1) subject to mean square error

criterion. The distortion is represented in terms of the signal-to-quantization-noise ratio (SQNR)

measured in dB, defined as SQNR = 10 log10(
σ2

X
Dmse

). To generate the results shown, the sizes of the
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training sequence and test sequence were 262,144 and 163,840 samples each. All results are outside

the training set.

The initial codebook for CECPNN and CECVQ was designed using the GLA with codebook

size of 256 codevectors, with dimension L = 4. Figure 7 compares the distortion-rate performance

between the codebooks generated by CECPNN and CECVQ, when used to quantize the test se-

quence. We can note that there is indistinguishable difference in performance for an AR(1) source.

In the case of the AR(2) source there is an advantage of CECVQ over CECPNN of less than 0.5 dB,

when the rate is below 0.5 b/s. In Figure 8 is compared the size of codebooks used for quantization

when the codebook is generated by CECVQ and CECPNN. We can see that CECPNN operates

with much smaller codebooks. Furthermore, there is a big computational saving using CECPNN

codebooks. Here, we want to point out that since we are interested in the distortions obtainable

over a whole range of rates, we ran the CECVQ algorithm repeatedly on an increasing sequence of

λ’s, beginning with λ0 = 0 (given by the GLA) and increasing in a manner consistent with obtain-

ing sufficient resolution along the rate axis. The final codebook for λj is the initial codebook for

λj+1, as suggested by [5] and [7]. Note that this procedure is an heuristic one to decrease the size of

CECVQ codebooks. In order to obtain the codebooks we should operate CECVQ (or ECVQ) with

several initial codebook sizes and select the (R, D) points that form the operational convex hull.

In practice, since we are generally interested in several rates, this procedure can be very tedious.

We should have in mind that CECVQ and ECVQ algorithms exhibit the tendency to populate

some partition cells that have small statistical significance. We point out that similar results were

obtained when we compared ECPNN and ECVQ for i.i.d Gaussian and AR(1) sources in [6]. The

last point, is that CECPNN and ECPNN have the disadvantage that we cannot obtain a continuous

distortion-rate curve, only a set of discrete points spaced in a close proximity corresponding to the

rate difference of a merge. On the other hand, the CECVQ or ECVQ approach should be able to

operate at the exact desired rate through a cut and try procedure to find the appropriate λ.

In Figures 9 and 10, we exhibit the operational distortion-rate curve found by CECPNN and

ECPNN for AR(1) and AR(2) sources. The initial codebook size for CECPNN and ECPNN with

vector dimension L = 4 was again 256 codevectors, and for ECPNN with vector dimension 2L = 8,

it was 2048 codevectors. Also displayed is the quantizer bound Dce
lb,L for L = 4. We note that

for the AR(1) source, the bound is very close to the operational distortion-rate performance, but,

for the AR(2) source, the bound deviates by 2.0 dB. We should remember that the bound is a

lower bound derived for high rates, and that our design is not optimal. These figures show that
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the operational gain of conditional entropy- constrained VQ over entropy-constrained memoryless

VQ with the same dimension L = 4 is roughly 1.5 dB for the AR(1) source above the rate of

0.3 b/s and 2.0 dB for the AR(2) source above the rate of 0.6 b/s. The CEA, M c
1(L, r), estimates

these gains to be 1.80 and 3.0 dB, respectively, for each source at high rates. Upon doubling the

dimension of the entropy constrained VQ to 2L = 8, these figures show a gain for conditional

entropy-constrained VQ with dimension L = 4 for the AR(1) source above the rate of 0.6 b/s and

for the AR(2) source above the rate of 0.8 b/s. These gains, which reach about 0.2 dB, are notably

smaller than those calculated from the corresponding high rate CEA, M c
2(L, r), which are 0.63

and 1.38 dB, respectively. Evidently, simulations would have to be conducted above the present

maximum rate of 1.4 b/s to verify these CEA gains.

Finally, in Figure 11 is plotted the codebook size of the experiments of Figures 9 and 10. We can

see that there is a tremendous computational advantage of the conditional entropy-constrained VQ’s

(L = 4) over the entropy-constrained VQ’s (L = 8). This result is a possible justification for the

use of CECVQ’s in practice if we are interested in full-search vector quantizers with variable length

codewords. Let us further examine the question of complexity for an L-dimensional conditional

entropy-constrained vector quantizer when compared with a 2L-dimensional entropy-constrained

vector quantizer. The full search (with look-up table) complexity of L-dimensional VQ (memoryless

or non-memoryless) is roughly

LM multiplies,

LM additions and

M − 1 comparisons.

With these expressions in mind, let us use the results of Figure 11, in particular for a target rate

of R = 1.0 b/s. We can see by Table 1 that there is a big computational saving using conditional

entropy-constrained vector quantizers. Now, when both schemes work with the same vector di-

mension, where the distortion-rate performance of the conditional scheme is clearly superior, the

computational complexity for the unconditional one is smaller by about a factor of two, as seen in

Table II.

The main tradeoff in the use of conditional entropy-constrained vector quantizers is the increase

in storage, when both conditional entropy-constrained VQ and entropy-constrained VQ operate

with the same vector dimension. However, in certain types of applications the use of these non-

memoryless machines may be justified, since they provide excellent distortion-rate performance
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Table I

CECPNN of Dimension L = 4 versus ECPNN of Dimension 2L = 8

VQ system SQNR (dB) R (b/s) multiplies additions comparisons source

CE 11.51 0.955 228 228 56 AR(1)

E 11.26 0.974 5824 5824 727 AR(1)

CE 11.88 0.968 268 268 66 AR(2)

E 11.80 0.992 4576 4576 571 AR(2)

Table II

CECPNN of Dimension L = 4 versus ECPNN of Dimension L = 4

VQ system SQNR (dB) R (b/s) multiplies additions comparisons source

CE 11.51 0.955 228 228 56 AR(1)

E 10.46 0.991 124 124 30 AR(1)

CE 11.88 0.968 268 268 66 AR(2)

E 9.90 0.987 140 140 34 AR(2)
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Table III

CECPNN with Dimension L = 4 versus ECPNN with Dimension L = 4 Storage Requirements

VQ system SQNR (dB) R (b/s) storage source

CE 11.51 0.955 3477 AR(1)

E 10.46 0.991 155 AR(1)

CE 11.88 0.968 4757 AR(2)

E 9.90 0.987 175 AR(2)

Table IV

CECPNN with Dimension L = 4 versus ECPNN with Dimension 2L = 8 Storage Requirements

VQ system SQNR (dB) R (b/s) storage source

CE 11.51 0.955 3477 AR(1)

E 11.26 0.974 6552 AR(1)

CE 11.88 0.968 4757 AR(2)

E 11.80 0.992 5148 AR(2)

when compared to the memoryless ones. Roughly, the storage requirements for a conditional

entropy-constrained VQ is

ML + M2 storage units,

and for an entropy-constrained VQ is

ML + M storage units.

Let us compare the storage requirements for a conditional entropy-constrained VQ with L =

4 and an entropy-constrained VQ with L = 4, for a target bit rate of R = 1.0 b/s. The results

are shown on Table III. Certainly, in terms of storage the entropy constrained VQ’s have a better

performance than the conditional entropy-constrained VQ’s when both systems operate with the

same vector size.

Upon computing the storage requirements for the systems of Table I, we obtain the results

shown on Table IV. Note that even in terms of storage, the conditional entropy-constrained VQ’s
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are competitive with the entropy constrained VQ’s if the conditional scheme operates with half of

the codevector size used by the unconditional one. We would like to point out that the storage

requirements depend on the implementation of the entropy coder. For example, Huffman codes do

not require storage of probabilities, whereas arithmetic codes do. Consequently our numbers for

storage requirements may be inexact, and should be interpreted just as a guideline. Therefore, the

last word should be given by the designer, weighing distortion-rate performance, computational

complexity and storage.

6 Conclusions

The extension of high-rate quantization theory for conditional entropy-constrained vector quantizers

is proposed, as a result a new quantization bound is found, through extension of the works of Gersho

[10] and Yamada, Tazaki and Gray [1]. A new design technique for conditional entropy-constrained

vector quantization has been suggested. The algorithm, called CECPNN, is based on the same

partitional clustering technique used in [6]. The sequence of quantizers recursively generated by

the CECPNN algorithm has an operational distortion-rate function that closely approximates the

performance of CECVQ, the iterative procedure quantizer design method proposed by Chou and

Lookabaugh [7]. This fact has been shown by quantizing autoregressive Gaussian sources. It was

verified that the size of the CECPNN codebook is much smaller than the CECVQ codebook when

compared at the same distortion-rate performance. We have shown that the performance bound

seems to be reasonably tight for the synthetic sources used in this work, especially for the AR(1)

source. We have established the main motivation for conditional entropy-constrained VQ’s as the

reduction of computational complexity, since theoretically and experimentally we have shown that

an entropy-constrained VQ must operate with the twice the vector dimension in order to obtain

equivalent distortion-rate performance. Future research should be done in the design of coders

that use this kind of VQ system, in order to evaluate the possible improvement on the overall

distortion-rate performance, computational complexity and storage.
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