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Abstract

This work presents compression algorithms which build on a state-of-the-art codec, the Set

Partitioned Embedded Block Coder (SPECK ), by incorporating a lattice vector quantizer code-

book, therefore allowing it to process multiple samples at one time. In our tests, we employ scenes

derived from standard AVIRIS hyperspectral images, which possess 224 spectral bands.

The first proposed method, LVQ-SPECK, uses a lattice vector quantizer-based codebook in the

spectral direction to encode a number of consecutive bands that is equal to the codeword dimension.

It is shown that the choice of orientation codebook used in the encoding greatly influences the

performance results. In fact, even though the method does not make use of a 3D discrete wavelet

transform, in some cases it produces results that are comparable to those of other state-of-the-art

3D codecs.

The second proposed algorithm, DWP-SPECK, incorporates the 1D discrete wavelet transform

in the spectral direction, producing a discrete wavelet packet decomposition, and simultaneously

encodes a larger number of spectral bands. This method yields performance results that are

comparable or superior to those attained by other 3D wavelet coding algorithms such as 3D-

SPECK and JPEG2000 (in its multi-component version).

We also look into a novel method for reducing the number of codewords used during the refine-

ment pass in the proposed methods which, for most codebooks, provides a reduction in rate while

following the same encoding path of the original methods, thereby improving their performance.

We show that it is possible to separate the original codebook used into two distinct classes, and

use a flag when sending refinement information to indicate to which class this information belongs.
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In summary, given the results obtained by our proposed methods, we show that they constitute

a viable option for the compression of volumetric datasets with large amounts of data.

I. Introduction

Several data compression algorithms have been proposed in last few years as the demands for

digital storage and transmission of information have become increasingly large. In this article, we

examine how the use of Lattice Vector Quantization (LVQ) affects the performance behavior of

quadtree-based codecs. The subject is brought up by the vast number of data sources that can

be categorized as vector-valued ones including, but not limited to, volumetric medical images,

hyperspectral images, video sequences etc.

Although very good performance can be obtained with the use of current state-of-the-art scalar

codecs [1]–[3], it remains true that jointly encoding a group of samples, i.e. vector quantizing

them, should provide better results, even though at a complexity cost. By employing lattice vector

quantization, we hope to achieve a balance between performance and complexity, knowing that

not all coding gain improvements will be achieved, but keeping complexity down by avoiding the

training phases that standard vector quantizers have to go through.

The advent of the discrete wavelet transform (DWT) [4], [5] and subband-based decomposition

systems in general [6], and their recognition as potential substitutes for then ubiquitous discrete

cosine transform (DCT) [7] led to the development of several compression systems.

Amongst wavelet coders, the Embedded Zerotree Wavelet (EZW) codec [8] was one the first to

achieve very good results, while managing to keep complexity at a very low level. It employed a tree

structure to bundle groups of samples from across the decomposed subbands (interband encoding),

representing a given spatial location on the original image that, at the current encoding threshold

level, would be deemed insignificant and, therefore, coded as zero. Hence the name zerotree.

An improvement over EZW was obtained by the Set Partitioning in Hierarchical Trees (SPIHT)

codec [2], which set up spatial orientation trees of coefficients in a more efficient way, resulting in a

better exploitation, and consequently removal, of intrinsic redundancies present in the data to be

coded. This fact was evidenced by the very small gains obtained when further entropy encoding

SPIHT’s output with an arithmetic coder [9].

Switching from an interband to an intraband setting, the Set Partitioning Embedded Block Coder

(SPECK) [1], [10] looked to rapidly converge on significant pixels (wavelet coefficients), while

grouping non-significant adjacent samples within a subband into coding blocks.
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The list of most relevant state-of-the-art still image compression systems is completed by the

Embedded Block Coder with Optimized Truncation (EBCOT) codec [3], which is the main encoding

algorithm behind the JPEG2000 image compression standard [11].

All of the above codecs were initially designed to process two-dimensional images. However,

given the numerous applications that involve the use of three- or higher dimensional datasets, it

was only a matter of time before extensions for higher dimensional versions of all of them were

proposed. Amongst them we may cite the 3D-SPIHT [12] and 3D-SPECK [13] codecs and the

Volumetric Imaging option of the JPEG2000 standard [11] (JPEG2000 Part 10).

A. Outline

In Section II we present a brief definition of hyperspectral images along with a description of the

AVIRIS dataset and review some of the previous work regarding compression of those datasets.

We also define the figure of merit that will be used throughout the article whenever a quantitative

comparison is presented.

Section III introduces the concept of lattices and discusses some of their properties, especially

those important for their use as quantizers. We then proceed to review a few compression algo-

rithms, including codecs which have served as basis for our development.

The compression of higher dimensional datasets is the subject of Section IV. After a brief review

of the partitioning routines of the SPECK algorithm, we introduce the LVQ-SPECK algorithm,

which extends the concepts of block set-partitioning present in SPECK to simultaneously encode a

number of consecutive spectral bands in a hyperspectral image volume. This is accomplished with

the use of a lattice vector quantizer applied in the spectral direction.

A second algorithm, DWP-SPECK, adds a 1D discrete wavelet transform in the spectral direc-

tion to produce a discrete wavelet packet decomposed dataset. By using this decomposition and

processing yet a larger number of consecutive bands, the method attains very good compression

performance.

In Section V, we introduce a new technique to reduce the number of codewords used in the

refinement codebook. In particular, we separate the original codebook into two distinct classes

which are selected according to whether the best reproduction codeword points towards the outside

or the inside of the current encoding hypersphere. Results show that for most choices of codebook,

there is an improvement in the performance of both LVQ-SPECK and DWP-SPECK.

Lastly, Section VI presents a summary of the work herein developed.
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Image Name Volume Size Bit Depth Power (Px)

Cuprite (Scene 01)

512×512×224 16

6306786

Cuprite (Scene 04) 7141669

Jasper Ridge (Scene 01) 2583295

Jasper Ridge (Scene 03) 2458457

TABLE I

Characteristics of AVIRIS hyperspectral image volumes

II. Review and Definitions

A. Hyperspectral Images

A hyperspectral image is a dataset which contains a given scene observed through a large number

(usually, in the hundreds) of wavelengths. Therefore, such a remote sensing operation produces,

for each pixel of the scene, its spectrum.

In the case of AVIRIS hyperspectral images, each run of the airborne sensors produces scenes

which are 614 pixels wide and have 224 spectral bands. The length of a run is not defined a priori

but, to keep storage of the raw data manageable, each strip is divided into 512 pixels long scenes.

For each band, the value of each pixel is stored as a 16-bit signed integer.

Table I presents characteristics of the datasets that will be used throughout this work. It should

be noted that each scene has been further cropped to a 512×512×224 block, so that comparison

with other existing methods can be more easily made.

B. Existing Compression Methods

A lot of attention has been given to compressing hyperspectral images, due not only to the often

sensitive nature of the acquired information but also because of the usually large amount of data

needed to represent it.

Methods spanning from direct quantization of spectral values [14], [15] to those that employ

the discrete wavelet transform [16] as a decorrelating step were developed, providing good com-

pression capabilities along with good quality representation. Several methods also provide lossless

compression capabilities.

In [14], [15], Motta et al. define a partition of the spectral space whose boundaries are optimized

by repeated application of a Generalized Lloyd Algorithm [17] (GLA) variant. Considering the
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original data set to have a dimension D, the design of a D-dimensional vector quantizer, which is

usually computationally prohibitive, would be required. Instead, the method chooses to design N

vector quantizers, each with dimension di, where
∑N

i=0 di = D.

The resulting Partitioned Vector Quantizer is then the Cartesian product of all the lower di-

mensional dictionaries. In order to remove part of the remaining source redundancy, each resulting

vector quantization (VQ) index is also conditionally entropy encoded based on a causal set of

spatially and spectrally adjacent indices.

As opposed to the previously described method, which encodes the spectral band intensity values

directly, a number of methods that apply a decorrelating transform were developed. In [16], a 3D

version of the quadtree-based codec SPECK [1] was introduced.

3D-SPECK divides the hyperspectral block into sub-blocks of 16 spectral bands at a time, applies

a 3D discrete wavelet transform (DWT) and extends the concepts of partitioning sets and rules to

the three-dimensional case. Given the energy compaction properties of the DWT, and SPECK’s

efficiency in the coding of significance information, the method achieves very good compression

results.

A multidimensional version of SPIHT that employs the VLVQ encoding concepts described in

[18] was also used to compress hyperspectral images. In that work, different vector quantizers are

defined by varying both the four-dimensional lattice and the significance measure being used. Three

different options are explored – the cubic lattice Z
4 coupled with the L∞ norm and the D4 lattice

with both the L1 and L2 norms.

Perhaps among the best results presented so far in compressing AVIRIS [19] datasets are those

of algorithms that employ PCA decomposition in the spectral direction as a pre-quantization

transform [20]. However, the use of an optimal transform such as the KLT implies in a pre-

processing stage prior to encoding every dataset and expanded buffering capabilities, as the whole

dataset must be processed at once.

C. Quantizer Performance

Even though its relation to any subjective quality assessment has been regarded as questionable

in many areas [21], [22], when analyzing the encoding performance of the proposed methods we

will use the signal-to-noise ratio (SNR) function, defined as

SNR(x, x̂) = 10 log
Px

dMSE(x, x̂)
(1)
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Fig. 1. Z2 lattice

where Px is the average power of the input signal X and dMSE(x, x̂) is the mean squared-error

(MSE) function

dMSE(x, x̂) = E[(x − x̂)2]. (2)

III. Successive Approximation of Vectors

A. Lattices and Their Characteristics

A lattice [23] Λ is a set of points x in the n-dimensional space R
n such that

x = a1v1 + a2v2 + . . . + anvn, (3)

where {vi} is a basis for R
n and ai ∈ Z, where Z is the set of integers and R is the set of real

numbers. Fig. 1 shows an example of a lattice on the Cartesian plane.

Given a lattice Λ, we define a lattice shell around a given point x0 as the set

Λshell(x0) = {x ∈ Λ : ‖x − x0‖ = l, l ∈ R}, (4)

that is, the set of lattice points that are equidistant to a given origin x0. Without any loss of

generality, we will take x0 =
−→
0 , the coordinate system’s origin.
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Lattice Shell Cardinality θmax

D4 1 24 45o

D4 2 24 45o

E8 1 240 45o

Λ16 1 4320 55o

TABLE II

Lattice properties summary

For a shell, the maximum angular distance between any given point and the closest available

shell point is denoted by θmax = Θmax(Λshell) and defined as [24]

Θmax(Λshell) = cos−1

{

max
x∈Rn

{

min
ui∈Λshell

(

〈x,ui〉

‖x‖ ‖ui‖

)}}

, (5)

where 〈x,ui〉 denotes the inner product of the vectors x and ui.

Therefore, if a given shell Λshell is used as a quantizer, an n-dimensional source input vector will

make, at most, an angle of θmax with the closest quantizer codevector.

It has also been shown in [24] that for every Λshell that is used as a quantizer, and its correspond-

ing θmax, there exists a quantity, which shall be denoted αopt, that defines the fastest contraction

rate to which Λshell may be submitted to, such that the union of the Voronoi regions of the original

shell and those of subsequent contractions will cover the entire n-dimensional space.

Even though lattices are available for any number of dimensions, we will be interested in only a

few ones, whose characteristics make them more appropriate for use in a successive approximation

setting, and also in the sense that it provides us with results which are more suitable to be compared

against those already presented in the literature. Particularly, in our experiments we will use two

different shells of the D4 lattice and the first shell of the E8 and Λ16 lattices. A brief summary of

their properties is presented on Table II.

B. Vector Extensions for Wavelet Codecs

In extending a scalar codec to deal with vector-valued samples, there usually is no reason to

discard certain classes of vector quantizers from being used as codebooks. In practice, however,

complexity issues associated with the use of unconstrained (e.g. LBG-optimized [25], [26]) vector

quantizers, especially at higher dimensions, lead to the use of structured types of codebooks, such

as tree-structured and lattice-based ones.
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Amongst those, we will be particularly interested in lattice vector quantizers, given that they

possess characteristics that are desired in a set of n-dimensional points that is to be used as a

codebook in a successive approximation type codec [27], such as:

1. for a given vector dimension n, the value of θmax for shell-based lattice vector quantizers is

smaller than that of codebooks based on other lattices (e.g. the Z
n).

2. considering different shells of the same lattice, the higher the cardinality of a shell, the smaller

the value of θmax and, consequently, the number of refinement passes needed until convergence.

3. higher values of codebook dimension translate into higher cardinality and value of θmax. How-

ever, that is offset by a decrease in the number of bits per dimension needed.

Based on the preceding argument, it is expected that constant-norm shells (or combination

thereof) of regular lattices should be considered as natural candidates in the definition of codebooks

– which will also be denoted orientation codebooks – for use in successive approximation methods.

We now review two vector-based still-image codecs whose codebooks are based on the lattices

herein discussed.

1) The SAWVQ Approach – Generalized Bitplanes: The Successive Approximation Wavelet

Vector Quantizer (SAWVQ) [28] algorithm is a vector-based extension of the EZW codec [8] –

and therefore also mentioned in the literature as VEZW – that employs a shell-based, orientation

codebook as its quantizer.

Formally, a vector v, ‖v‖ ≤ 1, is said to be successively approximated by a sequence of codewords

ul if the summation

v =

∞
∑

l=0

αl
ul, (6)

ul ∈ C = {c0, c1, ..., cK}

converges, where C is the codebook, ck are the codewords and α (0 < α ≤ 1) is a scaling factor

to account for the fact that after each interaction the residual error is bound by a smaller N -

dimensional hypersphere.

As mentioned in Sec. III-A, for every codebook – and codeword dimension – there is a choice

(often empiric) of α that proves to be optimal, i.e., that provides the best representation results.

Since in lossy coding we are interested only in obtaining a close enough approximation of the

original data, that is, with a limited amount of error, a finite summation is used instead of the
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Fig. 2. Successive approximation of vectors using an orientation codebook.

infinite one, resulting in

vL =
L

∑

l=0

αl
ul. (7)

Given that this vector approximation method is a direct extension of the scalar bitplane encoding

concepts used by SPIHT [2] and other scalar codecs, we shall henceforth denote it generalized

bitplane encoding of vectors. The process is depicted in Fig. 2.

It was also shown in [24] that this type of method for successively approximating vectors is

guaranteed to converge in a finite amount of time.

For more information on the SAWVQ algorithm, the reader is referred to [28].

2) The VSPIHT Approach – VLVQ Encoding: Mukherjee and Mitra [29], [30] also presented a

structured method for successive refinement of vectors, in which scaled versions of a given lattice

are used as quantizers over each step of the approximation process. However, unlike SAWVQ,

VSPIHT employs a different codebook populating strategy.

Instead of choosing constant-norm sets of vectors (shells) from a given multidimensional lattice,

the VSPIHT algorithm truncates the lattice to a given number of points around the origin and

uses those as codevectors.

The encoding process in VSPIHT is based on Voronoi region approximation and the codebook

is based on the following definitions:

• Base lattice (Λ1): lattice coset from which the codebook is actually derived.

• Shape lattice (Λ0): higher scale lattice which determines the shape of the codebook.

The resulting quantizer, called Voronoi Lattice Vector Quantizer, is therefore defined as

VLVQ(Λ0,Λ1) = V0(Λ0) ∩ Λ1 (8)
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Fig. 3. Initial data partition – SPECK algorithm

where V0(Λ0) is the zero-centered Voronoi region associated with the lattice. The shape lattice is

defined so that it covers the n-dimensional region of support of the data source and, in the most

common case, the base lattice is just a scaled down and (possibly) translated version of the shape

lattice, i.e.,

Λ1 =
Λ0

r
− t, (9)

t being the translation vector.

More detailed descriptions of the VSPIHT algorithm can be found in [29], [30].

IV. Wavelet Coding of Hyperspectral Images

A. The SPECK Partitioning Routines

Instead of exploiting the interband similarities of wavelet coefficients as done by SPIHT [2] and

other codecs, the Set Partitioned Embedded Block Coder (SPECK) [1], [10] employs a different

approach, defining sets based on blocks of coefficients from within a single subband of the transform

data, and defining trees in terms of recurrent splitting of these blocks.

Considering that the approximation process in SPECK, i.e. both the sorting and the refinement

steps, are spatially restricted to a given subband, the algorithm inherently possess a resolution

scalability feature. In fact, a given n× n image may be reconstructed to size n/2× n/2 simply by

ignoring the highest frequency subbands.

The two types of sets used by SPECK are referred to as S and I sets. S sets are rectangular

blocks of the image (hence the name Block Coder), of varying dimensions, that depend on the size

of the original image and the level of the pyramid decomposition to which the set belongs. Fig. 3

shows the initial assignment of S and I sets. After decomposing the input image in subbands
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O3(S)O2(S)

Fig. 4. S-type set partitioning in SPECK

Ik Ik+1

S S

S

Fig. 5. I-type set partitioning in SPECK

with the application of a DWT, the set X , which has the same dimensions of the original data,

is divided in two sections. The initial set S is assigned to the region corresponding to the LL

frequency subband with coarsest scale. To the remaining piece of data, corresponding to X −S, is

assigned the initial set I.

SPECK also uses lists – managed identically by both the encoder and the decoder – to classify

sets and implement the quantization step as well. SPECK maintains only two lists, the List of

Insignificant Sets (LIS) and the List of Significant Pixels (LSP).

After submitting the input data to the subband decomposition, encoding proceeds by setting up

the initial S and I sets, as previously mentioned. In the sorting pass, each currently existing set

of type S is processed by the function ProcessS(), which checks the set for significance against

the current encoding threshold. If the set is declared insignificant, it is moved to the LIS.

However, when a set is found to be significant, two options are available. The first one treats

those sets that are made of a single pixel, by outputting the sign of that coefficient and moving it
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to the LSP. If the set is comprised of a group of pixels, then the function CodeS() (to be described

soon) is called to further process it. In order to correctly maintain the lists, if the set was previously

in the LIS, it is then removed from it.

The CodeS(S) function takes a type S set as its input and divides it into four offspring Si =

Oi(S), i = 0, 1, 2, 3, that are also sets of type S, but with half the linear dimensions of the parent

set, as shown in Fig. 4. CodeS() also outputs the results of the significance test for each Si, and

adds them to the LIS whenever applicable. If the Si is deemed significant, again there are two

possibilities: if Si is a pixel, its sign is added to the bitstream and the set is added to the LSP.

However, if it is not a pixel, another recursion of the CodeS(Si) is called.

The two remaining functions used by SPECK involve processing the I set. The ProcessI()

function checks the significance of the I set and outputs it to the bitstream. In addition to that,

if the result is indeed a positive one, it also calls the CodeI() function.

Lastly, the CodeI() function partitions I into three sets Si and one updated I, as depicted in

Fig. 5. Also, for each Si, it invokes ProcessS(Si) and, lastly, ProcessI() for the updated version

of I.

For a complete description of SPECK and all its properties, the reader is referred to [1].

B. The LVQ-SPECK Algorithm

The compression algorithms herein proposed are variants of the two-dimensional SPECK, modi-

fied to deal with multidimensional data. In particular, the first proposed version, LVQ-SPECK [31],

treats each spectral vector as a multidimensional pixel, following the encoding steps originally

defined for SPECK.

In LVQ-SPECK, each component of this n-dimensional pixel v(m1,m2) is extracted from the

same spatial position (m1,m2) in a set of n adjacent spectral bands. In particular, Fig. 6 shows

how a vector sample v(m1,m2) is defined for a given Group of Images (GOI) of dimension 4.

Hence, for each spatial coordinate, we have

v(m1,m2) = (bn(m1,m2), bn+1(m1,m2), bn+2(m1,m2), bn+3(m1,m2)) , (10)

where each component belongs to a distinct spectral band.

Amongst the necessary changes made to SPECK so that it would become a vector-based codec,

we may cite the introduction of a lattice-based vector codebook, the definition of vector significance

against a threshold, and the threshold scaling factor α.
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bn+2

bn

bn+1

bn+3

(a) Group of Images (spectral bands)

bn+2

bn

bn+1

bn+3

(b) Four-dimensional vector sample

v(m1, m2)

Fig. 6. Spectrally-adjacent Group of Images (GOI) for encoding in LVQ-SPECK.

Being a successive approximation based method, however, LVQ-SPECK retains those char-

acteristics that make the class of encoders such as SPECK a very successful one, such as the

embeddedness of the bitstream and its quality and rate scalability. Spatial resolution scalability is

also inherently present, since the sorting and refinement steps will still deal with blocks who are

spatially confined within a subband.

LVQ-SPECK applies a 2D discrete wavelet transform to each of the scalar bands, generating a

group of adjacent data sets containing transform coefficients. Even though LVQ-SPECK encodes

a three-dimensional block of data, it does not use any kind of transform in the spectral direction.

Therefore, the dataset to be encoded is comprised of sets of 2D wavelet transformed coefficients.

The LVQ-SPECK encoding process follows the vector-based successive approximation method

presented by Eq. 7. In other words, during each encoding pass, after a vector v(m1,m2) is deemed

significant, the approximation is done by choosing the one codeword that best represents the

residual error between the original data and its current reconstructed version.

Since LVQ-SPECK deals with vector quantities, the significance measure used will now compare

the norm of the encoding vector against the current threshold Tn, that is

Γn(T ) =















1, if max
(m1,m2)∈T

‖v(m1,m2)‖ ≥ Tn

0, otherwise.

(11)
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Initialization:

Start

Apply 2D DWT to each one of the n bands to be processed

Output T0 = αvmax

Start

Partition image transform X into S and I = X − S sets

Add S to LIS

Set LSP = ∅

End

End

Quantization-pass update:

Start

Tn+1 = αTn

goto: Sorting Pass:

End

Fig. 7. The LVQ-SPECK Algorithm – modifications when compared to SPECK

As in VSPECK, the initial threshold is defined based on the largest value to be encoded,

vmax = max
(m1,m2)∈X

(‖v(m1,m2)‖) (12)

which in this case is the largest L2 norm among all the transform vectors. However, the threshold

scaling rate is no longer restricted to 0.5, as previously described in Section III-B1.

The LVQ-SPECK algorithm defines the same two classes of partitioning sets, S and I (shown

in Fig. 3), used to convey the significance information of a group of samples. Initially, the S set is

defined to be the set comprised of the LL frequency subband vectors of DWT coefficients, while

the I set accounts for all the remaining subbands.

LVQ-SPECK follows the encoding rules of the SPECK algorithm [1], with the modifications to

the Initialization and Quantization passes presented in Fig. 7.

The procedures involved in the LVQ-SPECK encoding and decoding processes that are different

from the original ones defined for SPECK are likewise presented in Figs. 8 and 9. Those functions

involved with processing sets of type I, as they are identical to those in SPECK, are omitted from

the algorithm description. For more information, the reader is referred to [1].

Examination of the algorithm shows us that the encoding power of LVQ-SPECK stems from

the fact that it sorts out those vectors with larger magnitude and immediately starts sending
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ProcessS(S):

Start

Output: Γn(S)

if Γn(S) = 1 then

if S is a pixel v(·) then

Output: sign of v(·)

Output: index of codeword that better approximates v(·)

Output: Add S to LSP

end if

if S ∈ LIS then

Remove S from LIS

end if

else

if S /∈ LIS then

Add S to LIS

end if

end if

return

End

Fig. 8. Functions used by the LVQ-SPECK Algorithm – ProcessS(S).

information about their spatial location and orientation on the n-dimensional hypersphere. Sub-

sequent passes provide refinement information, further reducing the reproduction distortion. It is

also worth noticing that, as in the original (scalar) SPECK codec, the generated bitstream is still

an embedded one.

C. LVQ-SPECK simulation results

The LVQ-SPECK algorithm was used to encode the AVIRIS hyperspectral datasets Cuprite

(scenes 01 and 04) and Jasper Ridge (scenes 01 and 03) [19]. All datasets had their dimensions

cropped to 512×512×224. The spectral bands were then grouped into n-dimensional blocks to be

encoded, where n is the dimension of the lattice being used.

The DWT kernel used was the 9/7-tap DWT [32], and a 5-stage transform was applied to each

spectral band.

Bit allocation across subbands is done implicitly based on the significance of each vector being

encoded. Each significance test accounts for one bit in the final bitstream and, since both four-
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CodeS(S):

Start

Partition S into four equal subsets O(S)

for all Si ∈ O(S), i = 0, 1, 2, 3 do

Output: Γn(Si)

if Γn(Si) = 1 then

if Si is a pixel v(·) then

Output: sign of Si

Output: index of codeword that better approximates v(·)

Add Si to LSP

else

CodeS(Si)

end if

else

Add Si to LIS

end if

end for

return

End

Fig. 9. Functions used by the LVQ-SPECK Algorithm – CodeS(S):.

dimensional codebooks used contain 24 vectors, in the worst case vector index transmission will

demand log2 24 = 4.59 bits during the sorting pass and log2 25 = 4.64 bits during the refinement

ones (to account for the zero codeword). Similar estimates also hold for codebooks based on larger

dimensional lattices.

LVQ-SPECK needs to generate only a single bitstream with the maximum desired target bit rate.

During the decoding process, if a smaller target bit rate is to be used, the bitstream is truncated

and decoded to that point.

Tables III – VI present a comparison among the reconstruction results for each of the hy-

perspectral blocks considered, when processed by LVQ-SPECK, the 3D-SPIHT and 3D-SPECK

algorithms [13], multi-component feature of JPEG2000 [11], and the original 2D-SPECK codec

applied to each of the spectral bands individually. The figure of merit utilized here is the signal-

to-quantization noise ratio (SNR), as defined in Eq. 1.

To determine the values of α used in the simulations, n consecutive spectral bands were encoded

using different values of α in a given range (e.g. [0.60, 0.75] for four-dimensional lattices). The
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Cuprite (scene 01)

Rate (bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 27.37 29.24 32.58 36.27

3D-SPECK (GOI=16) 35.24 39.50 45.76 49.45

SPECK 27.13 28.92 32.08 35.47

LVQ-SPECK D4 shell-1 (α = 0.67) 28.20 30.19 33.82 37.30

LVQ-SPECK D4 shell-2 (α = 0.69) 30.50 33.26 38.45 44.19

LVQ-SPECK E8 (α = 0.69) 32.75 36.21 42.43 47.36

LVQ-SPECK Λ16 (α = 0.77) 31.98 35.23 40.65 45.84

TABLE III

Average SNR (in dB) for LVQ-SPECK – Cuprite scene 01

Cuprite (scene 04)

Rate (bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 27.49 29.35 32.64 36.30

3D-SPECK (GOI=16) 35.19 39.42 45.75 49.67

SPECK 27.28 29.03 32.16 35.52

LVQ-SPECK D4 shell-1 (α = 0.67) 28.27 30.25 33.82 37.41

LVQ-SPECK D4 shell-2 (α = 0.69) 30.55 33.28 38.48 44.20

LVQ-SPECK E8 (α = 0.70) 32.76 36.21 42.35 47.36

LVQ-SPECK Λ16 (α = 0.72) 32.07 35.24 40.84 45.82

TABLE IV

Average SNR (in dB) for LVQ-SPECK – Cuprite scene 04

value of α which yielded the best rate-distortion performance was then used to encode the whole

dataset.

Fig. 10 presents the reconstructed version, at 0.2 bpp, for spectral band 48 of the Cuprite scene

01, with the points from D4 shell-2 lattice serving as codebook.

The obtained results show us that the performance attained by the LVQ-SPECK algorithm

is close to that of 3D-based codecs, such as 3D-SPECK, even without the use of a transform

in the spectral direction. That is, in fact, quite impressive, considering that in the case of 3D
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Jasper Ridge (scene 01)

Rate (bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 18.41 19.93 22.76 26.24

3D-SPECK (GOI=16) 24.29 28.11 35.37 41.65

SPECK 18.14 19.59 22.25 25.38

LVQ-SPECK D4 shell-1 (α = 0.70) 19.12 20.81 24.02 27.88

LVQ-SPECK D4 shell-2 (α = 0.66) 20.97 23.37 28.52 34.63

LVQ-SPECK E8 (α = 0.69) 22.76 26.04 32.46 38.33

LVQ-SPECK Λ16 (α = 0.75) 22.33 25.45 31.42 37.43

TABLE V

Average SNR (in dB) for LVQ-SPECK – Jasper Ridge scene 01

Jasper Ridge (scene 03)

Rate (bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 28.44 29.45 31.68 34.54

3D-SPECK (GOI=16) 24.41 28.07 35.31 41.53

SPECK 18.42 19.80 22.35 25.31

LVQ-SPECK D4 shell-1 (α = 0.67) 19.30 20.91 23.94 27.56

LVQ-SPECK D4 shell-2 (α = 0.69) 21.14 23.43 28.31 34.38

LVQ-SPECK E8 (α = 0.70) 22.84 25.98 32.36 38.15

LVQ-SPECK Λ16 (α = 0.71) 22.47 25.45 31.20 37.03

TABLE VI

Average SNR (in dB) for LVQ-SPECK – Jasper Ridge scene 03

algorithms, the decorrelating transform across the spectral direction has length 16, compared to

vector dimensions of 4, 8 and 16 used by LVQ-SPECK.

In particular, the difference in performance exhibited by the two versions of D4-based shells

provides us with the evidence of what a proper rotation might accomplish. The reason for that is

the existence, in the D4 shell-2 codebook, of vectors of the form (±1,±1,±1,±1), which allow for

simultaneous decrease in distortion for all the bands being encoded. The D4 shell-1 codebook, on

the other hand, has vectors of the form (±1,±1, 0, 0), and therefore it is able to approximate only
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Fig. 10. Cuprite scene 01, band 48, decoded by LVQ-SPECK at 0.2 bpp using the D4 shell-2 codebook.

two components at a time.

It is also clear from Tables III – VI that simultaneously encoding a group of spectral bands using

LVQ-SPECK provides much better results than the individual compression of each one of them.

For instance, for a rate of 1.0 bpp, there is a gain of at least 2 dB in SNR for all the images tested,

in the worst case. The best results show an improvement of approximately 10 dB over the scalar

version of SPECK.

1) Comparison with MLVQ-SPIHT: In order to present a performance comparison of LVQ-

SPECK and MLVQ-SPIHT [18], the reflectance dataset extracted from the Moffet Field scene

03 was compressed/decompressed using both algorithms. LVQ-SPECK employed the D4 shell-

2 codebook, while MLVQ-SPIHT was used with the spherical version of D4 and the L2-norm

significance test.

Results for both encoders are presented on Table VII, and they represent the average value of
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Rate (bpp) 0.1 0.2 0.5 1.0

LVQ-SPECK D4 shell-2 18.96 22.82 29.73 35.67

MLVQ-SPIHT 12.36 18.28 25.10 31.31

TABLE VII

SNR results (in dB) for the Moffet Field scene 03 – reflectance

SNR in dB for the 204 non-zero spectral bands. It can be seen that LVQ-SPECK attains good

encoding performance in the case of reflectance images as well, outperforming MLVQ-SPIHT by

4.0 dB at rates of 1.0 bpp and even larger margins for lower encoding target rates.

D. The DWP-SPECK Algorithm

In a successive approximation setting such as the one employed by LVQ-SPECK, if large energy

differences exist among the spectral bands, it is expected that the amount of information needed

to characterize them will vary greatly as well.

In particular, those bands with small variances usually require smaller rates in order to achieve

a given reproduction quality, allowing for some of the remaining bit budget to be used in the

refinement of data from those spectral bands with larger variances.

Therefore an overall gain in average performance is expected if, instead of encoding a number

of adjacent spectral bands equal to the codeword dimension, we opt to simultaneously encode an

integer multiple of that dimension.

In this proposed vector-based version of SPECK, if the codebook in use is based on a lattice

vector quantizer of dimension n, the number of bands to be encoded will be set as 4n.

Once again a 2D DWT will be applied to each of the spectral bands separately, resulting in a

dataset comprised of 4n transformed bands. However, in addition to applying a spatial transform,

each 4n spectral vector will be subjected to a 1D DWT, resulting in a discrete wavelet packet

decomposition (DWP) of the input dataset [5], [33]. Hence the denomination DWP-SPECK [34].

In DWP-SPECK each group of n bands will define a Group of Bands (GOB), as illustrated in

Fig. 11, and during the encoding process each GOB will be treated as the single group of images

was in LVQ-SPECK.

Each group of bands will have its own S and I sets, with S being defined as the set containing

the LL subbands of that GOB and I as its complement in relation to that particular GOB (as in
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4n

n n n n

n n 2n

L2 H2 H1

Fig. 11. DWP-SPECK Group of Bands to be encoded

Fig. 3).

Bit allocation among the GOBs is done in a straightforward way. The encoder starts by deter-

mining which n-dimensional vector from the full dataset, i.e. the four GOBs, possesses the largest

norm. The initial encoding threshold is then calculated from that norm and used to determine

vector significance according to the same principles outlined for the LVQ-SPECK algorithm.

The main difference between LVQ-SPECK and DWP-SPECK resides in the fact that initially

there are four different S and I sets and that, at any time in the encoding process, the partitioning

process in a given GOB does not interfere whatsoever with those of the remaining ones.

The modifications present in DWP-SPECK do not preclude this algorithm from possessing the

resolution scalability feature. Higher frequency bands in the space-frequency domain may still be

discarded in order to obtain a lower spatial resolution version of the original dataset.

It must be stressed, however, that the encoding threshold Tn and the threshold reduction factor

α are common to all GOBs. The steps followed by the encoder can therefore be summarized as:

• Apply spatial 2D DWT to each of the 4n spectral bands

• Apply spectral 1D DWT to each of the 4n-dimensional spectral vectors that comprise the dataset.

• Scan the dataset (now made up of wavelet packet coefficients) and determine the largest vector

norm; establish initial encoding threshold T0.

• Define initial encoding sets and process them as in LVQ-SPECK.

It should be noted that no constraints are placed in the choice of the additional DWT and, in

fact, different choices for the spatial and spectral decompositions are often used. Also, while it

was not the purpose of the present work to investigate that, the wavelet packet decomposition can
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Cuprite (scene 01)

Rate (bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 27.37 29.24 32.58 36.27

3D-SPECK (GOI=16) 35.24 39.50 45.76 49.45

SPECK 27.13 28.92 32.08 35.47

DWP-SPECK D4 shell-1 (α = 0.68) 32.90 36.28 42.16 47.35

DWP-SPECK D4 shell-2 (α = 0.67) 35.30 39.08 44.85 48.61

DWP-SPECK E8 (α = 0.72) 36.42 40.19 45.67 49.26

DWP-SPECK Λ16 (α = 0.75) 37.24 41.12 45.89 49.09

TABLE VIII

SNR results (in dB) for DWP-SPECK – Cuprite scene 01.

Cuprite (scene 04)

Rate (bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 27.49 29.35 32.64 36.30

3D-SPECK (GOI=16) 35.19 39.42 45.75 49.67

SPECK 27.28 29.03 32.16 35.52

DWP-SPECK D4 shell-1 (α = 0.69) 33.09 36.15 42.31 47.48

DWP-SPECK D4 shell-2 (α = 0.68) 35.07 38.95 44.91 48.76

DWP-SPECK E8 (α = 0.69) 36.43 40.23 45.76 49.43

DWP-SPECK Λ16 (α = 0.70) 37.02 40.99 45.96 49.33

TABLE IX

SNR results (in dB) for DWP-SPECK – Cuprite scene 04.

be further subjected to an optimization procedure to maximize the coding gain obtained with its

use [5].

1) DWP-SPECK Experimental Results: In simulations with the DWP-SPECK codec, we used

radiance scenes from the AVIRIS hyperspectral images Cuprite and Jasper Ridge [19]. All datasets

were cropped to 512×512×224. The spectral bands were then grouped into 4n-dimensional blocks

to be encoded.

As in the LVQ-SPECK case, the values of α used in the simulations were determined by taking n
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Jasper Ridge (scene 01)

Rate (bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 18.41 19.93 22.76 26.24

3D-SPECK (GOI=16) 24.29 28.11 35.37 41.65

SPECK 18.14 19.59 22.25 25.38

DWP-SPECK D4 shell-1 (α = 0.68) 23.15 26.39 33.00 38.80

DWP-SPECK D4 shell-2 (α = 0.68) 24.40 27.99 34.16 39.91

DWP-SPECK E8 (α = 0.73) 26.05 29.99 36.28 41.35

DWP-SPECK Λ16 (α = 0.77) 25.98 29.83 36.32 41.48

TABLE X

SNR results (in dB) for DWP-SPECK – Jasper Ridge scene 01.

Jasper Ridge (scene 03)

Rate (bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 28.44 29.45 31.68 34.54

3D-SPECK (GOI=16) 24.41 28.07 35.31 41.53

SPECK 18.42 19.80 22.35 25.31

DWP-SPECK D4 shell-1 (α = 0.68) 23.23 26.44 32.55 38.71

DWP-SPECK D4 shell-2 (α = 0.70) 24.47 27.94 34.10 39.76

DWP-SPECK E8 (α = 0.69) 26.10 30.08 36.60 41.46

DWP-SPECK Λ16 (α = 0.76) 25.99 30.06 36.29 41.41

TABLE XI

SNR results (in dB) for DWP-SPECK –Jasper Ridge scene 03.

consecutive spectral bands, where n is the codebook dimension, and encoding them using different

values of α. The value of α which yielded the best rate-distortion performance was then used to

encode the whole dataset.

The transform kernel used was the 9/7-tap bi-orthogonal wavelet [32]. A 5-stage 2D transform

was applied to each spectral band and a 2-stage 1D transform was applied in the spectral direction.

To obtain a lower rate reconstructed version of the dataset, it suffices to truncate the encoded

bitstream to the desired rate. As in the original SPECK codec, if the encoded bitstream was
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generated with a target rate R, it contains all lower rate bitstreams whose target rates are r ≤ R.

Tables VIII – XI present reconstruction results for each of the hyperspectral blocks, when

processed by LVQ-SPECK, DWP-SPECK, the 3D-SPECK algorithm [13], the JPEG2000 multi-

component algorithm [11], and the original SPECK codec applied to each of the spectral bands

individually.

The figure of merit utilized here is the signal-to-quantization noise ratio (SNR), as previously

defined by Eq. 1, where Px is the average power of the original signal and MSE is the reproduction

mean-squared error.

Careful observation of the presented SNR values shows that significant improvements were

obtained with the introduction of both the discrete wavelet packet transform and the increased

number of bands simultaneously processed.

In particular, for a rate of 1.0 bpp, it can be seen that DWP-SPECK consistently outperforms

LVQ-SPECK by a margin of 2-10 dB, depending on the choice of codebook and attains performance

comparable to that of 3D-SPECK. For lower rates, DWP-SPECK outperforms even the 3D codecs.

Fig. 12 shows an example of the spectral profile for the Cuprite scene 01 image, taken over column

380. The original profile is presented alongside those of the reconstructed ones by JPEG2000 and

DWP-SPECK at the rate of 0.1 bpp. It can be seen that, even for the very low rate of 0.1 bpp,

the DWP-SPECK algorithm preserves most of the details, while JPEG2000 is unable to do so.

V. Codebook Reduction for LVQ-based Successive Approximation Codecs

This section will show how it is possible to condition statistics of a given codebook on the vector

chosen at the previous encoding step. We start with the basic concepts, describe the implementation

setup and show the obtained simulation results, both for still and hyperspectral images.

A. Basic Concepts

In successive approximation vector quantization, when a vector is chosen at a given step, some

vectors in the codebook will never be chosen in the next approximation step. This is illustrated in

Figs. 13(a) and 13(b) for the two-dimensional case.

Looking into this with more detail, one can see that it is reasonable to assume that the choice of

a codebook vector at a given step modifies the probability of the codebook vectors being chosen at

the next step. In order to test this assumption, we incorporated changes in our proposed algorithms.

One of them is to calculate which vectors of a codebook are forbidden to be chosen given a choice of
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(a) Original (b) JPEG2000 – 0.1 bpp (c) DWP-SPECK – 0.1 bpp

Fig. 12. Spectral profile for Cuprite scene 01

a codevector at a previous step. The other is to use a different probability model for the encoding

of the codevectors for each choice of a codevector at the previous step. In this way, for a codebook

with N vectors, we end up with N probability models.

In order to evaluate the potential impact of such a proposition in the rate-distortion character-

istics of our proposed method, we have computed the histograms of the angles (θ) between the

vectors in the codebook, for the lattices considered in this work. The results are summarized in

α
n+1

T0cj

α
n
T0ci

r

(a) Using the full codebook

α
n+1

T0cj

α
n
T0ci

r

(b) Using one possible codebook reduction

Fig. 13. Two-dimensional refinement pass
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θ 0◦ 60◦ 75◦ 90◦ 105◦ 120◦ 180◦

D4 shell-1 1 8 0 6 0 8 1

D4 shell-2 1 8 0 6 0 8 1

E8 1 56 0 126 0 56 1

Λ16 1 280 1024 1710 1024 280 1

TABLE XII

Histogram of the angles between vectors for the tested lattices

Table XII.

By looking at Figs. 13(a) and 13(b), one could conjecture that, given a codevector chosen at a

step, the one chosen at the next step cannot be at an angle larger than 90◦. From that, analysis

of Table XII would eliminate from the next step a large number of vectors. For example, for D4

shell-1 9 vectors would be eliminated.

However, this reasoning has one flaw: one has to consider that actually the residual will not be

at an angle larger than 90◦. However, this only means that one has to eliminate the vectors whose

Voronoi regions do not have any vector with less than 90◦ with the conditioning ones. Therefore,

in the worst case, one would have to subtract θmax (Table II) from the angles in Table XII.

Unfortunately, that means that only one vector can be discarded in all cases. This vector is the

one that is at 180◦ with the previous one, that is, its symmetrical.

Yet, since this always implies a reduction in rate, it is worthy to exclude this vector. However,

it is still interesting to investigate the conditioning of the probability model of the vectors on the

previously chosen codevector. In the next section, we describe the implementation of this idea.

B. Implementation

We introduce the proposed modification in both LVQ-SPECK and DWP-SPECK by implement-

ing context-based encoding of the vectors in the refinement pass. The basic idea is to create two

distinct refinement codebooks.

One will contain codewords that, given the last approximation vector, point towards the outside

of the current encoding hypersphere, as in Fig. 13(b). This reduced codebook will be named white

codebook.
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The second codebook contains the remaining codewords, with the exception of the vector that

lies at an angle of 180◦ with the last approximation vector, that is, its symmetric. This will be the

gray refinement codebook.

A flag (white/gray) is transmitted prior to the index of the encoded codeword to switch between

both reduced codebooks.

Formally, given that the vector chosen at the (n − 1)-th step is ckn−1
, the encoder proceeds as

follows:

a) It encodes each vector with a pair (flag,index). The flag can have two values, gray and white.

(i) The white flag indicates vectors that are pointing towards the outside part of the current

encoding hypersphere.

(ii) The gray flag indicates vectors that are pointing inwards, but whose Voronoi regions

intersect the outside part of the encoding hypersphere.

b) When it sends the white flag, the codebook at pass n, Cw
n , will contain only vectors at an angle

of 90◦ or less with vector ckn−1
.

c) When it sends the gray flag, the codebook at pass n, Cg
n, will contain only vectors at an angle

larger than 90◦ with vector ckn−1
, discarding the one at 180◦, which will never be used.

d) The encoding of the vectors in the different codebooks is conditioned on vector ckn−1
.

e) A context-based adaptive arithmetic coder is used to encode both flags and indices.

C. Hyperspectral Imagery Encoding Results

In this section we present results of the LVQ-SPECK, DWP-SPECK using the reduced refine-

ment codebook strategy described above.

Tables XIII–XVI show results for LVQ-SPECK with reduced refinement codebook. We can see

here, likewise the still image case, consistent improvements for the D4 and E8 codebooks, and a

slight loss for the Λ16 codebook.

As in the case of still images, it can be observed that when using the four and eight-dimensional

white and gray codebooks, both LVQ-SPECK and DWP-SPECK are able to process a larger

number of symbols than when using the regular refinement codebook. The Λ16 codebook, however,

generates a smaller number of total coded symbols, as a result of the increased intersection between

the Voronoi regions of gray codewords and the outside part of the encoding hypersphere.

As well as for the still-image codec, both the rate and encoding path during sorting passes remain

unchanged, and any changes in performance are solely due to the modified refinement procedure
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Cuprite (scene 01)

Rate (bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 27.37 29.24 32.58 36.27

3D-SPECK (GOI=16) 35.24 39.50 45.76 49.45

SPECK 27.13 28.92 32.08 35.47

LVQ-SPECK D4 shell-1 (α = 0.67) 28.20 30.19 33.82 37.30

LVQ-SPECK D4 shell-2 (α = 0.69) 30.50 33.26 38.45 44.19

LVQ-SPECK E8 (α = 0.69) 32.75 36.21 42.43 47.36

LVQ-SPECK Λ16 (α = 0.77) 31.98 35.23 40.65 45.84

(RC)LVQ-SPECK D4 shell-1 (α = 0.67) 28.47 30.80 34.51 39.11

(RC)LVQ-SPECK D4 shell-2 (α = 0.69) 30.56 33.37 38.71 44.80

(RC)LVQ-SPECK E8 (α = 0.69) 32.80 36.37 43.01 47.98

(RC)LVQ-SPECK Λ16 (α = 0.77) 30.93 34.64 40.25 45.21

TABLE XIII

Average SNR (in dB) for (RC)LVQ-SPECK – Cuprite scene 01

and its two classes of reduced codebooks. Once again, the use of an entropy encoder helps mitigate

any overhead added by the transmission of the extra flag.

As an example, when processing the Cuprite scene 01 with LVQ-SPECK and the D4 shell-1,

the number of coded symbols increases from (5617585, 6088049) to (6552000, 7567059), an extra

2413425 symbols, with only 80886 refinement symbols being drawn from the gray codebook. When

using the Λ16 codebook though, the number of total symbols decreases from (2655020, 8603699)

to (2589435, 8216367), with 447280 refinement symbols coming from the gray dictionary. There is

a total loss of 452917 symbols during the encoding process.

An exception occurs, however, when processing the Jasper Ridge scene 03 image. In this case,

the encoder actually attains a better performance with the use of the reduced refinement codebook,

for all choices of codebook. Even though, for the Λ16 lattice, the margin of gain is a small one, it is

reflected in the number of total symbols coded, which rises from (2642241, 7569213) to (2670427,

7799275), an increase of 258248. The number of codewords from the gray codebook is 545058. This

result, albeit rare, indicates that only a small portion of possible gray codewords were used by the

encoder, thereby allowing the adaptive arithmetic encoder to reduce the resulting rate associated

with the gray codebook.
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Cuprite (scene 04)

Rate (bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 27.49 29.35 32.64 36.30

3D-SPECK (GOI=16) 35.19 39.42 45.75 49.67

SPECK 27.28 29.03 32.16 35.52

LVQ-SPECK D4 shell-1 (α = 0.67) 28.27 30.25 33.82 37.41

LVQ-SPECK D4 shell-2 (α = 0.69) 30.55 33.28 38.48 44.20

LVQ-SPECK E8 (α = 0.70) 32.76 36.21 42.35 47.36

LVQ-SPECK Λ16 (α = 0.72) 32.07 35.24 40.84 45.82

(RC)LVQ-SPECK D4 shell-1 (α = 0.67) 28.58 30.87 34.53 39.15

(RC)LVQ-SPECK D4 shell-2 (α = 0.69) 30.62 33.38 38.73 44.83

(RC)LVQ-SPECK E8 (α = 0.70) 32.78 36.35 42.88 48.12

(RC)LVQ-SPECK Λ16 (α = 0.72) 31.08 34.58 40.72 45.78

TABLE XIV

Average SNR (in dB) for (RC)LVQ-SPECK – Cuprite scene 04

Jasper Ridge (scene 01)

Rate (bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 18.41 19.93 22.76 26.24

3D-SPECK (GOI=16) 24.29 28.11 35.37 41.65

SPECK 18.14 19.59 22.25 25.38

LVQ-SPECK D4 shell-1 (α = 0.70) 19.12 20.81 24.02 27.88

LVQ-SPECK D4 shell-2 (α = 0.66) 20.97 23.37 28.52 34.63

LVQ-SPECK E8 (α = 0.69) 22.76 26.04 32.46 38.33

LVQ-SPECK Λ16 (α = 0.75) 22.33 25.45 31.42 37.43

(RC)LVQ-SPECK D4 shell-1 (α = 0.70) 19.37 21.17 24.77 29.46

(RC)LVQ-SPECK D4 shell-2 (α = 0.66) 21.02 23.46 28.76 35.47

(RC)LVQ-SPECK E8 (α = 0.69) 22.77 26.16 33.02 39.81

(RC)LVQ-SPECK Λ16 (α = 0.75) 21.53 24.95 31.15 36.63

TABLE XV

Average SNR (in dB) for (RC)LVQ-SPECK – Jasper Ridge scene 01
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Jasper Ridge (scene 03)

Rate (bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 28.44 29.45 31.68 34.54

3D-SPECK (GOI=16) 24.41 28.07 35.31 41.53

SPECK 18.42 19.80 22.35 25.31

LVQ-SPECK D4 shell-1 (α = 0.67) 19.30 20.91 23.94 27.56

LVQ-SPECK D4 shell-2 (α = 0.69) 21.14 23.43 28.31 34.38

LVQ-SPECK E8 (α = 0.70) 22.84 25.98 32.36 38.15

LVQ-SPECK Λ16 (α = 0.71) 22.47 25.45 31.20 37.03

(RC)LVQ-SPECK D4 shell-1 (α = 0.67) 19.42 21.14 24.64 28.89

(RC)LVQ-SPECK D4 shell-2 (α = 0.69) 21.17 23.48 28.49 35.07

(RC)LVQ-SPECK E8 (α = 0.70) 22.86 26.08 32.82 39.51

(RC)LVQ-SPECK Λ16 (α = 0.71) 21.82 25.05 31.35 37.14

TABLE XVI

Average SNR (in dB) for (RC)LVQ-SPECK – Jasper Ridge scene 03

Similar results can be observed for the DWP-SPECK encoder with reduced refinement codebook,

as depicted on Tables XVII–XX. It can be seen that, likewise the still image case and LVQ-

SPECK cases, consistent improvements of approximately 1.0 dB (in some cases, close to 2.0 dB)

for the D4 and E8 codebooks are obtained, as well as a slight loss for the Λ16 codebook.

As an example, for the Cuprite scene 04 image, the number of coded symbols by DWP-SPECK in-

creases from (2942913, 7372809) to (3419335, 7968725), a difference of 1072338, using the E8

codebook. For the Λ16 codebook, however, there is a decrease from (2187099, 5975340) to (2196847,

5923730) total symbols, a loss of 41862.

Consistent behavior in terms of attained performance and number of coded symbols can be

observed for all the tested datasets and codebooks.

D. Summary

In this section we presented modified versions of LVQ-SPECK and DWP-SPECK in which we

use, in the refinement pass, conditioning on the previously chosen codevector.

We have shown that to create a reduced version of the codebook for successive approximation

purposes is not as straightforward as it may seem, given that in an n-dimensional space, a careful
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Cuprite (scene 01)

Rate(bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 27.37 29.24 32.58 36.27

3D-SPECK (GOI=16) 35.24 39.50 45.76 49.45

SPECK 27.13 28.92 32.08 35.47

DWP-SPECK D4 shell-1 (α = 0.68) 32.90 36.28 42.16 47.35

DWP-SPECK D4 shell-2 (α = 0.67) 35.30 39.08 44.85 48.61

DWP-SPECK E8 (α = 0.72) 36.42 40.19 45.67 49.26

DWP-SPECK Λ16 (α = 0.75) 37.24 41.12 45.89 49.09

(RC)DWP-SPECK D4 shell-1 (α = 0.68) 33.36 37.28 44.00 48.60

(RC)DWP-SPECK D4 shell-2 (α = 0.67) 35.61 39.80 45.67 49.21

(RC)DWP-SPECK E8 (α = 0.72) 37.04 41.29 46.71 50.08

(RC)DWP-SPECK Λ16 (α = 0.75) 36.71 40.43 45.33 48.57

TABLE XVII

SNR results (in dB) for (RC)DWP-SPECK – Cuprite scene 01.

Cuprite (scene 04)

Rate(bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 27.49 29.35 32.64 36.30

3D-SPECK (GOI=16) 35.19 39.42 45.75 49.67

SPECK 27.28 29.03 32.16 35.52

DWP-SPECK D4 shell-1 (α = 0.69) 33.09 36.15 42.31 47.48

DWP-SPECK D4 shell-2 (α = 0.68) 35.07 38.95 44.91 48.76

DWP-SPECK E8 (α = 0.69) 36.43 40.23 45.76 49.43

DWP-SPECK Λ16 (α = 0.70) 37.02 40.99 45.96 49.33

(RC)DWP-SPECK D4 shell-1 (α = 0.69) 33.64 37.67 43.67 48.66

(RC)DWP-SPECK D4 shell-2 (α = 0.68) 35.48 39.56 45.61 49.29

(RC)DWP-SPECK E8 (α = 0.69) 37.05 41.24 46.71 50.27

(RC)DWP-SPECK Λ16 (α = 0.70) 36.90 40.99 46.05 49.25

TABLE XVIII

SNR results (in dB) for (RC)DWP-SPECK – Cuprite scene 04.
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Jasper Ridge (scene 01)

Rate(bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 18.41 19.93 22.76 26.24

3D-SPECK (GOI=16) 24.29 28.11 35.37 41.65

SPECK 18.14 19.59 22.25 25.38

DWP-SPECK D4 shell-1 (α = 0.68) 23.15 26.39 33.00 38.80

DWP-SPECK D4 shell-2 (α = 0.68) 24.40 27.99 34.16 39.91

DWP-SPECK E8 (α = 0.73) 26.05 29.99 36.28 41.35

DWP-SPECK Λ16 (α = 0.77) 25.98 29.83 36.32 41.48

(RC)DWP-SPECK D4 shell-1 (α = 0.68) 23.76 27.05 34.40 40.25

(RC)DWP-SPECK D4 shell-2 (α = 0.68) 24.75 28.44 35.22 40.79

(RC)DWP-SPECK E8 (α = 0.73) 26.55 30.74 37.48 42.67

(RC)DWP-SPECK Λ16 (α = 0.77) 25.00 28.74 35.10 40.20

TABLE XIX

SNR results (in dB) for (RC)DWP-SPECK – Jasper Ridge scene 01.

Jasper Ridge (scene 03)

Rate(bpp) 0.1 0.2 0.5 1.0

JPEG2000 MC (GOI=16) 28.44 29.45 31.68 34.54

3D-SPECK (GOI=16) 24.41 28.07 35.31 41.53

SPECK 18.42 19.80 22.35 25.31

DWP-SPECK D4 shell-1 (α = 0.68) 23.23 26.44 32.55 38.71

DWP-SPECK D4 shell-2 (α = 0.70) 24.47 27.94 34.10 39.76

DWP-SPECK E8 (α = 0.69) 26.10 30.08 36.60 41.46

DWP-SPECK Λ16 (α = 0.76) 25.99 30.06 36.29 41.41

(RC)DWP-SPECK D4 shell-1 (α = 0.68) 23.59 27.42 34.73 40.23

(RC)DWP-SPECK D4 shell-2 (α = 0.70) 24.70 28.41 35.32 40.92

(RC)DWP-SPECK E8 (α = 0.69) 26.37 30.61 37.41 42.67

(RC)DWP-SPECK Λ16 (α = 0.76) 24.61 28.59 34.81 39.96

TABLE XX

SNR results (in dB) for (RC)DWP-SPECK –Jasper Ridge scene 03.
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examination of the volumes of Voronoi regions must be considered. In fact, given the conditioning

codevector, only its symmetrical may be immediately excluded from the refinement codebook.

However, a suitable solution that allows for a considerable reduction – the use of two distinct

classes of reduced codebooks – was proposed and the results have shown, in all cases, a consistent

improvement of up to 2.0 dB on the rate-distortion results for the D4 and E8 codebooks, with a

slight loss for the Λ16 codebook.

VI. Conclusions

In this article we presented two vector-based extensions of the state-of-the-art codec SPECK.

These extensions were developed to compress volumetric datasets, such as those resulting from

remote sensing applications in the form of hyperspectral images.

Based on the encoding process defined for SPECK, modifications were introduced to simultane-

ously process a number n of spectral bands, where n corresponds to the dimension of the codewords

that form the codec dictionary.

Considering the approximation method chosen, orientation codebooks were defined based on sets

of vectors extracted from those n-dimensional lattices that are known to possess the best covering

properties in their dimensions.

The resulting algorithm, termed LVQ-SPECK, maintains all the desired characteristics of the

original SPECK codec, such as embeddedness, SNR scalability, to name a few.

It was shown that the results obtained by LVQ-SPECK in the compression of hyperspectral

images are quite competitive. Furthermore, an additional contribution of our work was to show

that a suitable rotation of the codebook in use may yield results close to those of 3D codecs, that

employ a 3D discrete wavelet transform prior to the encoding phase.

Another proposed innovation is a second vector-based version of SPECK, termed DWP-SPECK,

that uses a discrete wavelet packet transform and simultaneously processes a larger number of

spectral bands – namely, 4n bands at a time – to further explore the encoder’s capabilities of fast

converging to points of high significance in the process. DWP-SPECK encoding results are very

good, outperforming in most cases other state-of-the-art codecs.

Lastly, we have introduced a new technique in which we use statistical conditioning to encode

the vectors. The conditioning is based on the previously encoded vector. It shows a consistent

rate-distortion improvement for all images and most codebooks.
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Based on the obtained results, we conclude that both the presented contributions are quite

promising, helping extend a little further the existing limits in the compression of multidimensional

datasets.
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