
Trends of Tree-Based,Set-Partitioning Compression Techniques in Still and
Moving Image Systems

William A. Pearlman
Center for Next Generation Video

Electrical Computer and System Engineering Department
Rensselaer Polytechnic Institute

Troy NY 12180-3590
pearlw@rpi.edu

ABSTRACT

In addition to high compression efficiency, future still
and moving image coding systems will require many other
features. They include fidelity and resolution scalability, re-
gion of interest enhancement, random access decoding, re-
silience to errors due to channel noise or packet loss, fast en-
coding and/or decoding speed, and low computational and
hardware complexity. Moreover, there are emerging new
venues for the application of image compression techniques
to data associated with points of a two or three-dimensional
grid that will demand these features and perhaps others. We
shall discuss these new venues along with the usual ones
and show how tree-based, set-partitioning wavelet coding
methods, such as SPIHT (Set Partitioning in Hierarchical
Trees) and SPECK (Set Partitioning Embedded bloCK) will
fulfill most of the demands of current and future applica-
tions. We shall also discuss the emerging JPEG-2000 in
this framework.

1 INTRODUCTION

Compression of images saves storage capacity, channel
bandwidth, and transmission time. Its use is ubiquitous, as
almost every digital still or moving image has been com-
pressed before it reaches the user. For example JPEG and
GIF, for still images, and MPEG-1, MPEG-2, DVD, H.263
and more for video are all compressed formats. The de-
mands for compression are bound to increase, as production
of images and the need to transmit increasingly large files
continue to grow. For example, in an article appearing in the
January 2001 issue of the magazine, Advanced Imaging, it
was estimated that 80 billion (80 � 109) new images were
produced in the year 2000 alone.

In order to obtain the required degree of compression,

lossy coding techniques have to be utilized. The current
JPEG still and MPEG moving image compression standards
are based on encoding the discrete cosine transform (DCT)
of 8x8 blocks independently. As such, the easily observed
artifacts of blocking appear at low to medium bit rates (high
to moderate compression ratios). Features needed in current
applications, such as rate and resolution scalability and oth-
ers to be discussed, are not naturally produced and can only
be delivered with limited functionality and flexibility with
accompanying loss of compression performance. Hence
there is underway a migration to wavelet transform coding,
in which blocking artifacts are eliminated, low to medium
rate performance is superior, and needed additional features
are inherent and delivered with no loss of compression per-
formance.

2 FEATURE REQUIREMENTS

Our wish list for the features delivered by the bit streams
in compression systems include the following items:

� low mean squared error (MSE) for a given bit rate

� rate (fidelity) scalability

� resolution (spatial, temporal) scalability

� random access decoding

� enhanced region-of-interest (ROI) encoding

� idempotency - perfect reversibility of decompression
from compressed bitstream to reconstruction

� robustness/resillience to channel errors and packet loss

� low memory usage

� fast, simple encoding and decoding

1



The first item above is obvious, that of achieving the low-
est possible MSE or highest possible PSNR (peak signal-
to-noise ratio) for a given bit rate. The modern wavelet
transform-based coding methods almost always do better
in this regard than DCT-based methods, especially as the
bit rate decreases. However, the next two items of scal-
ability in rate and spatial/temporal resolution can only be
achieved in a limited way for the DCT-based methods of
the standards, while the wavelet-based methods can provide
fine-grain rate scalability and resolution scalability in sev-
eral octave steps. The rate scalability derives from bit plane
coding of the wavelet coefficients and the resolution scala-
bility from the decomposition by scale of the wavelet trans-
form. Enabling bit plane coding of DCT coefficients would
be one ingredient to accomplish fine grain rate scalability
[16], but it is not allowed in the current coding standards.

Random access decoding is the ability to select for de-
coding portions of the bit stream corresponding to a given
region of the image. Since JPEG encodes 8x8 image blocks
independently, it is easy to select the portions of the bit
stream belonging to a region that is comprised of a union
of 8x8 blocks. It is harder to do in principle for a wavelet
coder, but certainly quite feasible if one can identify the bits
of wavelet coefficients belonging to a given region. Here,
there is inherently more flexibility in defining shapes of re-
gions for random access decoding.

Enhanced region of interest (ROI) encoding can be ac-
complished by identifying a given region at encoding time
and assigning more bits per pixel to this region than to the
remainder of the image. Baseline JPEG does not allow the
flexibility of assigning a different quantization parameter to
diffent image block, but the JPEG enhancements do. The
wavelet coding methods can integrate ROI enhancement
very naturally into the encoding process.

Idempotency is a feature often overlooked. Often an im-
age will undergo many cycles of compression and decom-
pression. Idempotency means that the image will not de-
grade in these cycles. So if one decompresses a bitstream by
a given method and then compresses the reconstruction by
the same method and rate that produced the original com-
pressed bitstream, the resulting compressed bitstream will
be identical to the original bitstream when the method is
idempotent. The quantization in JPEG, for example, is an
idempotent method.

Compressed bit streams tend to be fragile, since channel
bit errors in variable length codes cause the decoder to lose
synchronization and propagate decoding errors to the end of
the bit stream. Video compounds this sensitivity due to the
feedback of motion compensation and interframe prediction
errors that will also propagate. One way to create a less
error-sensitive bit stream is to encode the source in many
independent units, so that an error in one unit will not affect
others.

A method’s memory usage is an important issue, espe-
cially for large images and implementation in small devices,
such as cameras. The most common method is to partition
the image into stripes or tiles and encode these partitions in-
dependently. JPEG and MPEG encode 8x8 blocks indepen-
dently, so their coding algorithms do use a small memory
space. The disadvantage of this method is that the partition
boundaries become noticeable, as bit rate drops below some
value, so these methods are not suitable for low rate appli-
cations. A wavelet transform requires a full image trans-
form, but the full image is not required in memory since the
filters are finite in length. For computing a transform coef-
ficient one needs only as many rows or columns in memory
to cover the extent of the filters for each level of decom-
position. There are such memory-saving transforms based
on putting into memory at any instant a minimum numbers
of image lines or a minimum numbers of rows and colums
in a block. They are called line-based [4] and block-based
[2, 1] transforms, respectively. They yield the same coef-
ficients as a full image transform, at the expense of some
extra processing.

Although hardware processing speeds continue to accel-
erate, the demands for greater speeds for image commpres-
sion and decompression seem to outpace the accelerating
processing speeds of current hardware. Greater resolution
of source images and the need for rapid transmission and
retrieval are a mark of our impatient and frenzied world. A
fast, low complexity decoder has always been a crucial re-
quirement, but it becomes increasingly difficult with state-
of-the-art efficiency for large images. Now there is a call
for real-time encoding for cameras and digital cinema. That
requires fast and simple compression, which again is dif-
ficult to attain with state-of-the-art efficiency for large im-
ages. We shall concentrate our attention on low-complexity
compression techniques that meet these requirements and
possess the features itemized above.

3 EMBEDDED CODING ALGORITHMS

An algorithm is said to provide an embedded bit stream
if one can extract a smaller file with a given characteristic
that would have the same characteristic if produced directly
by the same algorithm. For example, a file from a rate-
embedded algorithm contains all smaller rate files with the
same bits as would have been produced by the algorithm
directly. Pure rate-embedded algorithms have granularity
at the bit level. A rate scalable algorithm refers to similar
properties, regardless of the granuarity of the embedding.
A rate embedded coder allows progessive encoding from
lossy to purely lossless reconstruction, when the filters map
integers from the image domain to integers in the transform
domain. In order to realize embedded coding, one requires
either the full transform or the full compressed bit stream in

2



memory. Clearly this is unfeasible for large images or long
image sequences. We shall now describe some methods of
embedded image coding.

3.1 JPEG-2000 Embedded Coding

The emerging JPEG-2000 still image compression stan-
dard uses a memory-saving line-based wavelet transform
and bit plane entropy coding of subblocks of wavelet sub-
bands. The method of entropy coding of the subblocks is
called ”Embedded Block Coding with Optimized Trunca-
tion (EBCOT)” [14]. Prior to entropy coding, the image is
transformed into subbands by a wavelet (or wavelet packet)
decomposition. The subbands are then subdivided into as
many subblocks, nominally of dimensions 64x64 or 32x32,
as possible. Generally there will be partial-size subblocks
for subband dimensions not divisible by 32 or 64 or smaller
than 32 or 64. They will be treated similarly to the square
subblocks with the appropriate modifications. Entropy cod-
ing progresses from lowest to highest scale among subbands
and in raster order within subbands. Every subblock is en-
coded independently via context-based bit plane arithmetic
coding. The wavelet coefficients are first finely quantized
to a sign and magnitude representation of the bin indices.
Encoding of the binary expansion of the bin index magni-
tudes starts from the highest order non-all-zero bit plane in
each subblock and proceeds in order through the lower bit
planes until the target bit budget is reached for the subblock.
Three passes through each bit plane are made to gather
contexts of bits in three categories for adaptive arithmetic
coding. There is also passage through the sign plane for
context-based adaptive arithmetic coding prior to the mag-
nitude passes. The decoder must be informed of the number
of leading all-zero bit planes for each subblock. The array
of such numbers, one for each subblock, is encoded by a
quadtree technique and sent as overhead information.

In order to encode the image to a given target bit rate, the
encoding algorithm calculates, for each subblock, several
actual points of the rate-distortion curve and uses them to
assign the optimal number of bits to each subblock. This re-
quires encoding each subblock to a high rate, usually 3 bits
per pixel, and truncating each subblock’s bit stream to the
point determined by the rate assignment calculation. One
can determine a set of optimal truncation points for each
subblock corresponding to a set of target bit rates. Once the
subblock bitstreams have been truncated for a certain target
rate, they are merged and interleaved by common order bit
planes to form an embedded composite bit stream. Note that
for efficient implementation without disk swapping, the bit-
streams of all subblocks must be held in memory to achieve
this embedded compressed bit stream.

4 SET PARTITIONING CODERS

The JPEG-2000 encoding algorithm is a fairly complex
and computationally intense procedure. It supports all the
desirable features discussed previously. However, there has
been concern as to its suitability for so-called embedded
hardware applications. There are encoding algorithms of
low complexity that possess all the desirable features and
sacrifice very little, if at all, in performance compared to
JPEG-2000. These algorithms have in common the par-
titioning of the wavelet transform into sets according to
their significance as defined by a magnitude threshold on
the maximum magnitude of coefficients within the set. We
shall describe two such algorithms, called Set Partioning In
Hierarchical Trees (SPIHT) [13], and Set Partioning Em-
bedded bloCK (SPECK) coder[9]. Since SPIHT is by now
well known, we shall start with SPECK and then explain
their common attributes.

4.1 SPECK Codng

The SPECK encoding algorithm can directly replace the
JPEG-2000 entropy coding of the wavelet subband sub-
blocks. First we define a significance test for coefficients
ci;j in a set of coefficients T .

Sn(T ) =

(
1; if 2n � max

(i;j) 2 T

jci;j j < 2n+1

0; else
(1)

When the outcome of the test is ”1”, we say the set is
significant for bit plane n, otherwise it is insignificant.

Starting with S as the full subblock and n at the high-
est non-all-zero bit plane nmax, S is significant for nmax,
so we spit the subblock into four quadrant sets, collectively
denotedO(S), as shown in Figure 1. Now we apply the sig-
nificance test for the same n to each of these sets and split
into four again only if significant. Significant sets continue
to be recursively split until all there are four pixels, where-
upon, the significants ones are found and appended to a list
of significant pixels, called the LSP. Figure 2 depicts this
recursive splitting.

Insignificant pixels and sets are listed in a list of insignif-
icant sets, called the LIS, in order of increasing size from
top to bottom. Then the bit plane order n is decremented
by 1 and the sets in the LIS are tested from top to bottom
(smallest to largest) in the same way as before, finding pix-
els significant for n � 1 and moving them to the end of the
LSP and finding pixels and sets insignificant for n � 1 and
putting their identifiers at the bottom of the LIS. The out-
come of every test, ”1” or ”0”, is put into the the code bit
stream. When a single pixel is found significant, a ”1” and
a sign bit are put into the bit stream. Also, once the LSP is

3



S
O(S)

Figure 1. Partitioning of set S.

S

0

0 0

Figure 2. Recursive Partitioning of set S

-

-

-

-

-

1 1 1 1 1 1 1

1 1 1 1

1 1

1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

s s s s s s s s s s s s s s s

BIT ROW

0

1

2

3

4

5

sign

lsb

msb

Figure 3. Binary representation and progressive trans-
mission of the magnitude-ordered significant coeffi-
cients.

complete for n � 1, the n � 1 bits of all coefficients in the
LSP found significant at all higher thresholds (the refine-
ment bits) are put into the bitstream. The bit plane order n
continues to be decremented until the bit budget of the sub-
block has been satisfied. An illustration of this progressive
bit plane transmission is shown in Figure 3. Note that the
highest ”1” bit (signalling ”significant”) never increases as
more coefficients are put into the LSP.

The code stream bits can be sent raw, meaning without
further entropy coding, and still be efficient. However, the
significance bits for four quadrants produced by recursive
splitting can be Huffman or arithmetic coded to obtain a
small improvement in efficiency. Sign and refinement bits
need not be further encoded, as gains appear to be negli-
gible. So when entropy coding is enacted in SPECK, it is
far simpler than that of JPEG-2000. The SPECK calcula-
tions for coding are just finding highest order bits in a set
which can be implemented by a bitwise OR of all its coef-
ficients. So nothing more complicated than bitwise opera-
tions is needed for SPECK coding.

4.2 SPIHT Coding

The SPIHT algorithm, which preceded SPECK, dif-
fers from SPECK in the way the wavelet coefficients are
grouped and partitioned. Otherwise, it is fairly similar,
aside from some implementation details. In SPIHT, the co-
efficients of the wavelet transform are grouped into spatial
orientation trees, that is, linked according to spatial orienta-
tion in subbands across scales. See Figure 4 for the llus-
tration of these linkages. Since the subband dimensions
increase by factors of two from coarse to fine scale, a co-
efficient at a coarser scale is linked to a 2x2 block of co-
efficiens at a finer scale. The exception is the roots of the
trees that are in the low-low subband at the coarsest scale.
Here the upper left coefficient of a 2x2 block has no link-
ages (descendants) and the other three are each linked to a
2x2 block in a subband at the same scale in the same spatial

4



-

@

@@R?

-

Z

Z

Z

ZZ~

C

C

C

CW

�?

Figure 4. Examples of parent-offspring dependencies
in the spatial-orientation tree.

orientation.
The coordinates of coefficients in a tree are grouped into

the following different sets:

� O(i; j): set of coordinates of all offspring of node
(i; j);

� D(i; j): set of coordinates of all descendants of the
node (i; j);

� H: set of coordinates of all spatial orientation tree
roots (nodes in the highest pyramid level);

� L(i; j) = D(i; j)�O(i; j).

For instance, except at the highest and lowest pyramid
levels, we have

O(i; j) = f(2i; 2j); (2i; 2j+1); (2i+1; 2j); (2i+1; 2j+1)g:

(2)
With these sets, we can test their coefficients for signifi-

cance just as we did with SPECK. The set partitioning rules
are simply:

1. the initial partition is formed with the sets f(i; j)g and
D(i; j), for all (i; j) 2 H;

2. ifD(i; j) is significant then it is partitioned intoL(i; j)
plus the four single-element sets with (k; l) 2 O(i; j).

3. if L(i; j) is significant then it is partitioned into the
four sets D(k; l), with (k; l) 2 O(i; j).

In SPIHT we maintain a separate list, the LIP, to store the
coordinates of insignificant single coefficients, in addition
to the LIP, and LSP. The LIP now stores all insignificant
sets with the exception of the singleton ones. The LIP in
SPIHT is always visited first for testing at a given bit plane
order n, similar to the singleton sets at the top of the LIS

HL

spatial block 3

LLHH

LLHL

HHLH

LLLH LLHH

LLHL

HL

HHLH

LLLH LLHH

LLHL

spatial block 0

HHLH

LLLH

spatial block 2

HL HL

HHLH

LLHL

spatial block 1

LLHHLLLHLLHL

LLHHLLLH

full decomposition

LH HH

HL

Figure 5. Grouping the spatial orientation trees of the
wavelet transform. The shaded subbands belong to
group or spatial block "1".

in SPECK. This order of testing sets is necessary to find
significant individual coefficients using the fewest number
of significance decision bits.

As with SPECK, further entropy coding is optional. The
significance test outcomes can be arithmetic or Huffman en-
coded in 2x2 blocks with a small benefit. Sign and refine-
ment bits can be sent raw without further coding. Clearly,
arithmetic or Huffman coding overhead of complexity is
much lower than that of JPEG-2000. Again, only bitwise
operations are needed for the main coding algorithm.

In SPECK, we described a small memory coding of sub-
band subblocks, whereas here with SPIHT we described
coding of the full wavelet transform. Spatial orientation
trees with adjacent roots can be grouped and coded together
apart from other groups. For example, consider the three
level image wavelet transform shown in Figure 5 with the
roots in the coarsest (low-low) subband separated into 4
groups, labelled 0,1,2,3. If we follow the trees from these
groups, we see that they also manifest as 4 groups at the
corresponding spatial orientations. Putting the like labelled
groups together results in 4 groups of trees corresponds to
4 quadrants of the image with some overlap. Hence we call
these groups ”spatial blocks”. Clearly, this paradigm ex-
tends to more levels of wavelet decomposition and a larger
number of tree groups or spatial blocks. Each group can
be encoded independently with SPIHT to a high rate and
truncated according to a bit assignment procedure, such as
the one alluded to previously for JPEG-2000 and SPECK.
Then the individual bit streams can be reorganized as before
to form an embedded composite bit stream.

5



4.3 Is Embedding Necessary?

Many applications do not require or can not afford an
embedded bit stream. An embedded bit stream requires
either the image or the compressed bit stream in mem-
ory. Clearly, this is not feasible for large images. Most
large images are coded in tiles or stripes, where it is de-
sirable to maintain constant quality across these coding
units. One can encode to constant quality with any of the
embedded systems mentioned by sending bits down to a
given bit plane or pre-quantizing all the coefficients in ev-
ery unit to the same quantization interval and encoding the
signed bin numbers losslessly. With the last scenario, the
bit plane transmission slows the execution and may give
no added value to the application. In JPEG-2000, there
is no choice but to pass through all the bit planes (several
times). In SPIHT or SPECK, one can skip these refinement
passes through the bit planes of significant coefficients (rep-
resented by bin numbers) and send all the lower order bits
immediately upon finding a significant coefficient. There
is still an approximate embedding by value as coefficients
with larger most significant bits always precede those with
smaller most significant bits. So, in this non-embedded sce-
nario, SPECK and SPIHT have an even greater advantage
in simplicity over JPEG-2000.

5 Complexity Comparisons

We conducted performance and time comparisons
among SPECK, SPIHT and VM3.2A and VM4.2 versions
of JPEG-2000. Later versions of JPEG-2000 (Part I) elimi-
nated one of the original four passes per bit plane and made
some other modifications to speed it up by a small amount
and thereby sacrifice a little in performance. So the perfor-
mance figures you will see for JPEG-2000 in these compar-
isons are better and the time figures are somewhat smaller
than what is obtained with the final version. Nonetheless,
these figures are good indicators of what can be obtained.

Both SPIHT and SPECK were implemented in the
JPEG-2000 framework, replacing the entropy coding[15,
5]. There was no further entropy coding in SPIHT, as only
raw uncoded sign, decision, and refinement bits were sent to
the bit stream. With SPECK, the 4 bit binary masks result-
ing from significance test of quadrants of a divided block
were encoded with a simple, fixed Huffman code of 15 sym-
bols, through table lookup. Generally speaking, SPIHT per-
formed about 1.0 - 1.5 dB below VM3.2A in PSNR (peak
signal-to-noise-ratio) for a set of large photographic images.
This particular implementation of SPECK, called SBHP for
Subband Block Hierarchical Partitioning, performed only
about 0.4-0.5 dB below VM4.2 in PSNR on the average
over sets of photographic, medical, and satellite images.

The real story is in the reduction of coding times over

JPEG-2000. Decoding time comparisons of algorithm are
considered to be good indicators of relative speed and com-
plexity. A non-embedded form of SPIHT was 10 times
faster in decoding than VM3.2A. For SPECK, the embed-
ded form was 8 times faster and the non-embedded form
was 11 times faster than VM4.2. These numbers show very
significant complexity reductions of SPECK and SPIHT
over JPEG-2000. The consequent degradation in perfor-
mance is nearly insignificant, especially with SBHP.

6 IMAGE SEQUENCE CODING

Three-dimensional versions of SPIHT and SPECK have
been very effective in encoding video[11, 10, 8]. Even with-
out motion compensation, SPIHT looks and measures bet-
ter than MPEG2 for the same bit rate. SPECK, in a the
particular implementation EZBC, has achieved some of the
best results yet reported for SIF sequences. For SPIHT, the
data structure is 3-dimensional (3-D) spatio-temporal ori-
entation trees of a 3-D wavelet transform. For SPECK,
the data strucure is a 2-dimensional (2-D) block of a 3-D
wavelet tranform. Here, the temporal transform is taken
along the estimated motion trajectories of pixels in the im-
age frames. SPECK and SPIHT have also been utilized for
coding of non-video image sequences, where there is no un-
derlying motion model. Examples of such sequences are
tomographic images, medical, material or geological, and
multi-component images, such as multi-spectral or hyper-
spectral images.

There has been a growing trend to compress data associ-
ated with points of a two or three dimensional grid. Image
compression techniques can be adapted for such uses. One
example is compression of digital terrain elevation data, for
which SPIHT has already been successfully utilized[6]. An-
other would be atmospheric data of temperature, pressure,
moisture, or wind velocity at a grid of points in a volume of
the atmosphere. For data, one might have to adopt an error
criterion different than the usual mean squared error, such
as bounded error magnitude. For the latter, algorithms en-
tirely different than the ones mentioned here might have to
be employed.

6.1 Coding Results with Volume Images

The undertaking of 3-D transforms and/or 3-D coding,
considering the increase in memory and complexity re-
quired, may not result in a worthwhile payoff. To settle
this question, we present some coding results with medical
image sequences, comparing 2-D and 3-D techniques. The
test sequences are an MR Chest volume, comprised of 64
256x256, 8 bpp frames and a CT Skull volume, comprised
of 128 256x256, 8 bpp frames. First we compare the tech-
niques for purely lossless (perfectly reversible) compres-

6



Method GOF Filters Bit Rate
(bits per pel)

MR Chest CT SKull

3-D/3-D SPIHT 16 I(4,2) 1.78 2.04
3-D/2-D SPECK 16 I(5,3) 2.176 2.47

2-D SPIHT 1 I(4,2) 2.85 2.69
JPEG-LS 1 none 2.93 2.85

Table 1. Lossless Volume Image Compression

SPIHT at 0.1 bpp SPECK at 0.25 bpp

GOF � GOF �

1 16 (dB) 1 16 (dB)
MR Chest 36.38 42.98 6.60 39.46 45.60 6.14
CT SKull 26.38 33.98 7.60 29.66 36.51 6.85

Table 2. 3-D to 2-D Coding Improvement for Lossy
Volume Image Compression

sion. The techniques are SPIHT with 3-D transform and
3-D coding, SPECK with 3-D transform and 2-D coding,
2-D SPIHT, and JPEG-LS, the new lossless and near-lssless
still image compression standard. The results are shown in
Table 1. The best compression for both volumes is achieved
by 3-D/3-D SPIHT. Averaged over both volumes, 3-D/2-D
SPECK requires 22% larger file size, while the purely 2-
D techniques, SPIHT and JPEG-LS require 46% and 52%
larger file sizes, respectively. Clearly, the 3-D transform
alone gives fairly impressive gains in coding efficiency, but
when combined with 3-D coding, the gains are even more
impressive. However, these gains may occur only for this
kind of image data, but they are encouraging.

For lossy coding of these image volumes, we compared
SPIHT and SPECK between their 2-D and 3-D modes and
compiled some results in Table 2. With SPIHT at 0.1 bpp,
the average gain in PSNR between 2-D and 3-D was 7.10
dB. With SPECK at 0.25 bpp, the analogous average gain
was 6.49 dB. The lower gain of SPECK is attributed to the
2-D coding mode versus the 3-D coding mode of SPIHT.
These PSNR gains are really quite significant and make a
substantial visual impact.

7 CONCLUSIONS

The demand for image compression seems to be accel-
erating rapidly along with the venues and set of features for
its application. The trend is toward higher resolution, larger
2D and 3D images. The volume medical images above ben-
efit greatly from 3D transform and coding, but they are rel-
atively small. Although coding and decoding times are ad-
equately fast for smaller images and image volumes, they

might not be so for the larger images contemplated for fu-
ture applications. For example, there is a call for proposals
by MPEG for a new standard for digital cinema. The re-
quirements are real-time, visually lossless, compression and
decompression of 1920x1080 pixel, 6 byte per pixel frames,
at 24 frames per second. It appears that only a hardware
solution using very fast, low complexity algorithms is fea-
sible. The set partitioning coders presented here are good
candidates for meeting these requirements while achieving
state-of-the-art compression efficiency. There are other, set
partitioning coders that use more adaptive set partitioning
schemes to obtain slightly better performance with a small
increase in complexity[3, 12, 7]. We believe that the set
partitioning paradigm is essential to keep the computational
cost and complexity resonably low and still achieve superior
compression efficiency.

References

[1] M. D. Adams and F. Kossentini. Performance eval-
uation of the spatially segmented wavelet transform
in the jpeg-2000 baseline system. ISO/IEC JTC 1/SC
29/WG 1 N868, June 1998.

[2] Motorola Australia Research Center. A memory sav-
ing method of calculating the discrete wavelet trans-
form,. Project Report, December 1997.

[3] B.-B. Chai, J. Vass, and X. Zhuang. Significance-
linked connected component analysis for wavelet im-
age coding. IEEE Trans. on Image Processing, 8:774–
784, June 1999.

[4] C. Chrysafis and A. Ortega. Line based, reduced mem-
ory, wavelet image compression. IEEE Trans. on Im-
age Processing, 9:378–389, March 2000.

[5] C. Chrysafis, A. Said, A. Drukarev, A. Islam, and
W. A. Pearlman. Sbhp-a low complexity wavelet
coder. Proc. IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP 2000), 4:2035–2038,
2000.

[6] W. R. Franklin and A. Said. Lossy compression of
elevation data. Proceedings of Seventh International
Symposium on Spatial Data Handling, Aug. 1996.

[7] E. S. Hong and R. E. Ladner. Group testing for im-
age compression. Proceedings of Data Compression
Conference (DCC 2000), pages 3–12, Mar. 2000.

[8] S.-T. Hsiang and J. W. Woods. Embedded video
coding using invertible motion compensated 3-d sub-
band/wavelet filter banks. Proceedings of Packet Video
Workshop (PV 2000), May 2000.

7



[9] A. Islam and William A. Pearlman. An embedded and
efficient low-complexity hierarchical image coder. Vi-
sual Communication and Image Processing ’99, Proc.
SPIE Vol. 3653, pages 294–305, Jan. 1999.

[10] B.-J. Kim and W. A. Pearlman. An embedded wavelet
video coder using three-dimensional set partitioning in
hierarchical trees. Proceedings of Data Compression
Conference (DCC 97), pages 251–260, Mar. 1997.

[11] B.-J. Kim, Z. Xiong, and W. A. Pearlman. Low bit-rate
scalable video coding with 3d set partitioning in hier-
archical trees (3d spiht). IEEE Trans. Circuits and Sys-
tems for Video Technology, 10:1374–1387,, December
2000.

[12] D. Marpe and H. L. Cycon. Very low bit-rate video
coding using wavelet-based techniques. IEEE Trans.
on Circuits and Systems for Video Technology, 9:85–
94, Feb. 1999.

[13] Amir Said and William A. Pearlman. A new, fast and
efficient image codec based on set partitioning in hi-
erarchical trees. IEEE Trans. on Circuits and Systems
for Video Technology, 6:243–250, June 1996.

[14] D. Taubman. High performance scalable image com-
pression with ebcot. IEEE Trans. on Image Process-
ing, 9:1158–1170, July 2000.

[15] F. W. Wheeler and W. A. Pearlman. Low-memory
packetized spiht image compression. Conference
Record of Thirty-Third Annual Asilomar Conference
on Signals, Systems, and Computers, 2:1193–1197,
Oct. 1999.

[16] Z. Xiong, O. Guleryuz, and M. T. Orchard. A dct-
based embedded image coder. IEEE Signal Process-
ing Letters, 3:289–290, November 1996.

8


