
1

Hierarchical Dynamic Range Coding of Wavelet
Subbands for Fast and Ef�cient Image

Decompression
Yushin Cho and William A. Pearlman

Abstract� An image coding algorithm, PROGRES (Progres-
sive Resolution Coding), for a high speed resolution scalable
decoding is proposed. The algorithm is designed based on a
prediction of the decaying dynamic ranges of wavelet subbands.
Most interestingly, because of the syntactic relationship between
two coders, the proposed method costs very similar amount of bits
as used by uncoded (i.e. not entropy coded) SPIHT. The algorithm
bypasses bit-plane coding and complicated list processing of
SPIHT in order to obtain a considerable speed improvement,
giving up quality scalability, but without compromising coding
ef�ciency. Since each tree of coef�cients is separately coded,
where the root of the tree corresponds to the coef�cient in LL
subband, the algorithm is easily extensible to random access
decoding.

The algorithm is designed and implemented for both 2D and
3D wavelet subbands. Experiments show that the decoding speeds
of proposed coding model are four times and nine times faster
than uncoded 2D-SPIHT and 3D-SPIHT respectively, with almost
the same decoded quality. The higher decoding speed gain in
a larger image source validates the suitability of the proposed
method to a very large scale image encoding and decoding.

In the Appendix, we explain the syntactic relationship of the
proposed PROGRES method to uncoded SPIHT, and demon-
strate that in the lossless case the bits sent to the codestream for
each algorithm are identical, except that they are sent in different
order.

I. INTRODUCTION

MODERN image coding methods [1], like JPEG2000's
EBCOT [2], are able to support simultaneous sub-

image decompression (ROI), and also quality (SNR), resolu-
tion, and spectral scalability [3] [4]. Unfortunately, while the
loss in compression incurred by supporting these features can
be quite small, they may increase computational complexity
signi�cantly.

Quality or rate scalability is commonly done via bit-plane
coding, which normally requires several passes through all
the pixels or transform coef�cients and uses adaptive entropy
coding with powerful contexts. However, in many important
applications, such as the digital camera, the images need
to have a pre-de�ned quality and any extra effort required
for quality scalability is wasted. Furthermore, there are in-
creasingly common applications where one may not be able

Y. Cho is with SONY Electronics, Inc., San Jose, CA 95112; E-mail:
cho.yushin@gmail.com

W. A. Pearlman is with Rensselaer Polytechnic Institute, Electrical, Com-
puter and Systems Dept., Troy, NY 12180-3590; E-mail: pearlw@ecse.rpi.edu.

This work was carried out in the Center for Image Processing Research,
Rensselaer Polytechnic Institute, Troy, NY, USA and was supported in part
by the Of�ce of Naval Research under Grant No. N00014-05-1-0507.

to afford the additional time and computation complexity
required for rate scalability.

Image datasets for scienti�c and medical applications are
growing to enormous sizes in the multi-gigabyte and even
terabyte range. These datasets are typically gathered by com-
puter tomography and electron microscopy and are often three-
dimensional and even four-dimensional (three-dimensional
versus time). Fast decoding of regions of interest in multiple
scales of resolution are essential properties for the ef�cient
utilization and exploitation of these data. These properties
are needed for rapid browsing in remote sensing and GIS
applications, for example. In most cases, scienti�c image data
must be encoded losslessly and selected portions of this data
must be decoded losslessly, so as to guarantee no loss of
analytic or diagnostic accuracy. In other cases, a designated
high quality is often suf�cient for the application. Therefore,
the property of rate scalability is never utilized and is a
considerable impediment to fast decoding.

In this paper, we consider fast, ef�cient coding that sup-
ports resolution scalability and ef�cient decompression of
sub-images by random access decoding. The methods are
implemented both for two-dimensional and three-dimensional
images, but for the sake of clarity, we shall explain our
algorithm in the context of two-dimensional images, as the
extension to three dimensions then becomes obvious. Our
solution addresses the challenge of avoiding compression loss,
while simultaneously reducing complexity by using neither
bit-plane coding (and its contexts) nor subsequent entropy
coding.

The original EZW [5] and SPIHT [6] do not support
resolution scalability, since they do not code the resolution
boundaries. They also do not support random access decod-
ing [3] [4], i.e., decoding of a given region-of-interest by
random access to the compressed bitstream.

The algorithm to be presented, PROGRES (Progressive
Resolution Coding) is a method that exploits the same image
properties as SPIHT, but is adapted to support resolution
scalability and random access decoding with great encoding
and decoding speed. For a pre-de�ned quality, it can ef�ciently
decompress any designated image region at several resolutions.

This paper is organized as follows. Section II provides an
overview of the proposed coding method. In Section III, we
illustrate how dynamic ranges of coef�cients are hierarchi-
cally and ef�ciently coded in each wavelet tree, where the
decrease of dynamic range is shared among a group of coef-
�cients. Then a description of the coding algorithm is given

2

in Section IV. A step-by-step description of the PROGRES
coding scheme is given in Section V. Section VI presents
the experimental results for both 2D and 3D image sources,
where the coding ef�ciency and coding speed of PROGRES
are compared to the uncoded SPIHT algorithm. Section VII
concludes the paper. In the Appendix, the relationship between
PROGRES and SPIHT is explained in detail.

II. PREVIOUS WORK AND OVERVIEW

Speed improvements were observed in hybrid forms of bit-
plane coding, where once an image transform coef�cient is
classi�ed as signi�cant during a bit-plane pass, its sign and all
its less signi�cant bits are encoded together, so that re�nement
passes are not needed [7].

A simple hierarchical coder, SWEET, proposed by An-
drew [8], codes the coef�cients with multiple bit planes based
on both hierarchical set partitioning and block-coding. This
set partitioning scheme does not achieve the performance of
SPIHT [6], but the coding scheme (with a bin of n bits) does
lead to reduction in computations.

The low-complexity, embedded wavelet based coder pre-
sented by Ordentlich et. al. [9] uses neither zerotree nor
arithmetic coding and instead encodes bit planes with faster
adaptive Elementary Golomb codes. This paper shows similar
PSNR performance to SPIHT-AC (Arithmetic Coded) and su-
perior to SPIHT (uncoded). No execution time numbers were
reported and the software is no longer available [10]. Berghorn
et al. [11] also presented a fast embedded wavelet-based
coding algorithm, based on adaptive arithmetic coding of sig-
ni�cance state symbols and distance differences of signi�cant
2× 2 blocks in scan modes across scales. Adaptive arithmetic
coding is also used for coding the bit planes in the re�nement
passes. Total execution times, including wavelet transform,
proved to be smaller than SPIHT-AC. Both Ordentlich et al.
[9] and Berghorn et al. [11] rely on adaptive entropy coding
of bit planes in order to produce embedded codestreams. Both
these methods require multiple passes through the wavelet
coef�cients and have no option for bypassing bit plane coding
to gain coding and decoding speed.

Oliver and Malumbres [12] presented LTW (Lower-Tree
Wavelet), which is another solution for resolution scalable
wavelet image coding with low complexity, based on non-
embedded coding. The lower-trees are equivalent to the ze-
rotrees of pre-quantized wavelet coef�cients, where the quanti-
zation step size is 2rplane (rplane is the number of the lowest
bit-planes to drop). Arithmetic coded symbols for zerotree,
isolated zero, and number of bits to represent the magnitude
of coef�cients are used.

Highly scalable SPIHT (HS-SPIHT), presented by Danyali
and Mertins [13], enables the SPIHT algorithm to have spatial
scalability. It introduced multiple resolution-dependent lists
and a resolution-dependent sorting pass. Thereby, it can keep
the important features of the original SPIHT algorithm such as
compression ef�ciency, full SNR scalability and low complex-
ity. However, the focus of this method is on the expansion of
scalability, instead of reduction of computation. This method
also does not allow random access decoding.

Similar to other wavelet based image coding methods [5]
[6] [14] [15] [16] using intra and inter-band coding contexts,
our method is based on two properties of natural images:
(a) energy in each subband normally decreases with spatial
frequency [17]; and (b) statistics in a local neighborhood are
similar. Thus, we also use the strategy of coding wavelet
coef�cients following the order of expected importance from
most to least signi�cant bits, from low to high-resolution
subbands. However, to reduce the computational burden we
do not follow a bit plane-by-bit plane scan. Each coef�cient,
represented by sign and magnitude, is processed only once.

The wavelet transform of an image is partitioned into
a number of non-overlapping spatial orientation trees, each
rooted by a coef�cient in the lowest spatial frequency subband.
This enables an easy extension of the proposed coding scheme
to random access decoding, because each tree represents a
region of the image geometrically similar to the root in the
lowest spatial frequency subband.

The dynamic range of a tree of wavelet coef�cients is
represented as a dynamic range number, which gives the
number of bits required to represent every magnitude of the
coef�cient in the tree. Based on the assumption of decaying
power spectral density, the dynamic ranges of descendant
subtrees are highly likely to be smaller than that of the parent
tree. We code the amount of this decrease in dynamic range
number by lossless differential coding.

In addition, since a local neighborhood of wavelet coef�-
cients has similar statistics, the descendant subtrees can share
the information of decrease in dynamic range. This procedure
is hierarchically applied to each coef�cient resolution by
resolution. Because a decrease in dynamic range between
parent and children coef�cients affects not just those children
(i.e. the second generation) but all their descendants also, the
presented dynamic range coding method ef�ciently represents
the hierarchy of dynamic ranges over a spatial orientation tree.

III. HIERARCHICAL DYNAMIC RANGE CODING

A. Dynamic Range of Coef�cients and a Tree of Coef�cients
We use ci,j and si,j to represent, respectively, a wavelet

coef�cient at location (i, j), and a tree of coef�cients with
root at location (i, j) (See Fig. 1).

As mentioned above, to represent the magnitude compactly,
the number of required bits should be known in advance. When
the dynamic range of a coef�cient magnitude is represented
by the number of bits, k, the magnitude varies in the range of
[0, 1, ···, 2k−1]. We shall call that number of bits the dynamic
range number, which is analogous to the set number in AGP
described in [18]. For a non-zero coef�cient, an additional bit
is required to represent its sign.

Each tree (a spatial orientation tree) will contain a different
dynamic range of magnitudes, based on the activity of its
coef�cients. We de�ne the dynamic range number ri,j of the
tree si,j as:

ri,j = dlog2(max
cp,q∈si,j

|cp,q|+ 1)e ,

which accounts for how many bits are required to represent
every coef�cient magnitude in the tree.

3

a wavelet coefficient ci,j

HH1HL1

HL1

a tree si,j

Fig. 1. Wavelet coef�cient ci,j and a tree of coef�cients si,j

si,j

dynamic range
number

ri,j

resolution k

resolution k
rparent

rchildren

four subtrees of si,j

r2i,2j

r2i,2j+1

r2i+1,2j r2i+1,2j+1

dbase

resolution k+1

resolution k+1

resolution

Fig. 2. One-stage dynamic range coding : each subtree sm,n of si,j is coded
by using the same dynamic range number of rchildren, which is reconstructed
by : rchildren = rparent− dbase. The information dbase is actually coded
to represent the coef�cients in subtree sm,n.

B. Coding of Dynamic Ranges in a Tree: One-Stage Predic-
tion

When a tree is partitioned into its subtrees, each subtree
will have a different dynamic range, probably a decreased one,
because the root coef�cient of the tree is likely to have the
largest magnitude in the tree. Thus, subtrees (i.e. child trees)
are likely to have smaller dynamic ranges than that of their
parent tree.

Therefore, it is a good idea to predict the dynamic range
of each subtree based on the dynamic range of a parent
tree, as shown in Fig. 2. Assuming that a parent tree si,j is
partitioned into four subtrees, s2i,2j , s2i,2j+1, s2i+1,2j , and
s2i+1,2j+1, then the r2i,2j , r2i,2j+1, r2i+1,2j , and r2i+1,2j+1

are the dynamic ranges for each subtree, respectively.
Let I(i, j) = {(2i, 2j), (2i, 2j+1), (2i+1, 2j), (2i+1, 2j+

1)} denote the set of position indices of the four subtrees of
tree si,j . Then, the range, rm,n, is de�ned for each subtree
sm,n, (m,n) ∈ I(i, j).

Now, for representing the dynamic range number of each
subtree sm,n, we encode

dbase = rparent − rchildren ,

where rparent is the dynamic range number ri,j of the parent

tree si,j and rchildren is the dynamic range number of the
subtrees of si,j , i.e.

rchildren = max
(m,n)∈I(i,j)

(rm,n) .

Note that one dynamic range number, rchildren, is used to
represent the magnitudes in all subtrees.

Then, in the decoder side, given the information of rparent

and dbase, rchildren can be reconstructed and we use this value
as the dynamic range number for the subtrees sm,n. Note that
the information of rparent−dbase is common to every subtree
sm,n.

Now, the coded information for the tree si,j with two
resolution scales will be:

ri,j , ci,j , dbase, c2i,2j , c2i,2j+1, c2i+1,2j , c2i+1,2j+1,

where c2i,2j , c2i,2j+1, c2i+1,2j , c2i+1,2j+1 are root coef�cients
of each subtree. The ci,j and cm,n, (m,n) ∈ I(i, j) contain
sign information. The ci,j comprises ri,j+1 bits of information
including a sign. The cm,n, (m,n) ∈ I(i, j), comprise ri,j −
dbase + 1 bits of information including a sign.

There is a reason why we choose dbase rather than rchildren

to code, where rchildren = rparent − dbase. From our expe-
rience, it is more probable that dbase ≤ rchildren, in other
words, it can be observed that the probability P (dbase ≤
rchildren) > 0.5 in any wavelet transformed image and
P (dbase ≤ rchildren) is getting closer to 1 for lower bit
rates. This explains why coding dbase will cost fewer bits than
coding rchildren.

The above coding scheme of dynamic range is applied to
every two adjacent resolution scales, k and (k+1), k = 0 to
M−2, where M−1 is the highest resolution. In this case, note
that the number of parent-children relationships increases four
times for each additional resolution scale of a 2D transform
image.

By coding the decrease in dynamic range number or dbase

for each group of four subtrees, the amount of bit savings is
simply 3×dbase bits since we would need a different decrease
in the dynamic range number for each subtree if we did not
use the common dbase information.

C. Coding of Dynamic Ranges in a Tree: Two-Stage Predic-
tion

The PROGRES image coder is built on an extension of
the idea of dynamic range coding (by a one-stage prediction)
described in the previous subsection III-B. Instead of sharing
the dbase value among four children coef�cients, it is shared by
sixteen coef�cients in practice, whose parents are at the same
tree level. In other words, these sixteen children have the same
grandparent, as shown in Fig. 3. By doing this, about 1.5%
coding gain is achieved in our experiments. However, sharing
a `decrease in dynamic range' with more than sixteen children
does not seem to give any improvements in coding gain.

We assume (m, n) ∈ I(i, j) as before. Then, in Fig. 3,
subtree(sm,n) at resolution k+2 indicates the subtrees of each
tree sm,n at resolution k+1. Our goal here is to code the
coef�cients of subtree(sm,n) located at resolution k+2, i.e.
the grandchildren coef�cients of the tree si,j .

4

si,j resolution

dynamic range
number

r2i,2j

r2i,2j+1

r2i+1,2j r2i+1,2j+1

ri,j

dlocal,

resolution k resolution k+1

rk+1

rk+2

resolution k+2

dbase

subtree (s2i,2j)

resolution k+1 resolution k+2resolution k

rk

r

four subtrees of si,j

subtree (s2i,2j)

subtree (s2i,2j)

Fig. 3. Two-stage dynamic range coding : the dynamic range for each tree in
subtree(sm,n), is reconstructed by: rk+1− dbase− dlocal, subtree(sm,n),
where the information of rk+2 = rk+1 − dbase is common to every tree
subtree(sm,n). (Here, an example for (m, n) = (2i, 2j) is shown.) The
rk, rk+1, rk+2 stand for the dynamic range numbers of trees rooted at
resolution k, k+1, k+2, respectively. The rsubtree(s2i,2j) is the dynamic
range number of all subtrees of s2i,2j .

In Fig. 3, the rk, rk+1, rk+2 stand for the dynamic range
numbers of trees rooted at resolutions k, k+1, k+2, re-
spectively. The information of rk+1 is available to every
subtree(sm,n) at resolution k+2, since every coef�cient cm,n

at the resolution k+1 (which is the root of subtree(sm,n))
is coded with rk+1 bits. Now, the dynamic range for each
subtree(sm,n) at resolution k+2 can be predicted in two
stages. First, the rk+2 is predicted by dbase from rk+1, and
then the dlocal,subtree(sm,n) is further used to predict the
dynamic range for each subtree(sm,n).

Thus, all trees in subtree(sm,n) has the dynamic range
number, rk+1 − dbase − dlocal, subtree(sm,n) , where rk+1 −
dbase = rk+2 and rk+2−dlocal, subtree(sm,n) = rsubtree(sm,n).
As a result, subtree(sm,n)'s sixteen coef�cients at resolution
k+2 are sharing the information of dbase, which enables the
PROGRES algorithm to code the dynamic ranges ef�ciently.

IV. CODING ALGORITHM

A. Algorithm Description
The description of the coding algorithm, which we call

PROGRES, is given in Table 4 and the explanation of the
variables used in the algorithm is provided in Fig. I. Assume
we have M resolutions, 0, 1, 2, . . . ,M − 1, 0 for the lowest
resolution, and M−1 for the highest resolution. The algorithm
is repeatedly applied to each wavelet tree separately. At the
beginning of the algorithm, the list L will always contain the
root coordinate of the tree yet to be coded. The algorithm then
encodes each tree of wavelet coef�cients successivly from low
to high spatial resolution. Once the list L is initialized, the root
coef�cient magnitude is coded with MAXR bits, which is a
predetermined maximum dynamic range of coef�cients. Then,
each of the three children of a root coef�cient, in HL, LH ,
and HH subbands, is coded using the decrease of dynamic
range bits.

For each resolution k (Statement 10 of the algorithm),
�rst the difference (i.e. the dbase) of two dynamic range

L A list of coordinates of roots of trees yet to be coded.
M Number of spatial resolutions

numbered k = 0, 1, 2, . . . , M − 1; k = 0 is LL subband.
r0, r1 Dynamic ranges of a input tree with resolutions

M − 1 to 0 and M − 1 to 1, respectively.
MAXR A predetermined number larger than the maximum

dynamic range of the input wavelet tree.
dbase Difference of dynamic range between

two adjacent resolutions.
rk+1, rk+2 Variables to store the dynamic ranges shown

in Fig 3.
subtree(tree j) A set of all subtrees of tree j

rsubtree Dynamic range of all subtrees of a tree rooted
at resolution k+1.

dlocal Difference of dynamic range between rk+2

and rsubtree.

TABLE I
VARIABLE DESCRIPTION OF PROGRES CODING ALGORITHM IN FIG. 4.

numbers between resolution k+1 and k+2, i.e. rk+1 and rk+2

respectively, is calculated and coded. And then, based on
the dynamic range number for resolution k + 2, i.e. rk+2,
the decrease (i.e. the dlocal, subtree(sm,n)) of dynamic range
number to each subtree(sm,n)'s four coef�cients at resolution
k+2 is calculated and coded. Finally, each subtree(sm,n)'s
four coef�cients at resolution k+2 is coded with rk+1−dbase−
dlocal, subtree(sm,n) bits.

While dbase represents the difference of dynamic
range numbers between resolution k+1 and k+2, the
dlocal subtree(sm,n) represents the decrease of dynamic range
numbers between resolution k+2 and rsubtree(sm,n). The
statement dbase ← rk+1 − rk+2 at 10.(a).iii and the statement
dlocal ← rk+2 − rsubtree at 10.(a).iv.B correspond to these
range numbers, respectively.

B. Unary Coding
Unary coding is used for coding the decreases in dynamic

ranges over two adjacent resolutions, i.e. dbase and dlocal.
Unary coding is a pre�x code that is nearly1 the optimal
Huffman code for the exponential probability distribution.
The unary code for an integer number is that number of
1's followed by a single 0. For example, 0, 10, 110, . . . rep-
resent the codewords for the events x0, x1, x2, . . . with the
probabilities p(x0) = 1

2 , p(x1) = 1
4 , p(x2) = 1

23 , . . .,
respectively. When the distribution of the source follows the
exponential probability distribution, the average coding rate of
unary coding is close to 2 bits/symbol.

C. Bitstream structure
For M levels of wavelet decomposition, the number of

coef�cients in each tree is 2M×2M , which are the dimensions
of the corresponding subimage of the source image located
at the root coordinates. (We call this `subimage' or `image
block' here.) The structure of the output bitstream for a given
image block i is a sequence of code segments b(i, j) for
resolutions j = 0 through j = M − 1, as shown in Fig.

1Except for the two least probable symbols, which have the same codeword
length and differ by 1 bit for the Huffman code.

5

1) Initialize a list L ← a tree rooted at the lowest resolution (i.e. LL subband);
2) Find the maximum dynamic range number r0;
3) if r0 = 0 return; // no coef�cients to encode ?
4) Binary encode the magnitude of root coef�cient with MAXR bits and encode its sign bit with one bit (MAXR

is a prede�ned number);
5) r1 ← a maximum dynamic range number of the subtrees of the root coef�cient;
6) dbase ← r0 − r1;
7) Unary encode dbase;
8) if r1 = 0 exit // means, nothing to encode (i.e. zerotree), thus exit
9) Binary encode the coef�cient magnitudes at resolution 1 using r1 bits and encode their sign bits;

10) for each resolution level k = 0 to M − 3

a) for each tree j rooted at current resolution level k
i) rk+1 ← a maximum dynamic range number of subtree(tree j);

ii) rk+2 ← a maximum dynamic range number of subtree(subtree(tree j));
iii) dbase ← rk+1 − rk+2;
iv) Unary encode dbase;
v) if rk+1 = 0 continue; // Nothing to encode for tree j? Then, goto a)

vi) for each subtree i (i.e. rooted at resolution k+1)
A) rsubtree ← maximum dynamic range number of subtree(tree i);
B) dlocal ← rk+2 − rsubtree;
C) Unary encode dlocal;
D) if rsubtree = 0 continue; // Nothing to encode for tree i? Then, goto vi)
E) Binary encode the children coef�cients (i.e. at resolution k+2) of subtree i using rsubtree bits for

each and encode their sign bits;
F) Append subtree i to the list L for next resolution coding;

vii) Remove the current tree j from the list L;

Fig. 4. PROGRES Coding Algorithm (Explanation of the variables used in the algorithm is provided in Table I).

b
0,0
 b
0,1
 ...
 b
0,M-1
 b
1
,
0
 b
1,1
 ...
 b
1,M-1

block 0
 block 1

...

the lowest

resolution

the highest

resolution

Fig. 5. A bitstream structure (bi,j notates the resolution j of the subimage
i)

5. Whenever a full bitstream block i is decoded, the full
resolution decoded subimage i is obtained. Decoding only
segments b(i, 0) through b(i,K − 1) produces a reconstructed
subimage reduced in resolution by 2M−K . Therefore, we see
that the PROGRES coder is truly resolution progressive in
encoding and decoding.

Each tree, rooted at each coef�cient in LL subband, is en-
coded independently of other trees. Random access decoding is
made possible from this property. At the beginning of the part
of the bitstream for each coded tree (i.e. each bitstream block
in Fig. 5), header information of the coded tree size can be sim-
ply added during encoding. In this way, each tree of wavelet
coef�cients can be randomly accessed in the bitstream and
decoded individually. In addition, the progressive resolution
decoding works together with random access decoding. This
means that once we designate coordinates of the subimage to
be decoded, it can be decoded from lower to higher resolutions
progressively. Fig. 6 illustrates this idea.

V. AN EXAMPLE OF PROGRES CODING

For the wavelet coef�cients of Fig. 7, the step by step
demonstration of PROGRES coding is described in Tables

Encoding

An encoded bitstream

512 x 512 Lenna

block
k

Query : "Decode 32x32

block at (256,256)

D
ec

od
e

Progressive resolution

decoding in each block

random access

Fig. 6. Simultaneously progressive resolution and random access decoding

II and III. Each row of the table shows each coding step
sequentially.

The basic processing order of the source wavelet coef�cients
is resolution by resolution. And for each resolution, the
coef�cient is visited by the numbering policy shown in Fig.
8. Note that this policy is the same as the BFS (Breadth
First Search) algorithm. The coef�cients in the next higher
level resolution will never be processed until the ones in the
current resolution level are all �nished. In the last column of
the Tables II and III, a pair of parenthesized number and a
number such as (0) 96 and (1) -6 indicates the scanning order
of current wavelet coef�cient and the wavelet coef�cient itself
(i.e. the coef�cient 96 is processed �rst and the coef�cient -6
is processed in the second).

First, the initial dynamic range number rparents for the
16 × 16 wavelet coef�cients block (representing the 16 × 16
image block) is 7. This means that the maximum coef�cient
magnitude can be 27 − 1, which is 127. The coef�cient range

6

Fig. 7. 16 × 16 quantized wavelet transformed image, four levels of
decomposition, truncated to integer.

Fig. 8. Coef�cients scanning order in PROGRES algorithm for 16 × 16
image block

with sign is [−127, 127]. All the coef�cient magnitudes in
this block can be represented by 7 bits, although the dynamic
range prediction scheme of PROGRES will further reduce the
dynamic range through increasing resolutions. The information
about the number of bits required to represent the dynamic
range can be viewed as the set number in the AGP method
discussed in [18]. The actual maximum coef�cient is 96 as
seen in Fig. 7, which is located in the LL subband, i.e. the
resolution level 0. Thus, the magnitude 96 and its sign `+' are
coded by 7 + 1 bits.

Now, each of the three coef�cients (1) -6, (2) -25, and (3)
-8 at resolution level 1 (See Fig. 7) is coded with 5 bits to
accommodate the range maximum for `(2) -25'. Note that, the
root coef�cient (0) has three children coef�cients, (1), (2), and
(3), which is different from other coef�cients that have four
children coef�cients.

In Tables II and III, note that ,if the `current dynamic range
number' becomes 0, there is nothing to code, since all the
coef�cients in the group are just zeros.

VI. EXPERIMENTAL RESULTS: 2D AND 3D CODING

Tests were performed using an Intel 2.0 GHz Xeon pro-
cessor, MS-Windows 2000, and Visual C++ 6.0 Compiler
with speed optimization. The compression and decompression
times are measured in CPU cycles for 2D images (since
2D image coding times are very small) and seconds for 3D
images (video). The 2D version of the proposed PROGRES
algorithm is straightforwardly extended to a 3D version using
three-dimensional DWT and IDWT, three-dimensional wavelet
coef�cient trees of nominal branching factor 8, and dynamic
range coding of 8 children sets and 64 grandchildren sets.

TABLE II
STEP BY STEP DEMONSTRATION OF PROGRES CODING

(RESOLUTION 0 THROUGH 3. THE PARENTHESIZED NUMBERS INDICATE

THE ORDER OF COEFFICIENT ENCODING. R:RESOLUTOIN, rp : rparents ,
db : dbase , rc : rchildren , dl : dlocal , DR:CURRENT DYNAMIC RANGE

NUMBER)

R rp db rc dl DR Coded information
level diff (scan order) coef�cient value

0 7 7 7 (0) 96
1 7 2 5 5 2 (1) -6 (2) -25 (3) -8
2 5 1 4 4 1
2 0 4 0 (4) 1 (5) -7 (6) 2 (7) -10
2 1 3 1 (8) -3 (9) -2 (10) 3 (11) -2
2 1 3 1 (12) 0 (13) 3 (14) -3 (15) -4
3 4 1 3 3 1
3 2 1 2 (16) 1 (17) 0 (18) 0 (19) 0
3 1 2 1 (20) 2 (21) -3 (22) 0 (23) 0
3 1 2 2 (24) 0 (25) 3 (26) 3 (27) 1
3 0 3 0 (28) -1 (29) -7 (30) 0 (31) -6
3 3 0 3 3 1
3 2 1 2 (32) -1 (33) 0 (34) 0 (35) 0
3 2 1 2 (36) -1 (37) 1 (38) 1 (39) -1
3 2 1 2 (40) 0 (41) 1 (42) -1 (43) 0
3 0 3 0 (44) -1 (45) 1 (46) -5 (47) -4
3 3 1 2 2 1
3 2 0 2
3 1 1 1 (52) 0 (53) 1 (54) 1 (55) 0
3 0 2 0 (56) -1 (57) 2 (58) 0 (59) -2
3 0 2 0 (60) -2 (61) -1 (62) 0 (63) 3

TABLE III
STEP BY STEP DEMONSTRATION OF PROGRES CODING (RESOLUTION 4)

(CONTINUED FROM TABLE II)

R rp db rc dl r Coded information
level diff (scan order) coef�cient value

4 1 1 0 0 1
4 2 1 1 1 1
4 1 0 1
4 1 0 1
4 1 0 1
4 0 1 0 (92) 0 (93) 0 (94) 0 (95) -1
4 2 1 1 1 1
4 0 1 0 (96) 0 (97) -1 (98) 0 (99) -1
4 0 1 0 (100) 0 (101) 0 (102) 1 (103) 0
4 1 0 1
4 1 0 1
4 3 1 2 2 1
4 1 1 1 (112) 0 (113) 1 (114) 0 (115) -1
4 0 2 0 (116) -1 (117) 0 (118) 0 (119) -2
4 2 0 2
4 2 0 2
4 1 0 1 1 0
4 0 1 0 (128) -1 (129) 0 (130) 0 (131) 0
4 1 0 1
4 1 0 1
4 1 0 1
4 1 0 1 1 0
4 1 0 1
4 1 0 1
4 1 0 1
4 0 1 0 (156) 0 (157) 0 (158) 0 (159) 1
4 1 0 1 1 0
4 3 2 1 1 2
4 1 0 1
4 0 1 0 (180) -1 (181) -1 (182) 1 (183) 0
4 0 1 0 (184) 1 (185) 0 (186) 0 (187) -1
4 0 1 0 (188) -1 (189) 0 (190) 0 (191) 0
4 1 1 0 0 1
4 2 2 0 0 2
4 2 2 0 0 2

7

TABLE IV
THE COMPARISON OF CODING TIMES BETWEEN PRESENTED METHOD AND

OTHER METHODS
(2D IMAGE SOURCES : LENA 8 BPP 512×512, WOMAN 8 BPP

2048×2048), WAVELET TRANSFORM TIMES ARE NOT INCLUDED.
(S : SPIHT, L : LTW, P : PROGRES)

Encoding Decoding
Bitrate (cycles ×106) (cycles ×106)
(bpp) S L P S L P
Lena
0.125 24.25 34.7 23.66 4.46 12.3 1.60
0.25 30.87 38.9 26.12 7.78 17.4 2.61
0.5 46.18 46.7 29.01 16.04 27.1 4.55
1.0 67.86 62.4 34.80 33.31 47.1 8.32
Woman
0.125 400.66 298.60 378.43 73.90 227.44 24.09
0.25 524.05 430.90 404.34 150.11 370.31 41.92
0.5 788.30 666.15 450.13 307.33 616.70 74.71
1.0 1370.54 1193.08 528.42 675.15 1066.48 128.42

TABLE V
DECODED QUALITY IN PSNR: PROGRES VS UNCODED SPIHT, LENA

512 × 512, 8 BPP

Bit rate 2D PROGRES 2D SPIHT
0.125 30.6742 30.7198
0.25 33.7492 33.7245
0.5 36.8877 36.8714
1.0 39.9145 40.0284

The binary uncoded versions of 2D-SPIHT [6] and 3D-
SPIHT [19] from Rensselaer Polytechnic Institute (RPI),
which do not use arithmetic coding, are chosen for compari-
son. Wavelet transformation times are not included, in order
to measure speeds of encoding and decoding only. Six and
eight levels of wavelet decomposition with Daubechies 9/7
�lters [20] are used for Lena and Woman, respectively.

The PROGRES scheme performs lossless coding of quan-
tizer bin numbers of the pre-quantized wavelet transform of
the source image. Note that both SPIHT and PROGRES used
here do not use subsequent entropy coding of the code streams.

A. 2D Case
The 2D image coding times for 8 bpp gray scale images,

512×512 Lena and 2048×2048 Woman, at the rate of 0.125,
0.25, 0.5 and 1.0 bpp are shown in Table IV.

Because PROGRES uses no context-based, adaptive entropy
coding, a fairer comparison in PSNR is to binary, uncoded
SPIHT, instead of entropy coding based methods such as [12]
[9] [11]. For time complexity comparison, we compare with
LTW [12] algorithm.

Table IV shows that the encoding speed gains of PROGRES
over SPIHT are, 1.02 to 1.95 times for Lena and 1.06 to 2.59
times for Woman. The speed improvement over SPIHT in

TABLE VI
DECODED QUALITY IN PSNR: PROGRES VS UNCODED SPIHT, WOMAN

2048 × 2048, 8 BPP

Bit rate 2D PROGRES 2D SPIHT
0.125 26.8938 26.9300
0.25 29.4182 29.4253
0.5 33.0248 32.9183
1.0 37.7560 37.7471

decoding is four times on average, 2.79 to 4.0 times for Lena
and 3.07 to 5.25 times for Woman over the four bit rates in the
Table. The difference between encoding and decoding times
of PROGRES coder is mostly due to the tree analysis step
in the encoder side, which recursively shifts up the maximum
coef�cient magnitude from bottom to top across the wavelet
coef�cient trees. Also, it is seen in the Table that PROGRES
outperforms the coding speed of LTW in [12], up to two times
in encoding and up to seven times in decoding. LTW exploits
entropy coding of symbols and gives better coding ef�ciency
than SPIHT and PROGRES (LTW is 0.1 to 0.2 dB better than
SPIHT-AC and 0.6 dB better than uncoded SPIHT for the bit
rates 0.125, 0.25, 0.5, and 0.1 bpp).

For the bitrates 0.25 to 1.0 bpp of Lena, the encoding
algorithm of Berghorn et al. [11] is approximately 1.6 to
1.5 times faster than SPIHT-AC encoding; and decoding is
1.8 to 0.9 times faster than SPIHT-AC decoding. Note that
their results include wavelet transform and I/O times, so it is
uncertain whether their coding algorithm by itself is faster.
(Their PSNR results for Lena are slighter below those of
SPIHT-AC.) The relative speed of uncoded SPIHT is known
to be up to two times faster than SPIHT-AC, depending on
rate [6]. Thus, we estimate that the speed of the Berghorn
algorithm in [11] is similar to uncoded SPIHT, so must be
considerably slower than the proposed PROGRES algorithm.

The main reason that PROGRES decodes (and encodes)
faster than SPIHT is that it avoids bitplane coding. In PRO-
GRES, each coef�cient is completely reconstructed by access-
ing the coef�cient only once. However, each coef�cient in
SPIHT (and many bit-plane coding algorithms) needs multiple
passes to fully reconstruct itself. The signi�cant coef�cients
stored in the LSP are processed by the re�nement pass,
adding one bit at each bitplane pass below its most signi�cant
bitplane. Furthermore, the set partitioning information man-
aged by the LIS list in SPIHT is growing two-dimensionally,
i.e. along resolutions and bitplanes. The same is happening
to the LIP list, until a coef�cient is classi�ed as signi�cant
and moved to the LSP . These three list processings account
for much heavier computations than the simple BFS (Breadth
First Search) traversal used in PROGRES for hierarchical
reconstruction of coef�cients.

The decoded qualities for Lena and Woman measured in
PSNR are shown in Tables V and VI, respectively. For Lena,
PROGRES is slightly better at 0.25 and 0.5 bpp, and SPIHT is
slightly better at 0.125 and 1.0 bpp. Meanwhile, for Woman,
PROGRES is slightly better at 0.5 and 1.0 bpp, and SPIHT
is slightly better at 0.125 and 0.25 bpp. Note that the SPIHT
algorithm can stop decoding at an arbitrary point within a
bitplane when a target bitrate is met. However, PROGRES
always decodes the last available bit on the last bitplane.
This property seems to explain the slight difference in coding
ef�ciencies between the two coders.

Figs. 9 and 10 show the reconstructed Lena images and
Woman images for four different bit rates by PROGRES and
2D-SPIHT. As stated in the beginning, the two coders decode
with very similar quality at the same bit rate.

8

TABLE VII
THE COMPARISON OF CODING TIMES BETWEEN UNCODED 3D-SPIHT

AND THE PRESENTED 3D-PROGRES (3D IMAGE SOURCES : FOOTBALL

8 BPP, 352× 240× 32 (SIF FORMAT), SUSIE 8 BPP 720× 480× 128 (ITU
601 FORMAT). 3D-S : 3D-SPIHT, 3D-P : 3D-PROGRES)

Bitrate Encoding Decoding
(bpp) (in seconds) (in seconds)

3D-S 3D-P 3D-DWT 3D-S 3D-P 3D-IDWT
Football
0.125 0.80 0.46 0.50 0.05 0.01 0.49
0.25 0.89 0.47 0.50 0.10 0.02 0.49
0.5 1.11 0.49 0.50 0.21 0.03 0.49
1.0 1.54 0.51 0.50 0.43 0.04 0.50
Susie
0.125 13.10 7.27 8.62 0.91 0.13 8.55
0.25 14.87 7.34 8.50 1.82 0.23 8.55
0.5 19.00 7.55 8.56 3.85 0.42 8.55
1.0 26.64 8.03 8.51 7.71 0.80 8.56

TABLE VIII
DECODED QUALITY IN PSNR: 3D PROGRES VS UNCODED 3D SPIHT,

CUPRITE SC1 8B 512 × 512 × 224, 8 BPP

Bit rate 3D PROGRES 3D SPIHT
0.125 26.8938 26.9300
0.25 29.4182 29.4253
0.5 33.0248 32.9183
1.0 37.7560 37.7471

B. 3D Case

The 3D coding times for 8 bpp gray scale video, Football
8 bpp, 352 × 240 × 32 (SIF format) and Susie 8 bpp 720 ×
480× 128 (ITU 601 format) are shown in Table VII.

The speed gain factor is larger in 3D coding since the
amount on the lists being processed in 3D SPIHT is growing
exponentially by dimension. The decoding speed gains are 5
to 10.75 times for Football and 7 to 9.63 times for Susie, as
seen in Table VII. The encoding gains are seen as 1.74 to 3.01
times for Football and 1.80 to 3.31 times for Susie.

The decoded qualities for the hyperspectral image,
cuprite sc1 8b2 512 × 512 × 224, 8 bpp, at four bit rates
are also shown in Table VIII. At lower rates, 0.125 and 0.25
bpp, uncoded 3D SPIHT is around 0.01 dB better but at higher
rates, 0.5 and 1.0 bpp, 3D PROGRES is around 0.01 dB better.
This result tells that both coders give very similar coding
ef�ciency for hyperspectral images.

2Upper left 512× 512 corner extracted and rewritten to 8 bits per sample
from the original 614× 512, 16 bits per sample, for each band.

TABLE IX
DECODED QUALITIES AND NUMBER OF BITS FOR 512× 512 LENA IMAGE

BY PROGRES AT PROGRESSIVE RESOLUTIONS

Resolution
Full Half Quarter

(512×512) (256×256) (128×128)
bit rate decoded decoded decoded decoded decoded decoded

quality size quality size quality size
(bpp) (dB) (bits) (dB) (bits) (dB) (bits)
0.125 30.67 32,768 35.05 31,328 36.4877 22,848
0.25 33.75 65,536 36.02 55,896 36.5062 34,264
0.5 36.89 131,072 36.42 94,016 36.5129 48,792
1.0 39.91 262,144 36.54 149,936 36.5114 65,400

TABLE X
DECODING TIME OF PROGRESSIVE RESOLUTIONS, CODED AT 0.5 BPP

(INVERSE WAVELET TRANSFORM TIMES ARE NOT INCLUDED)

Lena (512×512) Woman (2048×2048)
Resolution Decoding time Resolution Decoding time

(cycles ×106) (cycles ×106)
16×16 0.4997 64×64 2.1385
32×32 0.5851 128×128 2.9157
64×64 0.8160 256×256 5.5415

128×128 1.5392 512×512 13.2441
256×256 3.0343 1024×1024 35.2448
512×512 4.6403 2048×2048 75.2314

C. Progressive Decompression
One of the bene�ts of progressive resolution encod-

ing/decoding is that a reduced number of bits can be decoded
to reconstruct a reduced scale. In PROGRES, as shown in
Table IX, less number of bits are required to decode at lower
resolutions, especially at higher bit rates.

Table X shows that the decoding times of Lena and Woman
at 0.5 bpp are increasing for progressively increasing resolu-
tions. In the Lena image, the decoding time increases less
than 1.5 times whenever the resolution increases. Meanwhile,
the decoding time increases two times for the next higher
resolution in the Woman image.

VII. CONCLUSION

The presented coding method, PROGRES (Progressive Res-
olution Coding), makes extremely fast decoding possible by
giving up the quality scalability. Comparing to uncoded 3D
SPIHT, it decodes nine times faster, but does not sacri�ce
the coding ef�ciency. As shown in the experiments, higher
decoding speed gain is expected for larger size images.

The decision bits during set partitioning of SPIHT are
rede�ned across the bitplanes to give the novel idea of
`hierarchical dynamic range coding', which mainly realizes
fast decompression. Using the property of decaying spectral
density in wavelet subbands, information of energy decrease
across frequency subbands is shared by neighboring coef�-
cients, thereby leading to compact coding of the dynamic
ranges.

The given method would be most suitable for applications
that need high speed decoding, such as intra-frame decoding
in video playback. In addition, due to its inherent simplicity,
lower implementation costs both in hardware and software
forms are possible.

APPENDIX
THE RELATIONSHIP BETWEEN PROGRES AND SPIHT
There are some similarities and differences between the

PROGRES and uncoded SPIHT algorithms. However, remark-
ably enough, if SPIHT is also given prequantized wavelet
coef�cients and encodes all bitplanes, every code bit of one
algorithm has a corresponding bit in the other algorithm.
Consequently, both coders demonstrate very similar coding ef-
�ciencies. One may try to understand PROGRES as the coder
designed by having a different view than SPIHT, i.e. non-
bitplane coding plus dynamic range coding. The differences

9

and similarities between PROGRES and SPIHT are described
in the following two sections, with further detailed syntactic
compatibility is explained in Section C.

A. Differences from SPIHT
The biggest difference which characterizes the PROGRES

from SPIHT algorithm is the selection of `non-bitplane coding'
and `dynamic range coding'. In PROGRES, each coef�cient
magnitude is represented by two parts : the number of bits
to represent it and the magnitude. The `number of bits' is
understood as the `dynamic range'. The tree consists of its
root value (a wavelet coef�cient) and subtrees. Each subtree
is recursively de�ned in the same way as its parent tree.
The dynamic range of a tree is represented by the difference
dbase, from that of its parent tree. Without entropy coding, this
difference information is coded as a unary number ending with
0. The end mark `0' can be understood as the `signi�cance
testing bit' in SPIHT. Because, for example, a decrease of
dynamic range 3 in PROGRES which is 1110 in unary form
can be viewed in SPIHT's context that there are no signi�cant
bits for succeeding three bitplanes and the �rst signi�cant bit
will be found at the fourth bitplane from the current bitplane.

Meanwhile, in SPIHT, a signi�cant coef�cient is �rst coded
by its position in the signi�cance map, i.e. the bitplane
corresponding to current threshold. The position is represented
by a sequence of binary decisions of partitions. And then,
for the signi�cance bit information in remaining bitplanes at
the same position, only the signi�cance for the corresponding
threshold is coded without position.

In SPIHT without entropy coding, the magnitude of a
signi�cant coef�cient can be coded using m bits in m bit-
planes. Assume a certain signi�cant coef�cient ci,j . If the �rst
signi�cant bit of coef�cient ci,j is at bit-plane k, where m bit-
planes are de�ned from 0 (LSB) to m− 1 (MSB), the sorting
passes will output (m−1−k) of `0's for bit-plane m−1 down
to k+1 and one of `1' for bit-plane k and the re�nement passes
will output k of either `0's or `1's for bit-plane k− 1 through
0 depending on the magnitude of the coef�cient. The total
number of bits is : (m−k−1)+1+k = m. We don't include
the set partitioning information to locate the coef�cient ci,j

since it represents the location information, not the coef�cient
value itself.

B. Similarities to SPIHT
While there are apparent differences in bitplane manage-

ment and coef�cient magnitude coding schemes between
PROGRES and SPIHT, similarities also can be found if
we interpret the meanings of each bit used in PROGRES
syntax, especially for dbase and dlocal. As stated earlier, we
assume both PROGRES and SPIHT encode all the bitplanes
of prequantized wavelet coef�cients.

First, the similarity between dynamic range coding of PRO-
GRES and sorting pass of SPIHT is stated. The unary value of
dbase and dlocal is very similar to the sequence of coef�cient
signi�cance testings in SPIHT. That is, each additional `1'
of unary value in PROGRES indicates the dynamic range of
coef�cient is dropped by half, which corresponds to `0' in

SPIHT representing `insigni�cance' for the given threshold.
As an example, if dbase = 1110 in PROGRES, it means
that the coef�cient is insigni�cant for following three less
signi�cant bitplanes in SPIHT.

Secondly, the similarity between actual coding of coef�cient
values in PROGRES and re�nement pass of SPIHT is stated as
follows. In SPIHT, once the �rst signi�cant bit of a coef�cient
appears in certain bitplane, the re�nement pass starts for all the
next bits of the coef�cient. Each bit coded in the re�nement
pass of SPIHT exactly corresponds to each bit of coef�cient in
binary form, just starting from the next bit of the �rst nonzero
bit of the coef�cient, which is similar to actual coef�cient
value coding steps in PROGRES.

And the last similarity, which is quite complicated and
explained further in Section C , is the zerotree coding scheme
in SPIHT and hierarchical dynamic range coding scheme
in PROGRES. In SPIHT, two kinds of signi�cance testing
exist. One is for coef�cients and the other is for sets. The
signi�cance testing mentioned in the �rst similarity above
is a signi�cance testing for a coef�cient. The `0' in SPIHT
indicates `do not split the set' since the set does not have
any signi�cant coef�cient in it. And the `1' indicates `split
the set' since the set has at least one signi�cant coef�cient in
it. Thus, many coef�cients grouped in a set are represented
together for their signi�cance regarding a current threshold or
bitplane, causing savings of many signi�cant bits.

Analogous processing is also done in PROGRES by way of
a hierarchical dynamic range coding. Brie�y, the decrease in
dynamic range between two adjacent resolution levels means
that the bits on the bitplanes corresponding to the decreased
dynamic range do not need to be coded in the higher resolution
levels because they are all zeros implicitly.

C. Syntactic Compatibility between PROGRES and SPIHT
One of the interesting coincidences discovered between two

coders is that the two steps of prediction in PROGRES and the
two steps of decision in SPIHT have an exact correspondence.

1) The `dynamic range number' (in PROGRES) of a co-
ef�cient (or a tree of coef�cients) corresponds to the
position (0 for LSB) of the �rst signi�cant bit (in SPIHT)
of the coef�cient (or the largest coef�cient magnitude in
a set of coef�cients).

2) The unary coded bits information dbase and dlocal in
PROGRES have roles similar to the signi�cance test bits
for the type-A set and type-B set in SPIHT.

3) The one signi�cance test bit of a coef�cient plus re-
�nement bits in SPIHT correspond to the bit values
packed in dynamic range number bits of a coef�cient
in PROGRES.

In SPIHT, each set in LIS (List of Insigni�cant Sets), which
will be partitioned, is represented by two types: type-A for
D(i, j) and type-B for L(i, j) [6]. The de�nitions of D(i, j),
O(i, j), and L(i, j) follow the article [6].

1) O(i, j) : Set of offspring of the coef�cient (i, j),
2) D(i, j) : Set of all descendants of the coef�cient (i, j),
3) L(i, j) : D(i, j)−O(i, j)

10

The partitioning of a set is represented with binary decisions. If
type-A set has any signi�cant coef�cient for a given threshold,
the coder output `1' meaning there is at least one nonzero
bit in D(i, j) of current bitplane. And then, the type-A set
is partitioned into subsets and the signi�cance of each child
coef�cient (k, l) ∈ O(i, j) is coded [6]. If type-A set outputs
`0', it means there is no nonzero bit in D(i, j) of current
bitplane and thus the set will not be considered for the current
bitplane. In fact, the signi�cance testing of a set in the order
of type-A and then type-B can be well understood as the trial
for �nding a `wide-sense zerotree', so that a group of many
zero bits can be compactly represented. A detailed study on
the classi�cation of wide-sense zerotrees such as type-A or
type-B of SPIHT has been performed by Cho and Pearlman
[21].

A `set' in SPIHT corresponds to a `tree' in PROGRES. A
set si,j rooted at (i, j) stays insigni�cant up to the threshold
for which at least one of its coef�cients tested as signi�cant.
To represent the `staying insigni�cant' of the set for several
(say, k) bitplanes, SPIHT outputs k `0's. Once the set become
signi�cant at certain bitplane, the coder outputs a `1'. At this
bitplane, the set is tested for partitioning. If there exists a
signi�cant coef�cient in any of its subsets, the set is partitioned
into subsets that are immediately appended to the end of LIS.
From the next bitplane, no bit information is coded for the set
si,j since the set does not exist anymore. Instead, its subsets
or children sets in the LIS, s2i,2j , s2i,2j+1, s2i+1,2j , s2i+1,2j+1

if they exist, are tested for the signi�cance at that bitplane.
Assume we have a 4-ary tree (quadtree) with height two,

i.e. there are three levels in the tree, where the top is level 0
and the bottom is level 2. And let ci,j be the root coef�cient
and cm,n, (m,n) ∈ I(i, j) be its four children coef�cients
at level 1 of the tree (I(i, j) is de�ned in Section III-B).
Then, the magnitudes of all cm,n (i.e. at level 1) is coded
with rparents bits in PROGRES. The rparents is represented
by the difference information dbase. For SPIHT, a type-A set
(i.e. D(i, j)) is insigni�cant for dbase bitplane passes, and at
the next bitplane the set becomes signi�cant and is partitioned
so that the bits of its children coef�cients cm,n on the bitplane
is coded. Now, a type-A set is converted into a type-B set if
there exist any signi�cant coef�cient in L(i, j) (i.e. coef�cients
from level 2 and below). Note that this conversion step is done
at the same bitplane where the type-A set become signi�cant.

To code the coef�cients at level 2, the PROGRES uses both
dbase and dlocal information. In this case, there are four differ-
ent dlocal,subtree(sm,n), each for predicting the dynamic range
number of of subtree(sm,n) as described in Subsection III-C.
Thus, each coef�cient magnitude at level 2 in subtree(sm,n)
is coded with rchildren - dbase - dlocal,subtree(sm,n) bits in
PROGRES. For SPIHT, a type-B set (i.e. L(i, j)) is insigni�-
cant for dbase bitplane passes, and at the next bitplane the set
becomes signi�cant and is partitioned into four type-A sets
which are appended to the end of LIS. And then, each type-A
set sm,n is insigni�cant for dlocal,subtree(sm,n) bitplane passes,
and at the next bitplane the set becomes signi�cant and the
same tasks are repeated as above

In the re�nement passes of SPIHT, each remaining bit (i.e.
below the �rst signi�cant bit) of every coef�cient in LSP (List

of Signi�cant Pixels) [6] is coded. One bit for the signi�cance
test of a coef�cient and re�nement bits of the coef�cient in
SPIHT correspond to the bit values packed in dynamic range
number bits of a coef�cient in PROGRES. Thus, the number
of bits spent to code the magnitude of coef�cients is exactly
the same.

In this way, we can �nd the syntactic relations between:
1) the the unary coded bits information dbase and dlocal in
PROGRES and the signi�cance test bits for the type-A set
and type-B set in SPIHT, and 2) bit values packed in dynamic
range number bits in PROGRES and signi�cance test plus
re�nement bits in SPIHT.

REFERENCES

[1] B. E. Usevitch, �A tutorial on modern lossy wavelet image compression:
Foundations of JPEG 2000,� IEEE Signal Processing Magazine, pp. 22�
35, Sep 2001.

[2] D. Taubman, �High performance scable image compression with
EBCOT,� IEEE Transactions on Image Processing, vol. 9, no. 7, pp.
1158�1170, July 2000.

[3] M. Marcellin, M. Gormish, A. Bilgin, and M. Boliek, �An overview of
JPEG-2000,� in Proc. 2000 IEEE Data Compression Conference, J. A.
Storer and M. Cohn, Eds., 2000, pp. 523�541.

[4] D. Santa-Cruz and T. Ebrahimi, �An analytical study of JPEG 2000
functionalities,� in Proc. of the IEEE International Conference on Image
Processing, vol. 2, 2000, pp. 49�52.

[5] J. M. Shapiro, �Embedded image coding using zerotrees of wavelet
coef�cients,� IEEE Transactions on Signal Processing, vol. 41, pp.
3445�3462, 1993.

[6] A. Said and W. A. Pearlman, �A new fast and ef�cient image codec
based on set partitioning in hierarchical trees,� IEEE Transactions on
Circuits and Systems for Video Technology, vol. 6, pp. 243�250, June
1996.

[7] W. A. Pearlman, �Trends of tree-based, set partitioning compression
techniques in still and moving image systems,� in Proceedings Picture
Coding Symposium 2001 (PCS-2001), vol. 5, April 2001, pp. 1�8,
invited, keynote paper.

[8] J. Andrew, �A simple and ef�cient hierarchical image coder,� in IEEE
International Conference on Image Processing (ICIP '97), 1997.

[9] E. Ordentlich, M. Weinberger, and G. Seroussi, �A low-complexity
modeling approach for embedded coding of wavelet coef�cients,� in
Proc. 1998 IEEE Data Compression Conference, Mar 1998, pp. 408 �
417.

[10] E. Ordentlich, Private communication, March 20 2007.
[11] W. Berghorn, T. Boskamp, M. Lang, and H. O. Peitgen, �Fast variable

run-length coding for embedded progressive wavelet-based image com-
pression,� IEEE Transactions on Image Processing, vol. 10, no. 12, pp.
1781�1790, Dec 2001.

[12] J. Oliver and M. P. Malumbres, �Fast and ef�cient spatial scalable
image compression using wavelet lower trees,� in Proc. 2003 IEEE Data
Compression Conference, Mar 2003, pp. 133�142.

[13] H. Danyali and A. Mertins, �Flexible, highly scalable, object-based
wavelet image compression algorithm for network applications,� in IEE
Proceedings - Vision, Image, and Signal Processing, Dec 2004, pp. 498
� 510.

[14] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, �Ef�cient, low-
complexity image coding with a set-partitioning embedded block coder,�
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 14, no. 11, pp. 1219�1235, Nov 2004.

[15] S.-T. Hsiang, �Embedded image coding using zeroblocks of sub-
band/wavelet coeffcients and context modeling,� in Proc. 2001 IEEE
Data Compression Conference, Mar 2001, pp. 83�92.

[16] J. E. Fowler, �Embedded wavelet-based image compression: State of the
art,� Information Technology, vol. 45, no. 5, pp. 256�262, May 2003.

[17] S. G. Mallat, �A theory for multiresolution signal decomposition: The
wavelet representation,� IEEE Transactions on Patern Analysis and
Machine Intelligence, vol. 11, no. 7, pp. 674�693, July 1989.

[18] A. Said and W. A. Pearlman, �Low-complexity waveform coding via
alphabet and sample-set partitioning,� SPIE Visual Communications and
Image Processing, pp. 25�37, Feb 1997.

11

[19] B.-J. Kim, Z. Xiong, and W. A. Pearlman, �Low bit-rate scalable video
coding with 3-D set partitioning in hierarchical trees (3-D SPIHT),�
IEEE Transactions on Circuits and Systems for Video Technology, pp.
1374�1387, 2000.

[20] J. D. Villasenor, B. Belzer, and J. Liao, �Wavelet �lter evaluation for
image compression,� IEEE Transactions on Image Processing, vol. 4,
no. 8, pp. 1053�1060, Aug 1995.

[21] Y. Cho and W. A. Pearlman, �Quantifying the coding power of zerotrees
of wavelet coef�cients: a degree-k zerotree model,� in 2005 IEEE
International Conference on Image Processing (ICIP '05), Sep 2005,
to appear.

Fig. 9. Reconstructed Lena by PROGRES,
(a) 0.125 bpp, 30.67 dB (b) 0.25 bpp, 33.75 dB
(c) 0.5 bpp, 36.89 dB (d) 1.0 bpp, 39.91 dB

Fig. 10. Reconstructed Woman by PROGRES, 512 × 512 patch
at (x,y)=(500,300),

(a) 0.125 bpp, 26.89 dB (b) 0.25 bpp, 29.42 dB
(c) 0.5 bpp, 33.02 dB (d) 1.0 bpp, 37.76 dB

