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� Introduction

��� Filter Banks

The �lter bank depicted in Figure � decomposes an input signal into several channels and down�

samples the output of each channel on the decomposition side� After the decomposition� some

processing� e�g� compression� is usually done� Finally on the reconstruction side� the channels are

upsampled by inserting zeros between neighboring samples� passed through the reconstruction �l�

ters and summed� The �lter banks� are called perfect reconstruction �lter banks if they reconstruct

perfectly the input signal at the output when processing is omitted between the downsampling in

the decomposition and the upsampling in the reconstruction�

The theory of the �lter banks was developed in many previous works �e�g� ����� ��	�� ��
�� �����

���� �
��� �

�� �
��� �
���� Here we present a new methodology allowing more �exibility in choosing

perfect reconstruction �lter banks�

��� Wavelet Decomposition

Wavelet transform applied to signal and image processing results in a recursive �ltering algorithm�

in which a signal is decomposed into low and high bands using the low and high pass �lters and

subsampled by a factor of 
� The low band is then recursively decomposed in the same manner�

In the reconstruction stage� we start from the two lowest bands� upsampling them� passing them

separately through the low and high pass reconstruction �lters and summing their outputs� Then

take this sum and the next lowest band as the second band and repeat the procedure� until the

whole signal is reconstructed� In each decomposition stage the two channel decomposition �lter

bank is applied to the input signal and on each reconstruction stage the two channel reconstruction

�lter bank is applied to the high and low decomposition bands� In order for the output signal to

be the exact copy of the input� the decomposition and reconstruction �lter bank should constitute

a perfect reconstruction pair�

Images are split initially into four subbands by applying low and high pass �lters followed by

factor of two downsampling separably in each of the two dimensions� thereby splitting them into






high�high� high�low� low�high and low�low horizontal�vertical spatial frequency subbands� Emulat�

ing the procedure for one dimension� the same low and high pass �ltering is then applied repeatedly

to the low�low subband� In reconstruction� the process is reversed by upsampling each of the four

subbands at the coarsest scale by two and �ltering with the appropriate �lter in each dimension�

summing the four �ltered subbands to produce the low�low subband at the next �ner scale� and

repeating until the full scale reconstructed image is reached�

A diagram depicting the wavelet subbands of an image to two levels of decomposition is shown

on Figure 
� This type of a recursive decomposition was shown to concentrate most of the signal

energy in the low bands� which is good for compression purposes� The earliest major published

work that used a subband decomposition for compression of images is attributed to Woods and

O�Neil ���� The theory of wavelet decomposition has been recently advanced by Daubechies in ���

and ���� and by Mallat for two dimensions in ���� �
�� and ���� with further expositions by Cohen �
�

and Vetterli ���� and co�workers among others�

��� Filter Banks for Wavelet Decomposition

The central problem in a wavelet transform is choosing the two �lter decomposition and recon�

struction �lter banks� At �rst research concentrated on the orthogonal wavelets� resulting in strict

Quadrature Mirror Filter �QMF� conditions on the perfect reconstruction �lter banks� Such FIR

��nite impulse response� �lters found in ��� or ��� are shown to have either large support or not very

good compression properties� If the perfect reconstruction property is relaxed� the QMF conditions

are not as restrictive and might result in better �lters� e�g�� see �	�� The QMF conditions combined

with the perfect reconstruction� lead to the requirement that all the shifts by a multiple of two

�
�shifts� of the impulse responses of the low and high pass �lters of the �lter bank taken together

would form an orthogonal basis in the space of all square summable discrete sequences l�� In such

a case� the reconstruction �lter bank is the same as the decomposition one�

Because of these problems with the orthogonal �lter� the biorthogonal approach was tried in

�
�� ����� ����� ����� and other works� but only FIR solutions were found� In ��� only orthogonal IIR

�lters were considered in a solution to the perfect reconstruction problem� and resulted in large
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support �lters�

In �
�� based on theory developed in �
�� in�nite impulse response �IIR� linear phase �lters were

constructed� These �lters can be considered predecessors to the �lters obtained here� There are

important di�erences though� Our theoretical results are more general and our practical results are

much better� Based on theory in �
��� one can derive linear phase �lters only with even support

size� We show how to �nd such �lters for any support size� The only condition for our �lter bank to

have the perfect reconstruction property� would be orthogonality of the �lters in di�erent subbands�

while in �
�� for linear phase �lters a stricter mirror condition is imposed� The decomposition

and reconstruction �lters in �
�� and �
�� are not quite linear phase because they perform the

recursive causal �ltering in decomposition and anticausal �ltering in reconstruction stages� That

makes their impulse responses non�symmetric with respect to any vertical line� which is necessary

for linear phase� We perform both causal and anticausal �ltering either in the decomposition or

reconstruction stage thus ensuring that our �lters are linear phase� Giving up on linear phase

property causes computational ine�ciencies with symmetic extension of �nite images� so that it is

necessary to resort to periodic extension� This might lead to discontinuities on edges and poorer

compression performance�

��� Organization of the Paper

In Section 
 we present the main theory and give an example of �nding a perfect reconstruction

�lter bank� In Section � the best �lters for several support sizes are found and simulation results

are presented� Summary and conclusions are given in Section ��
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� Theory of Orthogonal Subband Perfect Reconstruction Filter

Banks

��� Background on the Zak Transform

The Zak theory for signal processing was developed in �
��� ����� ���� and �
��� The Zak transform

has the same relation to the polyphase representation �see ����� ��	�� ��
�� as the Fourier transform

to the Z�transform� In �
�� we showed that the Zak transform is very suitable for treating the �lter

bank theory without having exceptions for undersampling and unstable cases� By undersampling

we mean a case when the decimation factor is larger than the number of channels in the �lter bank�

We applied the Zak transform theory to obtain new results in the theory of �lter banks� Some of

these results� needed for the proof of the main theorem of this paper� are given here without proofs�

Their proofs can be found in �
���

De�nition � Let g�k� be function from l�� The discrete M �Zak transform of the function g�k� is

ZM �g����m� �
�X

i���
g�m� iM �e�j���i� ���

�� � � � �� � � m � M � �� �
�

Theorem � Let s�k�� an l� signal be the input to a �lter h�k�� The output after decimation by M

is

c�l� �
�X

k���
h�k�s�Ml� k� �

�X
k���

h�Ml� k�s�k�� ���

for any integer l� Then

c�l� �
�


�

Z �

����
�
M��X
m��

ZM �h����m�ZM�s�����m��ej���ld�� ���

By taking the Fourier transform of both parts of the equation� we obtain the formula for the Fourier

transform of the M �decimated �ltering coe�cients� Denoting it by CM���� we have�

CM��� �
M��X
m��

�ZM�h����m�ZM�s�����m��� ���

Theorem � Suppose we have a one channel reconstruction �lter bank� consisting of anM �interpolator

and a �lter as shown on Figure �� We can �nd a one channel decomposition �lter bank� consisting
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of a decomposition �lter and an M �decimator as shown on Figure �� which minimizes the sum of

the squared di�erences between the output and input signals� Denoting the impulse response of the

reconstruction �lter by h we can �nd the impulse response of the optimal decomposition �lter �h

through the following formula�

�h�m� iM � �
�


�

Z �

�����HM ������

ZM�h����m�

HM���
ej���id�� ���

where � � m � M � i any integer and

HM��� �
M��X
r��

jZM�h���� r�j�� ���

The �lter impulse response �h is the inverse M �Zak transform of ZM�h����m�
HM ��� � Notice that

ZM ��h����m� �

���
��

ZM �h����m�
HM �n� � if HM��� �� �

� if HM��� � �
�	�

De�nition � We call the optimal decomposition �lter as the one of Theorem 	
�� biorthogonal

to the reconstruction �lter� One can see that the biorthogonality property is mutual� the �lter

biorthogonal to the optimal decomposition �lter would be the original reconstruction �lter

De�nition � In case we have two decomposition or reconstruction subband channels or �lters�

each one as shown in Figure � and Figure �� with M �decimation or interpolation� we call them

mutually orthogonal� if all the M �shifts of the �rst channel �lter impulse response functions span a

subspace of l� orthogonal to the span of all M �shifts of the second channel �lter impulse response

functions�

Notice that the orthogonality of �lters is a much less strict condition than the full wavelet

orthogonality� since the M �shifts of each �lter impulse response functions are not required to be

orthogonal between themselves�

Theorem � The M �shifts of the biorthogonal �lters impulse response functions span the same

subspace of l��

Theorem � Having several mutually orthogonal reconstruction �lters� we can use their respective

biorthogonal �lters for the corresponding decomposition channels to obtain the best reconstruction

in the minimum squared error sense of the input signal on the output�
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Theorem � HavingM mutually orthogonal reconstruction �lters for theM �decimation�interpolation

scheme� and using their respective biorthogonal �lters for the decomposition we obtain a perfect re�

construction �lter bank if the M �shifts of all of the reconstruction �lters impulse response functions

taken together span all of l��

The last condition for the M �shifts of M orthogonal �lter banks to span the whole l� is not a

very strict condition� It holds for the �lter banks with �nite support and good concentration of

energy properties� Below� we omit this condition from our discussions�

��� The Main Result

The novelty of our approach lies in the fact that on one hand we consider the orthogonal �lters

wavelet transform and do not restrict ourselves to FIR �lters as did many wavelet researchers�

Instead we look for recursive biorthogonal �lters� Switching to the recursive �lters gives us addi�

tional degrees of freedom� thus enabling us to drop the restrictive conditions imposed on the �lter

banks because of the FIR requirement and �nd �lters with virtually arbitrary impulse response�

On the other hand we extensively use the orthogonality of subband channels and look for individual

�lter optimal solutions in order to �nd the globally optimal solution� which cannot be successfully

handled by the polyphase representation theory�

De�nition � The M �phase representation of a discrete function f �n� is given by M functions�

F��z��F��z�� � � � �FM���z�� where

Fi�z� �
X
k

g�i� kM �zk � �
�

One can see� that

Fi�e
�j�� � ZM�f���� i�� ����

where ZM if the M point Zak transform for the in�nite signals as in ���� For the properties of the

polyphase representation one can see ����� ����� and ��
��

De�nition � For any �lter f and its shift by Mn samples� fMn� let us call their inner product

function

AM �f��n� �� f� fMn �� ����
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its M �shift autocorrelation function and its 
 sided Z�transform�

AM �f��z� �
�X

n���
AM�f��n�z�n� ��
�

its M �shift moment generating function�

Then we have the following theorem�

Theorem � Suppose that we have M discrete l� �lters h
���� � � � � h�M��� 	here the superscript is not

a scale as in the previous section�� whose M �shifts span M mutually orthogonal subspaces of l� and

which taken all together span the whole l�� as a decomposition �lter bank� Suppose also that H�k�
i �z�

is their M�phase representations� We obtain perfect reconstruction� by taking the reconstruction

�lters �H���� � � � � �H�M��� with the following M�phase representation�

�H�k�
i �z� �

H�k�
i �z�

AM�h�k���z�
� ����

where i� k � �� �� � � � �M � � and A�h�k���z� is the M �shift moment generating functions of the �lter

h�k��

The proof of the theorem is given in the next subsection�

By taking a particular case of this theorem with M � 
� arbitrary low pass �lter h and high

pass �lter g being the mirror of h� given by the formula

g�i� � ����i��h��� i�� ����

we can apply the theorem to the orthogonal �lters wavelet transform� Indeed as was stated in

the previous section� the even shifts of h and g constitute orthogonal subspaces of l� because of

the mirror property� The only concern is that the even shifts of both functions taken together

span the whole l� space� but most of the discrete l� functions satisfy this property� The resulting

reconstruction �lters have the following 
�phase representation�

�H�z� � H�z�
A��h��z�

����

�G�z� � G�z�
A��g��z�

� ����

	



Notice that dropping the FIR requirement allowed us to use the mirror �lter g for the decom�

position as a high�pass �lter� In �
�� ���� and ���� it was used for reconstruction and therefore could

not be used for decomposition�

The theorem gives us several ways to do decomposition and reconstruction�

We can take h to be any low pass �lter and then take g to be its mirror �lter as in ����� We

decompose the source signal by applying these �lters and decimating by 
� Then� we apply the

�lters rh and rg whose Z�transforms are given by Rh�z� � ��A��h��z�� Rg�z� � ��A��g��z� to the

corresponding subbands� 
�interpolate the coe�cients in both subbands� pass them through the

�lters h and g and sum the results� Note that because of the mirror property A��h��z� � A��g��z�

and therefore the IIR subband �lters are the same in both subbands� rh � rg� We shall refer

to A��h��z� and A��g��z� as A��z� and to the �lters rh and rg as r� We call r the auxiliary IIR

�in�nite impulse response� �lter� Filter r can be implemented as a recursive �lter� Because the

polynomial A� is even �it is a Z�transform of a 
�decimated autocorrelation function�� the �lter

whose Z�transform is A��z� is not stable �for every root at x of the �lter� there is also a root at

��x�� In order to implement such a �lter� we create another �lter by grouping together all the roots

of A��z� whose absolute value is smaller than one� During the �ltering we go through the following

steps� First we �lter the signal with with this �lter� and then reverse the output signal in time and

apply it to a second identical �lter� The desired result is the time�reversed output of this second

�ltering step�

The factor ��A��z� can be absorbed into the decomposition� which is equivalent to exchanging

the decomposition and reconstruction �lters and taking �h and �g to be the decomposition �lters�

while using h and g for reconstruction� Compression in this case is performed after the recursive

�ltering� These considerations lead us to the �lter bank diagram presented in Figure ��

��� Proof of the Main Result

We assume the notations of Theorem ���� The fact that the M �shifts of h���� � � � � h�M��� span

M mutually orthogonal subspaces H���� � � � � H�M��� and together span the whole l� allows us use

of Theorem ���� In other words by �nding the individual biorthogonal �lters to all of the �lters






from the original set and using the original �lters for reconstruction and the biorthogonal ones for

decomposition or the other way around� we obtain a perfect reconstruction �lter bank�

We use Theorem �
� and equation �	� for �nding the Zak Transform of the reconstruction �lters�

which� because of the orthogonality of the subspaces are the �lters individually biorthogonal to each

of the �lters of the set in the sense of the theorem� From �	� one can see that theM �Zak transform

�an equivalent of the M �phase representation� of the biorthogonal �lters �assuming H
�i�
M ��� �� �� is

given by

ZM ��h�i�����m� �
ZM�h����m�

H
�i�
M ���

� ����

Using equation ��� and the fact that

�ZM �h����m� � ZM �h�����m�� ��	�

we derive that

H
�i�
M �

M��X
r��

ZM �h�i����� r�ZM�h�i������r� ��
�

Now looking at equation ���� we observe that H
�i�
M is the Fourier transform of the M decimated

result of the �ltering of a signal h�i� with the �lter of the same impulse response h�i�� Switching

from the Fourier transform to the Z�transform and from the Zak Transform to the polyphase

representation� we obtain �����

��� An Example of Computing a Filter

As an example we illustrate the construction with the following low pass analysis �lter coe�cients�

h���� � ���� h��� � �� h��� � ���� �
��

and all the remaining coe�cients of h are zero� The corresponding non�zero high pass �lter ce��

cients are found according to �����

g��� � ����� g��� � �� g�
� � ����� �
��

The even�shift moment generating function is

A��z� � �z�� � �� z���� �

�

��



Correspondingly� the auxiliary IIR �lter has the following Z�transform�

R�z� �
�

z�� � � � z
� �
��

Factoring the denominator� we obtain

R�z� �
��
p

� ���

�z�� � �
p

� �����z � �

p

� ����

� �
��

Another useful form is obtained from the partial fraction expansion

R�z� �
�p


�

�

�z�� � �
p

� ����

�
�

�z � �
p

� ����

� ��� �
��

Using the form of �
��� we factor out the stable part of the �lter� creating the �lter r� with the

Z�transform�

R��z� �

�
p

� ��

�z�� � �
p

� ����

� �
��

We pass the input through this recursive �lter� and then pass the time�reversed output through the

same �lter� The time�reversal of the latter output yields the �nal result�

According to the form of �
��� we use the �lter r���

R���z� �
�

�z�� � �
p

� ����

�
R��z�


�
p

� ��

� �
��

We pass both the signal and its time�reversal separately through the �lter� sum the two outputs�

and subtract the original signal from the sum� Finally we multiply the result by �p
�
�

��



� Finding the Best Filters for a Given Support� Simulation Re�

sults

��� Implementation and Choosing the Best Filter

The recursive post �ltering � �
A�g��z� factor in equations ���� and ����� can be performed either in the

decomposition or the reconstruction stages� In all cases� partial fraction expansion was employed

as in equations �
�� to �
�� to actuate the �ltering� As a result of numerous experiments in which

images were compressed using di�erent �lters� it was noticed that the best compression results are

obtained when the recursive �ltering is done in the decomposition stage for the low bands and in

the reconstruction stage for the high bands as shown in Figure �� Some further research is necessary

to understand why this happens�

The SPIHT compression algorithm ���� was run on image wavelet subbands� produced by sep�

arable �ltering with di�erent �lters and supports up to � for decomposition and reconstruction�

inserting the appropriate recursive auxiliary �lter in each dimension at each stage�

In application to compression the low�pass �lters were normalized to have their sum equal
p

�

Their mirror �lters were used as the high�pass �lters�

In �
��� �
	�� �

� and other publications di�erent methods for choosing the optimal �lters are

described� All of them� however are dealing with orthogonal �ltering and compression algorithms

di�erent from SPIHT� Because of that the �lters that produce the best results for Lena image and

��
� bpp rate were found by a trial and error procedure� Since these results turned out to be good

also for other rates on Lena and Barbara images� we think that the algorithm should provide good

compression results for a wide spectrum or rates and images�

The resulting unnormalized tap values of the low pass �lters were as follows�

�� 
 �� for support ��

��� 
 �� �� 
 ��� for support ��

and

������� ������ � ���� � ������ ������� for support ��

An integer �lter ��� ���� � �� � ���� ��� with support size � also proved to produce good results �see

�




����� but here we report slightly better results with the latter �oating point support size � �lter�

During the search procedure we tried all the possible combinations of the �lter tap values with

the linear phase restriction on the �lters� The change step for each of the taps was ���� In case of

the � tap �lter we ran the algorithm several times� reducing the step size in order to improve the

results� The lowest and highest bounds on the changes were chosen to be large enough that all the

reasonable �lters would fall between them�

The results for supports � and � were worse than those for the support � and are not produced

here� This corroborates the conclusions of �
�� made for �lters corresponding to an orthogonal

wavelet transform� that increasing the number of taps does not necessarily lead to the performance

improvement�

��� Compression Results

The simulations were conducted by transforming and compressing ��
 by ��
 Lena and Barbara

monochrome images� The SPIHT compression algorithm without the subsequent entropy coding

was used �see ������ Our �� �� and � tap �lters� the 
�� �see ������ the ����	 �lters �see ��
���

and two �lters denoted A� and A
 �see �
��� were tested and compared in performance in SPIHT

compression for these two images at several rates� The 
�� and ����	 are considered to be among

the best practical FIR �lters for compression and the A� and A
 �lters are considered to be the

best IIR �lters� The results are summarized in Table �� where the entries for each rate in bits per

pixel and �lter type is peak signal�to�noise ratio in dB �PSNR�� de�ned as

PSNR � �� log���

���

MSE
�dB� �
	�

where MSE is the mean squared error�

We used the �lters from �
�� di�erently from the way they were used there� There in order to

utilize the all pass property of the �lters� which allows fast implementation� the causal recursive

�ltering was performed on the decomposition stage� while the anticausal on the reconstruction

stage� This means giving up on the linear phase property of the �lters� Here� however� we use

the procedure similar to what we use for our �lters� performing all of the recursive �ltering on the

decomposition stage for the low bands and on the reconstruction stage for the high bands� Another

��



distinction is that the in �
�� a decomposition results in the number of the coe�cients greater than

the number of pixels in the original image while in our case� the number of the coe�cients is the

same� Finally in �
�� a di�erent compression algorithm was employed� In order to compare the

�lters� we took the �lters from �
�� and used them in the same way as we used our �lters� The

�lters from �
�� thus become the � and 	 tap linear phase �lters presented below�

�� � � ���

������� ������� ���	
� ����� ����� ���	
� ������� �������� In Table � we denote them by A� and

A
� Figures � and 	 contain the plots of the results�

The simulation results show the steady superiority of our � tap �lter and ����	 �lter from ��
�

over all the other �lters� Next in line is the 
�� �lter of ���� followed by the � and � tap �lters� The

�lters from �
�� are at the end of the performance hierarchy and the smaller �lter performs better

than the longer one�

We also show the pictures of the restored images compressed at ��
� bpp rate for the best �lters

in Figure 
 for Lena and Figure �� for Barbara� The details in the hat for Lena and the texture on

the piece of clothes hanging from the table for Barbara images are better reproduced in the case

of our � tap �lter with recursive post �lter� than with the 
�� �lter result�

��� Complexity Computation and Comparisons

In our simulations we used the algorithm based on the method of equation �
�� and here we calculate

the complexity for this case�

Let us denote the number of the required summations by S� multiplications by P � the number

of �lter taps by T � The complexity in general case can be computed as the number of the required

�oating point operations per sample of a one dimensional signal� per scale� On the original scale

the number of �oating point operations per pixel for the algorithm proposed in this paper� during

both the decomposition and reconstruction is given by the following formulas�

P � 
T � 
bT � �



c �

�

S � 
T � 
 � 
bT � �



c� ����

��



Comparison of Compression Results for Lena Image
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Table �� PSNR �dB� versus rate of compression for several �lter types
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In case of the biorthogonal �lters with sizes T� and T
� the formulas are

P � T� � T
 ����

S � T� � T
� 
� ��
�

In all of the special cases considered above� however all of the �lters are either symmetric or

antisymmetric� For that case� we have�

P � 
bT � �



� 
bT � �



c ����

S � 
T � 
 � 
bT � �



c ����

for the algorithm proposed in this paper� For the biorthogonal �lter algorithm we have�

P � bT� � �



c� bT
 � �



c ����

S � T� � T
� 
� ����

For every subsequent scale the number of both multiplications and additions of the previous

scale should be divided by 
�

For two dimensional signals �images�� with separable �ltering� we need to multiply the above

formulas by 
 �to account for horizontal and vertical �ltering� and for each subsequent scale� we

divide the number of the operations by �� since the number of pixels on each scale is � times smaller

than that of the previous one� Now using the equations ����� ����� ���� and ���� we can compare

the complexity for all of the methods involved�

Ansari et al �lters in �
��� were actually implemented faster than the �lters A� and A
 from the

table 
� This is due to the all pass property of the �lters which allows to utilize the symmetricity of

the recursive and non�recursive part of the �lters� For the full description of the all pass property

we refer to �
��� However as was mentioned above� in that case� the linear phase property of the

�lters is lost and the �nite signal or image needs to be periodically extended� which might cause

loss of continuity at the image borders�

It can be seen that the complexity of our � tap �lter exceeds that of the 
�� �lter by the factor

of ���
� while the complexity of the the ����	 �lter exceeds the complexity of our �lter by the

factor of ��
��

��



Complexity Comparison

operation � Tap � Tap 
 Tap ��
 ����� A� A


multiplications � �� �� 
 �� � ��

summations � �� �	 �� 
� 	 
�

overall �
 
� �
 
� �� �� ��

Table 
� Complexity comparison in operations per pixel on the largest scale�

��



� Summary and Conclusions

In this paper we presented a new� fast and very promising method of performing the wavelet

transform and reconstruction� The method allows an unusual �exibility in choosing the wavelet

�lters� One can choose almost any �lter to be the low�pass �lter of the �lter pair and the high

pass �lter would be its mirror �lter� The reconstruction is performed using the same �lter pair� In

order for the scheme to have a perfect reconstruction property� short recursive �ltering is inserted

between for the decomposed signal�

Assuming the in�nite impulse response for the wavelet �lters was shown to increase the �exibility

in choosing the wavelet transform ��

�� �
�� and ����� Our method� however� results in more

comprehensive choice options and faster performance than methods presented previously� Indeed�

the theory developed in �
�� results only in even support size linear phase mirror �lters for two

channel �lter banks� while our method achieves a perfect reconstruction M channel �lter bank for

any support size� with the looser subband orthogonality property instead of the mirror property�

Also while in �
�� and �
��� it was proposed to have causal recursive �lter on the decomposition

stage and anticausal on the reconstruction stage� we perform all of the recursive �ltering on one of

the stages� thus preserving the linear phase property of the �lters� The SPIHT compression results

with our �lters are are much better than those with the �lters from �
��� Furthermore� in ��� only

orthogonal IIR �lters are considered� which results in large support �lters�

As a result of the �exibility of our method� we are able to choose the best �lter pair for a given

support size by conducting the experiments� As a result of the experiments� the best �lters for

the support sizes �� � and � were found� The results for supports � and � were worse than those

for the support � which corroborates the conclusions of �
�� made for �lters corresponding to an

orthogonal wavelet transform� that increasing the number of taps does not necessarily lead to the

performance improvement� The renowned 
�� �lter pair of ���� is slightly better than our ��tap

�lter in performance and complexity� However� the compression results for our � tap �lter are

better than those of the 
�� �lters and approximately the same as those of the ����	 �lters of ��
��

considered to be among the best �lters� Regarding speed to perform analysi and synthesis� the �

tap �lter is slower than the 
�� �lters� but faster than the ����	 �lters�

�	



Our method allows a new degree of freedom for choosing the wavelet �lters� Using it one can

customize the �lters according to the application� We did this for image compression� Some other

uses can be considered� such as multiplexing and noise reduction�

�
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Figure 
� Lena image restored after SPIHT compression at ��
� bpp rate� From left to right� our

� tap �lter result� 
�� �lter result
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Figure ��� From left to right� Lena image restored after SPIHT compression at ��
� bpp rate�

under ����	 �lter� Original Lena image
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Figure ��� Barbara image restored after SPIHT compression at ��
� bpp rate� From left to right�

our � tap �lter result� 
�� �lter result
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Figure �
� From left to right� Barbara image restored after SPIHT compression at ��
� bpp rate�

under ����	 �lter� Original Barbara image


	


