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ABSTRACT

Compressed video bitstreams require protection from channel errors in a wireless channel and protection from packet
loss in a wired ATM channel. The three-dimensional (3-D) SPTHT coder has proved its efficiency and its real-time
capability in compression of video. A forward-error-correcting(FEC) channel (RCPC) code! combined with a single
ARQ (automatic-repeat-request) proved to be an effective means for protecting the bitstream. There were two
problems with this scheme: the noiseless reverse channel ARQ may not be feasible in practice; and, in the absence
of channel coding and ARQ, the decoded sequence was hopelessly corrupted even for relatively clean channels. In
this paper, we first show how to make the 3-D SPIHT bitstream more robust to channel errors by breaking the
wavelet transform into a number of spatio-temporal tree blocks which can be encoded and decoded independently.
This procedure brings the added benefit of parallelization of the compression and decompression algorithms. Then
we demonstrate the packetization of the bit stream and the reorganization of these packets to achieve scalability in
bit rate and/or resolution in addition to robustness. Then we encode each packet with a channel code. Not only
does this protect the integrity of the packets in most cases, but it also allows detection of packet decoding failures, so
that only the cleanly recovered packets are reconstructed. This procedure obviates ARQ, because the performance is
only about 1 dB worse than normal 3-D SPTHT with FEC and ARQ. Furthermore, the parallelization makes possible
real-time implementation in hardware and software.

Keywords: video compression, video transmission, robust source coding, error resilient transmission, combined
source-channel coding, 3-D wavelet transform, embedded wavelet coding

1. INTRODUCTION

Wavelet zerotree image coding techniques were developed by Shapiro (EZW),?2 and further developed by Said and
Pearlman (SPIHT),® which provided higher performance and lower complexity image compression. Improved two-
dimensional (2-D) zero-tree coding (EZW) by Said and Pearlman?® has been extended to three dimensions (3-D EZW)
by Chen and Pearlman?* and shows promise of an effective and computationally simple video coding system without
any motion compensation, and obtained excellent numerical and visual results. Later, Kim and Pearlman developed
the three dimensional SPTHT (3-D SPIHT)? coding algorithm. The SPTHT algorithm not only outperforms EZW but
also provides an alternative explanation and implementation of the EZW principle. However, wavelet zerotree coding
algorithms are extremely sensitive to bit errors. A single-bit transmission error may lead to loss of synchronization
between encoder and decoder execution paths, which would lead to a total collapse of decoded video quality.

Numerous sophisticated techniques have been developed over the last several decades to make image transmission
over a noisy channel resilient to errors. The one approach is to cascade a SPIHT coder with error control coding.%”
The idea is to partition the output bit stream from the SPTHT coder into consecutive blocks of length N. Then to
each block ¢ checksum bits and m zero bits are added to the end to flush the memory and terminate the decoding
trellis at the zero state. The resulting block of IV + ¢ + m bits is then passed through a rate r rate-compatible
punctured convolutional (RCPC) coder.! However, this technique has the disadvantage of still being vulnerable
to packet erasures that occur early in the transmission, and this packet erasure can cause a total collapse of the
decoding process.

Another approach to protecting image bit streams from bit errors is to restructure the node test (NT) of the EZW
algorithm. One approach is to remove dependent coding and classify the coding bit sequence into subsequences that
can be protected differently using RCPC codes according to their importance and sensitivity. This type of technique
was used by Man et al.®



The other approach is to make image transmission resilient to channel errors by partitioning the wavelet transform
coefficients into groups and independently processing each group. This method was first reported by Creusere® for
use with the EZW algorithm.

To achieve robust video over noisy channels, Kim et al.'? utilized the same RCPC code as Sherwood and Zeger®”
with 3D SPIHT, and found that a single automatic repeat request(ARQ) was also necessary to adequately protect
the bit stream. ARQ, however, may not be feasible in certain scenarios and has the unfortunate consequence of
increasing traffic on already congested channels.

In this paper, we first extend Creusere’s work” 112 to the 3-D SPIHT coder. We modify the 3-D SPIHT algorithm
to work independently in a number of so-called spatio-temporal (s-t) blocks, composed of packets that are interleaved
to deliver a fidelity embedded output bit stream. Therefore a bit error in the bit stream belonging to any one block
does not affect any other block. We then apply Kim et al.’s method'? of forward error correction, borrowed from
Sherwood and Zeger,%” to every packet. Now we can detect decoding failures in any one packet and stop decoding, so
that the rest of the block’s bitstream will not corrupt the correct bits already decoded up to that point. Because this
bit stream is embedded and an s-t block corresponds to a s-t region of video, the already decoded bits contribute a
less accurate rendition of the region, while other regions corresponding to clean s-t blocks are reconstructed according
to the rate of their bit streams. This less sensitive source coder substantially increases channel error robustness over
a wide range of BER’s (Bit Error Rate).

The organization of this paper is as follows: Section 2 shows how to make the 3-D SPIHT bitstream more robust
to channel errors by breaking the wavelet transform into a number of spatio-temporal tree blocks. Section 3 shows
error resilient video transmission against channel bit errors. Section 4 provides computer simulation results. Section
5 concludes this paper.

2. ERROR RESILIENT 3-D SPIHT VIDEO COMPRESSION

Variable Length Codes (VLC) are used in current video codecs for higher coding performance, transmission bit errors
usually result in propagation throughout the decoded file. In zerotree algorithms such as SPTHT, when a single bit
error occurs in a bit conveying significance of a coefficient or set of coefficients, the result is loss of synchronization
between the encoder and decoder, giving erroneously decoded data beyond the point of the error. Therefore, a major
concern of the designer is the control of errors so that reliable transmission can be obtained. We describe now a
scheme, borrowed from Creusere’s work with images,”'!12 for partitioning a three-dimensional wavelet transform
into independent coding units, so that an error in any one unit does not affect the others.

Figure 1 shows how coefficients in a three-dimensional (3-D) transform are related according to their spatial
and temporal domains. Character 'a’ represents a root block of pixels (2x2x2), and characters 'b’,’c’,’d’ denote its
successive offspring progressing through the different spatial scales and numbers ’1°, ’2’, ’3’ label members of the same
spatio-temporal tree linking successive generations of descendants. We used 16 frames in a GOF(group of frames),
therefore we have 16 different wavelet coefficient frames. We can observe that these coefficient frames have not only
spatial similarity inside each frame across the different scale, but also temporal similarity between two frames, which
will be efficiently exploited by the Spatial and Temporal Tree Preserved SPTHT (STTP-SPIHT) algorithm.

As shown in Figure 2 the basic idea of the error resilient 3-D SPTHT video compression algorithm is to divide the 3-
D wavelet coefficients into some number n different groups according to their spatial and temporal relationships, then
to encode each group independently using the 3-D SPIHT algorithm, so that n independent embedded 3-D SPTHT
substreams are created. In this figure, we show an example of separating the 3-D wavelet transform coefficients into
four independent groups, denoted by a,b,c,d, each one of which retains the spatio-temporal tree structure of normal
3-D SPIHT.?

The n bit streams are then interleaved in appropriate size units (e.g. bits, bytes, packets, etc.) prior to transmis-
sion so that the embedded nature of the composite bitstream is maintained. Therefore we can stop decoding at any
compressed file-size or let run until nearly lossless reconstruction is obtained, which is desirable in many applications
including HDTV.

Figure 3 illustrates the assembly of the final bit streams of 3-D SPTHT and STTP-SPIHT with n = 4. The bit
streams are segmented into packets numbered by order of transmission. Encoding proceeds horizontally along the
bit streams, but in STTP-SPIHT, the transmission occurs vertically downward and then from right to left along the
bit streams to accomplish interleaving. Therefore, the final STTP-SPIHT bitstream will be embedded or progressive
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Figure 1. Structure of the spatio-temporal relation of 3-D SPTHT compression algorithm
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Figure 2. Structure of the spatio-temporal tree preserved 3-D SPIHT(STTP-SPIHT) compression algorithm

in fidelity, but to a coarser degree than the normal SPTHT bitstream. After transmitting the packets, the stream
of normal 3-D SPIHT will be used by itself at the destination. For the STTP-SPIHT, however, the interleaved
bit stream will be de-interleaved, and each substream will be processed independently and maintain more resilience
against bit errors on the channel.

By coding the wavelet coefficients with multiple and independent bit streams, any single bit error affects only
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Figure 3. Comparison of bit streams between normal 3-D SPIHT and STTP-SPIHT with n = 4

one of the n streams, while the others are received unaffected. Therefore the wavelet coefficients represented by
the corrupted bit stream are reconstructed at reduced accuracy, while those represented by the other streams are
reconstructed at the full encoder accuracy.

3. ERROR RESILIENT VIDEO TRANSMISSION

In this section, we combine the block interleaving scheme of STTP-SPIHT with the forward error correcting code of
Kim et al.’s work.'® Figure 4 illustrates the overall system with an optional ideal return channel for ARQ. In our
study, we shall make no use of ARQ. Kim etal.'? cascaded the 3-D SPIHT coder with RCPC using a single request
ARQ strategy.

Noisy Viterbi
STTP- Block Channel Decoder + Deinter- STTP-
SPIHT Interleavin CRC+RCPC leavin SPIHT
9 CRC Check 9
7 |
return channel (optional)

Figure 4. STTP-SPIHT/RCPC system framework

Figure 5 shows the system description of STTP-SPTHT /RCPC coder. In this figure, the RCPC coded stream is a
segment of the channel encoded bit stream. We first partition the STTP-SPIHT bit stream into equal length segments
of N bits. In our case, N = 200 bits. Each segment of size IV bits is then passed through a cyclic redundancy code
(CRC)'3: parity checker to generate ¢ = 16 parity bits. In a CRC, binary sequences are associated with polynomials
and codewords are selected such that the associated codeword polynomials v(z) of N+c bits segments are multiples
of a certain polynomial g(z) called the generator polynomial. Hence, the generator polynomial determines the error
control properties of a CRC.

Next, m bits, where m is the memory size of the convolutional coder, are padded at the end of each N + ¢
bits segment to flush the memory of the RCPC coder. Hence, early N bits of the STTP-SPIHT bit-stream are
transformed into N 4 ¢ + m bits of the segment and passed through the rate r RCPC channel encoder, which is a
type of punctured convolutional coder with the added feature of rate compatibility.
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Figure 5. System description of STTP-SPTHT /RCPC coder

The RCPC rate r is defined as k/n < 1, where k is the number of input bits entering the RCPC coder and n
is the number of corresponding output bits. Hence, the rate can be interpreted as the number of information bits
entering the encoder per transmitted symbol.

Finally, the RCPC coded stream is then transmitted over the computer simulated binary symmetric channel
(BSC).

Since the encoder adds some redundancy bits into 3-D SPIHT bit-stream according to the rate r of the RCPC,
the effective source coding rate R.sy is less than the total transmission rate R;otq:, and is given by

Nr

_ R 1
N+c+tm total, ()

Reyy =

where a unit of Reyy and Ryoqr can be either bits/pixel, bits/sec, or the length of bit-stream in bits.

As we saw before, Figure 3 graphically illustrates the final bit stream comparison between the normal 3-D SPTHT
and the STTP-SPIHT. For STTP-SPIHT, we interleaved by block as in Figure 3 to maintain embededdness.

At the destination, the Viterbi decoding algorithm'®16 is used to convert the packets of the received bit-stream
into a STTP-SPIHT bit-stream. In the Viterbi algorithm, the “best path” chosen is the one with the lowest path
metric that also satisfies the checksum equations. In other words, each candidate trellis path is first checked by
computing a ¢ = 16 bit CRC. When the check bits indicate an error in the block, the decoder usually fixes it by
finding the path with the next lowest metric. However, if the decoder fails to decode the received packet within a
certain depth of the trellis, it stops decoding for that stream. The decoding procedure continues until either the final
packet has arrived or a decoding failure has occurred in all n sub-bitstreams.

Figure 6 shows an example of decoding with n = 16 when decoding failure occurs at packet number 67. In that
case, the normal 3-D SPIHT stops decoding at that point, but the STTP-SPIHT stops decoding only for the stream
number 3, and continues to decode the packets of the other streams. After decoding, the normal 3-D SPIHT has
only 66 clean packets, but the STTP-SPIHT has more clean packets, because the normal 3-D SPIHT just stops
decoding at the first decoding failure but the STTP-SPIHT can accept up to 16 decoding failures in the worst case.
In our example, substream number 3 has a decoding failure, and shorter length of bitstream after decoding and
de-interleaving compared to other substreams. The result is the wavelet coefficients of low resolution in substream
number 3 are surrounded by the other coefficients of higher resolution in the other substreams. Therefore the
reproduction quality of the STTP-SPIHT is much better than that of the normal 3-D SPTHT, because STTP-SPIHT
decodes many more clean bits compared to the normal 3-D SPTHT.

4. RESULTS
4.1. Robust Source Coding

We assume that the channel is binary symmetric (BSC) with error probability € as shown in Figure 7. 16 frames
in a GOF are used, and a three level transform using 9/7 biorthogonal wavelet filter'” is applied to the image, and
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Figure 6. Example of decoding when decoding failure occurs at packet number 67

possible robust partitionings are evaluated. We put the SPTHT headers to each of the substreams to delineate the
streams, and we assume the SPIHT headers are not corrupted from bit errors. We interleaved the streams in 200 bit
packets to maintain embededdness. Figure 3 compares the encoded final bit streams of the normal 3-D SPIHT and
the STTP-SPIHT. The receiver de-interleaves the bit stream to a series of substreams, each one of which is decoded
independently. The algorithm is then tested using the 352 x 240 football sequence. The distortion is measured by
the peak signal to noise ratio (PSNR)

2552

where MSE denotes the mean squared error between the original and reconstructed images.

In our simulation of error resilient video transmission without error correction coding, we decoded the 3-D SPTHT
and STTP-SPIHT bit streams to the end of the received bitstreams regardless of channel bit errors, since there was
no mechanism to announce channel errors. Figure 8 shows the football sequences without any bit error using normal
3-D SPIHT (left), STTP-SPIHT (n = 4) (middle), STTP-SPIHT (n = 16) (right), and the PSNR’s are 33.26 dB,
33.01 dB and 32.39 dB respectively. The successively lower PSNR’s are due to the presence of successively more
overhead bits needed to demarcate the sub-bitstreams. Figure 9 shows the effect in the presence of bit errors (BER =
10~%) without error correction. The left image is the result of the normal 3-D SPIHT algorithm, where the PSNR is
11.19 dB and the visual result is awful. The following two images represent the sequences used with the STTP-SPTHT
algorithm with n = 4 and n = 16, where the PSNR’s are 14.72 and 17.93 dB respectively and the visual results
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Figure 7. Transition probability diagram of binary symmetric channel

Figure 8. 352 x 240 “Football” sequence (framel5) coded to 1.0 bit/pixel without any bit error. Normal 3-D
SPIHT, PSNR = 33.26 dB (left), STTP-SPIHT (n = 4), PSNR = 33.01 dB (middle), STTP-SPIHT (n = 16),PSNR
= 32.39 dB (right)

noticeably improved for n = 16. In Figure 10, BER = 107 is used with normal 3-D SPIHT and STTP-SPIHT
algorithm with n = 4 and n = 16, and the corresponding PSNRs are 18.25 dB, 23.67 dB, and 27.00 dB respectively.
Here, at the lower error rate, where the normal 3D-SPIHT reconstruction is still badly corrupted, even n = 4 blocks
offers a decent reconstruction and n = 16 blocks achieves a very good reconstruction.

Figure 11 illustrates the comparison of resulting average PSNR of “Football” sequence with wide range of BERs(
1072 - 1073 ) and different number of blocks n (1, 4, 16, 55, 110, 330), and coded with 1.0 bit/pixel. In this figure,
when BER is high( 107* - 1072 ), the average PSNR value of the STTP-SPIHT with n = 330 is still 0.79 dB higher
than that of the normal 3-D SPIHT in the case of 100 times lower BER. In an error-free or very low bit error condition,
the PSNR differences are 0.17 dB, 0.59 dB, 1.16 dB, 1,38 dB, 1,95 dB with number of blocks n = 4,16, 55, 110, 330,
respectively, and these differences remain below BER = 10~7. However, if the BER is higher than 10~7, the PSNR
differences are much large, ranging from 1.9 dB to 19.76 dB depending on the number of blocks n, and the BERs.

Table 1 shows the actual PSNR values of Figure 11. Table 2 shows the PSNR differences between normal 3-D
SPIHT and STTP-SPIHT (n = 4, 16, 55, 110, 330). As we can see, the performance of the normal 3-D SPTHT is

Figure 9. 352 x 240 “Football” sequence (framel5) coded to 1.0 bit/pixel with BER = 0.0001. Normal 3-D SPIHT,
PSNR = 11.19 dB (left), STTP-SPIHT (n = 4), PSNR = 14.72 dB (middle), STTP-SPIHT (n = 16),PSNR = 17.93
dB (right)



Figure 10. 352 x 240 “Football” sequence (framel5) coded to 1.0 bit/pixel with BER = 0.00001. Normal 3-D
SPIHT, PSNR = 18.25 dB (left), STTP-SPIHT (n = 4), PSNR = 23.67 dB (middle), STTP-SPIHT (n = 16),PSNR
= 27.00 dB (right)
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Bir Error Rate(BER)

Figure 11. Comparison of average PSNR(dB) of “Football” sequence with different BERs and number of blocks n
(1, 4, 16, 55, 110, 330), and coded to 1.0 bit/pixel with STTP-SPTHT without channel code.

better than that of STTP-SPIHT below BER = 1077, then degrades rapidly as the BER becomes higher. In lower
error conditions (BER <= 1077), the performance of STTP-SPIHT gets worse as n increases due to the header
overhead in each substream, because we put the 3-D SPIHT header into each substream to delineate the substreams.

| BER 1021081071010 ]10"] 1073 ]
Normal 3-D SPIHT [ 34.42 [ 34.42 [ 34.42 [ 20.72 [ 20.29 | 11.15 | 7.56
STTP-SPIHT (n=4) | 34.25 [ 34.25 | 34.25 | 31.62 | 23.41 | 18.08 | 8.82
STTP-SPIHT (n=16) | 33.83 [ 33.83 | 33.83 | 32.39 [ 29.37 | 20.36 | 13.26
STTP-SPIHT (n=55) | 33.26 | 33.26 | 33.26 | 32.47 | 32.04 | 22.42 | 16.32
STTP-SPIHT (n=110) | 33.04 [ 33.04 | 33.04 | 33.04 | 32.45 | 24.97 | 18.58
STTP-SPIHT (n=330) | 32.47 | 32.47 | 32.47 | 32.47 | 32.30 | 30.91 | 21.08

Table 1. Comparison of average PSNR(dB) of “Football” sequence with different BERs and number of blocks n (1,
4, 16, 55, 110, 330), and coded to 1.0 bit/pixel with STTP-SPIHT (no channel code).

4.2. Combined Source and Channel coding

In our simulation of error resilient video transmission with error correction capability, we used the same set of
parameters for the CRC parity checker and RCPC channel coder”%10: N = 200, ¢ = 16, and m = 6. We focused on



| BER 10°]10®%]107]10°% ] 10° | 1007 [ 107° ]
Normal 3-D SPIHT 0 0 0 0 0 0 0

STTP-SPIHT(n=4) |-0.17 | -0.17 | -0.17 | +1.9 | +3.12 | +6.93 | +1.26
STTP-SPIHT (n=16) [ -0.59 | -0.59 [ -0.59 | +2.67 | +9.08 | +9.21 | +5.7
STTP-SPIHT (n=55) | -1.16 | -1.16 | -1.16 | +2.75 | +11.75 [ +11.27 [ +8.76
STTP-SPIHT (n=110) | -1.38 | -1.38 | -1.38 | +3.32 | +12.16 | +13.82 | +11.02
STTP-SPIHT (n=330) [ -1.95 | -1.95 [ -1.95 | +2.75 | +12.01 | +19.76 | +13.52

Table 2. PSNR differences between normal 3-D SPIHT and STTP-SPIHT (no channel code) for n =
4,16, 55,110, 330 of “Football” sequence with different BERs, and coded to 1.0 bit/pixel

bit error rates (BER) of € = 0.01 and 0.001, because the BER’s of most wireless communication channels are ¢ = 0.01
- 0.001. The corresponding rates and R,y are calculated from Equation(1). In our case, we set the total transmission
rate Riotar t0 2.53 Mbps, r = 2/3 for e = 0.01 and 8/9 for e = 0.001. For example, if we use a 352 x 240 x 16 frames,
the size of the bit-stream is Riotqr = 1,351, 680 bits (equivalently total transmission rate of 1.0 bpp with 352 x 240 x
16 frames), therefore we have effective number of packets My = Reys/N = Mﬁ]ﬁoml = (2/3)/222x 1351680 =~

4060 packets for € = 0.01, and My = Resp/N = Mﬁ]ﬁoml = (8/9)/222 x 1351680 ~ 5413 packets for € =
0.001.

We tested “Football” sequence of SIF (352 x 240) format. Table 3 shows the comparison of average PSNR between
STTP-SPIHT and normal 3-D SPTHT at the same total transmission rate of 2.53 Mbps. We can see that the average
PSNR of the STTP-SPIHT in the case of ¢ = 0.01 is about 5 dB higher than that of the normal 3-D SPIHT, and
in the case of € = 0.001 the average PSNR of the STTP-SPIHT is about 3.5 dB higher than that of the normal 3-D
SPIHT. When we compare with the normal 3-D SPTHT with ARQ, the average PSNR is almost same. However, the
ARQ strategy is often inapplicable to real time scenarios.

[ BER [ STTP-SPIHT / FEC | 3-D SPIHT / FEC | 3-D SPIHT / FEC+ARQ |

0.01 29.75 dB 24.5 dB 32.1dB
0.001 31.75 dB 28.2 dB 32.8 dB

Table 3. Comparison of average PSNR between STTP-SPIHT and normal 3-D SPIHT at total transmission rate
of 2.53 Mbps

Since the STTP-SPIHT bit stream is embedded, the decoder can request for more information (additional STTP-
SPIHT/RCPC bit-stream) to improve the video quality from the transmitter whenever more channel bandwidth is
available.

Figure 12 shows the 352 x 240 original “Football” sequence (framel5) (left). Typical reconstructions of “Football”
sequence at total transmission rate of 2.53 Mbps and channel bit error rates of 0.01 with n = 4 and n = 16 are shown
in Figure 12 (middle and right). As we can see, in Figure 12 (middle), the normal 3-D SPIHT stops decoding when
decoding failure occurs, but in Figure 12 (right), the STTP-SPIHT stops decoding for the substream which decoding
failure occurred. Therefore any early decoding failure affects the full extent of the GOF in the normal 3-D SPIHT.
Note in Figure 12 (right), the early decoding failure allows reconstruction of a small region at the bottom, right of
center, with lower resolution only, as only bits belonging to a low resolution were received correctly before cessation of
decoding. Full resolution regions, where all the bits were correctly decoded, surround this reduced-resolution region.

5. CONCLUSIONS

We have shown here how robustness and resilience to transmission errors can be achieved in an embedded video
compression algorithm with little increase in its complexity and little loss in noiseless channel performance. In
addition to that, the STTP-SPIHT algorithm doesn’t lose any properties of the normal 3-D SPIHT algorithm. The
STTP-SPIHT algorithm presented here is much more robust against bit errors than that of the normal 3-D SPIHT
algorithm. The resilience of the coded sequence to transmission errors increases with the number of s-t blocks. In



Figure 12. 352 x 240 original “Football” sequence (framel5) (left) 352 x 240 “Football” reconstruction using normal
3-D SPIHT/FEC with BER = 0.01. PSNR = 24.41dB (middle), 352 x 240 “Football” reconstruction (framel5) using
STTP SPIHT (n=16)/RCPC with BER = 0.01. PSNR = 29.35dB (right). Total transmission rate is set to 2.53 Mbps.

the experiments sixteen s-t blocks provided large gains in error resilence with only minor degradation in error-free
performance due to increased header information overhead.
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