High performance, low-complexity image compression

William A. Pearlman

Electrical, Computer and Systems Engineering Dept.
Rensselaer Polytechnic Institute

Troy, NY 12180-3590, USA

E-mail: pearlman@ecse.rpi.edu

ABSTRACT

Optimal performance in a data compression scheme is very hard to obtain without inordinate computational complex-
ity. However, there are possibilities of obtaining high performance with low complexity by proper exploitation of the
characteristics of the data. Here, we shall concentrate on two recent low complexity algorithms for image compression
which exploit data characteristics very efficiently. We shall try to discover principles for realizing high performance
with low complexity and explain how these recent algorithms utilize these principles. We shall also present image

compression results with actual codecs which realize the promise of high compression with low complexity.
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1. INTRODUCTION

Complexity of encoding has always been the main impediment in realizing truly high performance in data com-
pression. Recently, however, there has been noticeable progress toward the goal of high compression performance
with low complexity. Two recent image codecs, SPTHT (for set partitioning in hierarchical trees)[1] and AGP (for
amplitude and group partitioning)[2], seem to achieve this goal. We shall concentrate on presenting their underlying
principles for obtaining high compression with low complexity and on revealing other attributes which make them

attractive in a coding system.

The organization of this paper is as follows. In Section 2, we present the SPIHT algorithm and its features,
attributes, and results for coding images. Then, in Section 3, we present the same for the AGP method. We then

conclude with a brief summary of the attributes of these two algorithms.

2. SPIHT

The set partitioning in herarchical trees (SPTHT) algorithm by Said and Pearlman [1] simultaneously utilizes several
principles for obtaining high performance with reduced complexity. It features a type of classification that has been
thought to be too expensive in bit resources — classification by magnitude. However, instead of requiring classification
by actual magnitude, which is indeed too expensive in resources, it backs off to classification by highest significant
magnitude bit, which we shall see turns out to be not only effective, but extremely inexpensive in bit resources, due

to the unique characteristics of the wavelet transform of an image.

Let us assume that we have sorted the coefficients of the wavelet transform of an image by the highest significant
bit in a magnitude and sign representation of their values. Furthermore, let us assume that we have ordered these
coefficients from highest order to lowest order significant bit, as shown by the example in Fig. 1. Note that this is a

partial ordering, as no order is imposed among those coefficients with the same highest significant bit.

Let us ignore for the moment how this ordering was accomplished. Once it is known that the highest magnitude
bit of a coefficient is n, then the most number of bits to represent it exactly is the n lower order bits 0 through n—1,
plus the sign bit. Without knowledge of the highest order bit, the upper limit on exact representation is the smaller

of the precision order of the computer or the number of bits in the highest magnitude coefficient.
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Figure 1. Binary representation of the magnitude-ordered coefficients.

Now if you can obtain the number v, of coefficients in the class with the highest significant magnitude bit of n
for all n from the largest, say ngq., to the smallest of 0, then you have possibilities for even greater compression,
if you are willing to accept less than exact representation. Assuming that you can identify the coordinates of each
coefficient with highest significant magnitude bit of n, then you need only convey v, to specifiy the magnitude range
of each such coefficient is between 2" and 27*!. That information plus a sign bit allows an efficient quantization. It
is especially efficient in a wavelet transform where there are many coefficients of low and even zero values. The range
quantization on these coefficients represents high precision and even perfect precision for the zero-valued coefficients.
It turns out that the number of coefficients v, with bit n as the most significant does not have to be conveyed

explicitly, giving even greater potential for compression.

The encoder and decoder both visit pixels in an agreed order. The encoder tests a given pixel to see whether
its magnitude equals or exceeds 27, for some n, and, if so, will add that pixel to a list of significant pixels (LSP),
as depicted in Fig. 1. If not, that pixel will not be added. If the encoder sends to the decoder the binary result
of the decision to add that pixel to the LSP or not, then the decoder is informed of the encoder’s action and can
mimic it. Therefore, the decoder can duplicate the execution path of the decoder from the reception of a binary
stream representing the significance decisions. Thus, the number v, of significant pixels at threshold 2" is extracted
from the binary stream of significance decisions. If a single binary decision conveys insignificance of large groups of
pixels, then those pixels do not have to be visited for significance tests at the same threshold 27. It turns out, for
coefficients of a wavelet transform, that is indeed the case, so that the significance bit stream corresponds to a small

fraction in bits per pixel.

Transmissions of significance decisions would be unnecessary if one knew beforehand how to visit pixels in order of
monotonically non-increasing bit significance, so that coefficients are automatically and successively ordered as they
are in Fig 1. The key toward rapidly sorting coefficients according to bit significance is to partition the coefficients
beforehand into sets. These sets would ideally contain coefficients with the same highest magnitude bit. Lacking
such omniscience, a reasonable approach is to use the self-similarity of the multi-resolution subbands to partition into
sets of coefficients with the same spatial frequency orientation, as those coefficients are likely to share the property
of insignificance with respect to a given threshold. Then one can at least convey the insignificance of the entire set
with transmission of a single bit. These sets are called spatial-orientation trees as their coefficients are linked by the

tree structure shown in Fig. 2

The set partitioning necessitates the maintenence of three ordered lists of coefficient addresses: a list of significant
pixels (LSP), as mentioned previously, a list of insignificant pixels (LIP), and a list of insignificant sets (LIS).
An address or coordinate in the LIS designates that all elements in the descendant tree (excluding the root) are
insignificant with respect to the current threshold. When the threshold is halved on the next iteration, the tree

coefficients of LIS members are tested for significance of at least one of its members. The binary result is transmitted



Figure 2. Examples of parent-offspring dependencies in the spatial-orientation tree.

to inform the decoder. If none of its members is signficant, the testing moves to the next member of the LIS, a new
descendant tree. If there is a significant coefficient, then the tree is partitioned into its first generation (offspring)
and all descendants from offspring. The offspring are then tested individually for significance, informing the decoder
of the results, and their coordinates are moved to the LSP, if significant, and to the LIP, if not. The trees descending

from offspring are treated as members of the LIS for further testing at the same threshold.

The order of testing, at a given bit significance, the LIP first and then the LIS is important to maintain effi-
cient embedded coding. The significance or insignificance of individual coefficients provides information about the
magnitude range of those coefficients. The corresponding positive significance decisions about sets do not provide
information about individual pixels. Therefore, when the output bit stream is terminated at some given number of
total bits, there are no bits wasted about set significance that would have been better put to use conveying individual

coefficient significance.

A progressive bit plane transmission is all that is needed to provide true embedded coding and precise rate
control. Examining Fig. 1, when one has found the coefficients in the table having bit n as the most significant
(for magnitude), one can then transmit the nth bit of all those coefficients previously found significant at a larger
threshold. Since n is successively decremented from its largest value n,,q,, only those bits which decrease the
distortion the most (by placing a reconstruction value in the largest half-interval) are sent at each step. Although
convenient, progressive bit plane transmission is not an essential aspect of the method. One could quantize and
entropy code significant coefficients, perhaps obtaining better performance, but sacrificing true embedded coding

and precise rate control.

2.1. Complete description of algorithm
For the sake of completeness, the complete coding algorithm (called SPTHT) is described below. For details, please

refer to the original paper of Said and Pearlman][1].
The following sets of coordinates are used to present the new coding method:
e O(i,7): set of coordinates of all offspring of node (4, j);
e D(i,j): set of coordinates of all descendants of the node (4, j);

e H: set of coordinates of all spatial orientation tree roots (nodes in the highest pyramid level);



For instance, except at the highest and lowest pyramid levels, we have
O(i,5) = {(24,25),(20,2j + 1), (20 + 1,2j), (2i + 1, 2j + 1)} (1)

Needed also to describe the algorithm is the definition of the functional relationship between magnitude compar-
isons and message bits, as follows:

1 max {e;;[} > 2%,
Su(T) = (ier (2)

0, otherwise,

The function S, (7 ) indicates the significance of a set of coordinates 7 at the threshold 2". To simplify the notation
of single pixel sets, we write Sy ({(¢,7)}) as Sp (¢, ).

THE SPIHT ALGORITHM

1. Initialization: output n = |log, (max(; j){|ci;|}) |; set the LSP as an empty list, and add the coordinates
(7,J) € H to the LIP, and only those with descendants also to the LIS, as type A entries.

2. Sorting pass:

(a) for each entry (¢,7) in the LIP do:

i. output S,(%,J);

ii. if S, (4, j) = 1 then move (4, j) to the LSP and output the sign of ¢; ;;
(b) for each entry (7, j) in the LIS do:

1. if the entry is of type A then
e output S,(D(4,5));
o if S, (D(i,7)) =1 then
— for each (k,) € O(4, j) do:
* output Sy (k,!);
# if S, (k, ) = 1 then add (k,{) to the LSP and output the sign of ¢4 ;;
* if Sp(k, 1) = 0 then add (k,{) to the end of the LIP;
— if £(i,7) # 0 then move (7, j) to the end of the LIS, as an entry of type B, and go to Step 2.b.ii;

otherwise, remove entry (¢, j) from the LIS;
i1. if the entry is of type B then
e output S,(L(Z,5));
o if S, (L(i,7)) = 1 then
— add each (k,l) € O(i,j) to the end of the LIS as an entry of type A;

— remove (4, 7) from the LIS.

3. Refinement pass: for each entry (¢,j) in the LSP, except those included in the last sorting pass (i.e., with

bl

same n), output the n-th most significant bit of |¢; ;|;
4. Quantization-step update: decrement n by 1 and go to Step 2.
The decoding algorithm is the same as above except that ”output” is replaced by ”input”. The largest significant

magnitude bit n,,., among all coefficients is sent by the encoder and received by the decoder. Note the simplicity

of the description.



2.2. Idempotency

The algorithm can be stopped at any desired output bit count and the decoder receiving the output bit stream
can reconstruct the source image for that number of bits. Embedded coding means that the compressed file for a
given number of output bits is a preamble of the compressed file for a larger number of output bits. If we take the
reconstructed image for a a particular compressed file having a certain number of bits and re-compress it specifying
the same number of bits, we obtain the same compressed file. This property is called idempotency. It means that an
image can be re-compressed any number of times to the same rate without degradation. In addition, since this coding
is embedded, any smaller rate image can be reconstructed from the file also without degradation from re-compression.
Idempotency results because the algorithm builds the same ordered lists and inserts the same refinement bits into

the same places as when the original compression stopped execution at the given number of output bits.

2.3. Color image coding

The algorithm extends easily and naturally to color or multi-spectral imagery. Let us consider a tri-stimulus color
space, such as RGB, YUV, YCrCb, etc., for simplicity. Each of the three planes is separately wavelet transformed
with an analysis filter bank. Now one can encode the three transform planes together by initializing the SPIHT
algorithm’s LIS and LIP with the co-ordinates of the top or coarsest level in all three planes. The spatial orientation
trees emanating from each one of these roots are defined as before and are mutually exclusive and exhaustive. Now
the algorithm can proceed as if it were one image transform. It automatically assigns the bits among the planes
according to the significance of the magnitudes of their coefficients. There is no need to prescribe or calculate a bit
allocation among the three planes; as is done with most color image coding methods. Furthermore, the number of
decomposition levels or the filter kernels need not be the same among the three planes. It does not matter that some
trees will terminate sooner than others. This characteristic allows automatic accomodation of decimated chrominance
planes, which are standard in video sequence formats. For the sake of efficiency, RGB planes should not be coded

directly, as there is too much redundancy among the planes in this color representation.

2.4. Complexity

The complexity of the coding algorithm itself, not counting the wavelet subband analysis and synthesis, is really
small and simple. Finding the largest significant bits of coefficients or sets of coefficients is the chief arithmetic
operation. Everything else is addressing, which is done by incrementing, decrementing, or bit shifts (factor of 2
integer multiplication), either individually or in combination. There are no floating point multiplications, error
calculations, parameter estimations, rate allocation calculations, or searches which complicate and slow down other

algorithms.

Concern about computation in the subband analysis and synthesis stages is fast diminishing, because of the
emergence of fast and effective wavelet filters, which require only integer multiplication and bit shift division for their
application. The simple operations inherent in the filtering, coding, and decoding should be easily and inexpensively

realizable in hardware.

For certain hardware applications, memory is a critical consideration. As with any wavelet coder which works
either within or across subbands, the wavelet transform, which is the size of the image, must be held in memory.
In this particular coder, the LIP, LIS, and LSP lists, which contain just pixel coordinates or addresses must also be
allocated memory. The sizes of the lists are directly proportional to the size of the iamge, but are usually a small
fraction for typical coding rates in most images. By a clever addressing scheme whereby LIP and LIS significance
of a 2x2 block is stored in a single byte, the combined size of the LIP and LIS can not exceed one quarter of the
number of image bytes. The number of LSP entries, however, can be as large as the number of image pixels, but

that is highly unlikely for wavelet transforms of images, even for lossless reproduction.



Image Rate Coding Method
(bpp) | SPIHT- | SPIHT- | LZC® | ”Best”
uncoded | arith code
Lena 0.25 33.70 34.11 34.12 | 34.577
0.50 36.84 37.21 37.25 | 37.687
0.75 38.56 39.04 - -
1.00 39.98 40.41 40.35 | 40.387
Barbara | 0.25 | 27.22 27.58 - | 21328
28.297
0.50 30.94 31.40 - 30.94%
32.157
0.75 33.72 34.26 - -
1.00 35.94 36.41 - 37.037
Goldhill | 0.25 30.22 30.56 - 30.767
0.50 32.71 33.13 - 33.427
0.75 34.55 34.95 - -
1.00 36.00 36.55 - 36.967
37.089

Table 1. Peak signal to noise ratios (PSNR in dB) obtained with various coding methods.

2.5. Compression results

In order to assess the performance of a coding method by itself, one ought to start with the same data to be coded.
In comparing methods that operate on wavelet transforms, one should start with the same transform and see how
well the various methods encode this transform. Then extraneous factors such as the particular filters and the
decomposition tree are equalized in all comparisons. Nevertheless; one may argue that in comparing methods with
different transforms, such as DCT versus wavelet/subband, the transform is part of the method. Then there are
methods which attempt to optimize jointly the transform or decomposition tree and the quantization [3,4]. In the
comparisons to be shown here, we shall try as much as possible to compare wavelet methods with the same filters
and decomposition tree, as we are trying to reveal the characteristics of the coding methods themselves. Also, in

starting with a common image transform, relative PSNR rankings are likely to correspond to visual rankings.

Three standard monochrome test images of size 512 x 512 are Lena, Goldhill, and Barbara. The first two, Lena
and Goldhill, seem to be the same ones used by different researchers, but there are different versions of Barbara
cropped from the 720 x 576 JPEG standard test image. The comparative results quoted are therefore not guaranteed

to be for the exact same images.

The PSNR versus rate results for SPIHT in Table 1 are obtained with a five level dyadic decomposition with
biorthogonal 9/7 tap filters[5]. For SPTHT with a given image, the embedded property with exact rate control allowed
the reconstruction to exact rates through corresponding truncations of the same compressed file. For the Lena image,
we have also provided a list of coding and decoding times on a 120 MHz Pentium processor running under Windows

95 in Table 2.
Notice that SPIHT is comparable or superior to the best methods. The two methods deemed best do not

provide embedded coding and are much more complex. The cited method of Joshi et al.[9] which obtaines the best
results for Goldhill at 1.0 bpp (actual rate is 1.022 bpp) uses classification of subband statistics and trellis-coded
quantization, which makes it much more complex and much slower than SPTHT. The filters for subbanding are the

same biorthogonal 9/7 tap filters, but the dyadic decomposition teminates at four levels. We have also included



Rate | SPIHT- arith. code | SPIHT-uncoded
(bpp) | enc dec enc dec
0.25 0.25 0.22 0.16 0.06
0.50 0.55 0.49 0.38 0.22
0.75 0.71 0.99 0.55 0.28
1.00 1.05 1.04 0.88 0.44

Table 2. CPU times for images compression with 120 MHz Pentium processor running under Windows 95.

results of Tsai et al.[8] for stack-run coding, because it has similar complexity to SPTHT and in this case uses the
same Barbara image and wavelet transform. At the two lower rates of 0.25 and 0.50 bpp, the PSNR results are
slightly worse than those of SPTHT, but they are not expected to compare as well at higher rates, as the efficiency
of the method depends heavily on long runs of zeroes. The results for SFQ (Space-Freguency Quantization) in [3]
are indeed the highest for this same image and transform, but the method is very complex, since it tries to jointly

optimize the actual rate-distortion tradeoff in the quantization and construction of zerotrees.

The other cited best method, EQ for estimation-quantization, by LoPresto et al.[T], is not as complex as the
previous methods, but is still at least twice as complex as SPIHT. Again, none of these methods except SPIHT

provides embedded coding and/or precise rate control.

The Layered Zero Coding of Taubman and Zakhor[6] is an embedded method, which provides performance
comparable to SPTHT for the Lena image with similar complexity. There seems to be no other published results on

other still images, perhaps because it was proposed as part of a video coding method.

3. AMPLITUDE AND GROUP PARTITIONING
3.1. Entropy coding methods

Recently, there have been some notable advances in efficiency for low complexity coding of already quantized images.
One such advance, mentioned earlier, is stack-run coding[8], where run lengths of zeroes and quantized values are
mapped into a very compact four-letter alphabet code which is then further entropy-coded with an arithmetic code.
The efficiency depends on the presence of runs of zeroes, so requires a transform such as DCT or wavelet prior
to quantization. Its overall complexity is about the same or perhaps slightly larger than SPIHT, due to its heavy
reliance on adaptive arithmetic coding, and its performance is slightly inferior in tests on standard test images at
rates of 0.25 and 0.50 bpp. The comparison will probably not stand up at higher rates, as shorter runs of zeroes
occur more frequently and the entropy of these runs increase. Also stack-run coding does not deliver an embedded

bit stream.

Another recently introduced method offering low complexity non-embedded coding of already quantized images
is called amplitude- and group partitioning (AGP) [2]. Tt resembles the previous method in that it efficiently codes
large groups of zeroes. However, it is really an efficient block entropy coding method, so it will work on unquantized

data as well.

3.2. Amplitude partitioning

Consider the problem of lossless encoding of a block of integer data obtained from a suitable transformation (e.g.,
linear prediction, DCT, wavelet, etc.) and quantization of a source of data. The source need not be an image, but we
will use an image as a generic example. Quantization is not entirely necessary, if the source data and transformation
produce integer values. Typically, and importantly, the probability distribution of the data to be encoded 1is highly

concentrated and peaked around zero, but with a significant number of values with large magnitude. This means



magnitude amplitude sign | magnitude-difference
set (MS) intervals bit bits

0 [0] no 0

1 [-1], [1] yes 0

2 -3,-2], (2,3 yes 1

3 —7,-4], [4,7 yes 2

1 [15,-8], [8,15] ves 3

5 "31,-16], [16,31] | ves 1

6 763, 32], [32,63] | ves 5

7 [127,-64], [64,127] | ves 6

Table 3. Magnitude-sets used in the JPEG algorithm.

that large compression ratios are possible, but the coding process must deal with a large alphabet. In normal
circumstances, it is unfeasible to consider the most efficient strategy of grouping the data symbols together as super
symbols, as the extension alphabet becomes enormous. There have been attempts to deal with large alphabets. One
popular method is to use an extra ”overflow” symbol to indicate data to be coded with a special method. However,

such methods are inefficient and have limited application.

One way to treat large alphabets is to partition it into sets of amplitude values, such as those in the JPEG standard
compression algorithm. This partition is presented in Table 3. In this algorithm, the sets embrace successive octaves
of magnitudes. The advantage of partitioning into amplitude sets is that a value can now be represented as a pair
(set number, set index), where set number indicates the particular set, and set index indicates the particular position
within the set. If one defines the sets such that inside a set the amplitudes are nearly equally probable, then the
set indices need not require further entropy coding when their number is a power of 2. Then the set numbers can
be entropy coded and the set indices sent in their uncoded binary representation. Note, most importantly, that the
set numbers now can comprise a much smaller alphabet. For example, in the JPEG representation, a set number ¢
represents the magnitude range of 2971 to 2¢ — 1. A 16-letter alphabet in this representation spans the magnitude
range of 0 to 2% — 1.

It is possible to devise a fast converging greedy algorithm for designing amplitude set partitions whose change
in entropy is least when replacing true conditional probaiblities of set indices by uniform probabilities in the corre-
sponding set. However, it has been found that the magnitude set partitions in Table 4 are a good solution in most

cases for the transforms of images.

3.3. Set number coding

Now we see that with the amplitude partitioning scheme it is only necessary to entropy code the set numbers.
Hereafter, we assume sixteen partitions and set numbers indexed from 0 through 15 in non-increasing order of
probability. So {0,1,...,15} can now be considered in a new source alphabet for entropy coding the set numbers.
With such a drastic reduction in alphabet size, one can consider exploiting the dependence between samples by
grouping or aggregating these new source symbols (set numbers) to form super symbols in a source extension with
extension alphabet 167, where 7 is the number of aggregated symbols. The order r of the extension is constrained
by complexity considerations, as it was with the original larger alphabet data, but not nearly to the same degree.
What we propose is an adaptive method to handle the determination of extension order, so rates below the first

order entropy may be achieved.



magnitude amplitude sign | magnitude-difference
set (MS) intervals bit bits
0 [0] no 0
1 [-1], [1] yes 0
2 -2, [2 yes 0
3 -3, 3 yes 0
4 [-5,-4], [4,5] yes 1
5 [-7,-6], [6,7] yes 1
6 [11,-8], [8,11] ves 2
7 [15,-12], [12,15] ves 2
8 23,16, [16,23 ves 3
9 31, 24], [24,31 ves 3
10 ~47,-32], [32,47 ves 1
11 [-63,-48], [48,63] ves 1
12 [-127,-64], [64,127] ves 6
13 [-255,-128], [128,255] ves 7
14 [511,-256), [256,511] ves 8
15 [1023,-512), [512,1023] ves 9
16 [-2047,-1024], [1024,2047] ves 10
17 4095, 2048], [2048,4095 ves 11
18 8191, 4096], [4096,8191 ves 12
19 [-16383,-8192], [8192,16383] | ves 13
20 32767, 16384], [16384,32767] | ves 14
21 65535, 32768], [32768,65535] | ves 15

Table 4. Definition of the magnitude-sets used in the new image compression method.

3.4. Groups of 2x2 pixels
Let us consider encoding the set numbers, which we now call the values in a 2x2 group of pixels. A direct source

extension produces an alphabet of 16* = 65,536 symbols. Consider the following procedure.

1. Find the maximum value (set number) v, in the 2x2 group of pixels.
2. Entropy code vy, ; if v, = 0 stop.

3. Create a binary mask p with 4 bits, each bit corresponding to a pixel in the group. Each bit is set to 1 if the

pixel value is equal to v,,, and otherwise set to 0.

4. Entropy code p (the mask) using a 15-symbol alphabet (the case g = 0 never occurs). If g = 15 (binary [1111)

or v, = 1, stop.

5. Let r be the number of pixels with values smaller than v,,. If v] is sufficiently small then aggregate the r
symbols and entropy code them with a v, symbol alphabet. Otherwise, entropy code each of the r values with

a vy, symbol alphabet.

6. Stop.

Note here once again, as in SPIHT, identification of the maximum value in a group i1s a key factor in the
compression. Of course, there exists overhead in coding that maximum value v,, in Step 2. The stop conditions are

defined at the moment all values can be known at the decoder. In step 2, when the decoder is informed that v,, = 0,



all four values in the group are known to be 0. In step 4, when mask value g = 15 1s transmitted, the decoder sets

all four values to v,,; and if v,, = 1, the binary mask contains the values of the pixels.

The binary mask prescribes that only r pixels with values smaller than v,, need to be aggregated and entropy
coded. One chooses either a vy, or v, symbol alphabet. So different size alphabets are used, depending on v,,. Since
the maximum value is more likely to be small, the symols are often aggregated and therefore encoded to smaller than

first order entropy.

The probability distribution of the binary mask values conveys one aspect of the statistical dependency between
the pixels associated with the mask. In entropy-coding of the mask, one should use conditional coding to take
advantage of the dependence of the mask values on the particular value of v,,. Note that entropy coding of the

binary mask is always accomplished with a 15 symbol alphabet.

3.5. Groups of 2" x 2" pixels

For a 2" x 2" group of pixels, the 2 x 2 group algorithm is applied in a hierarchical and recursive manner. The steps

are as follows.

1. Determine the maximum value v, in the 2" x 2" group.
2. Entropy code v,,.
3. Divide the 2™ x 2" group into four 2°~1 x 27~! subgroups.

4. Define a 4-bit mask, each bit corresponding to a subgroup. Set bit to 1 if maximum in subgroup v,,s equals

U, otherwise, set bit to 0.
5. Step 4 of the 2x2 group algorithm. (Entropy code the mask. Stop if vy, = 0 or g = [1111]).
6. For each subgroup, do
(a
(b
(¢

(d) Tfn =1, dostep 5 of 2x2 algorithm (encode the pixel values with v,, or v],, alphabets, r being the number

Um < Ums
n—mn-—1

If n > 1, go to step 2.

)
)
)
)
of pixels smaller than v,,.

7. Stop.

The same algorithm proposed to code values in 2x2 groups is used to code 2" x 27. The difference is that

maximum values in subgroups are coded when n > 1 and pixel values are coded when n = 1.

Among the advantages of this extension to larger regions of the coding method are: exploitation of statistical
similarity in larger regions; the automatic use of extension alphabets with a small number of elements in large
regions where the values are uniformly small; and use of a single symbol to encode large zero valued regions, allowing

compression to rates much smaller than 1 bit/pixel.

The exploitation of statistical dependence occurs through the series of binary masks. For a given global maximum
U, the mask value conveys whether a maximum v,,; of a subgroup is less than or equal to v,,. Again, the mask value
is conditionally dependent on v,,, so that conditional coding would be beneficial. As the subgroups become further
divided, the same information is conveyed with respect to a certain decreasing set of global maxima. Since this set
of thresholds is a global maximum at each step, the binary masks for these thresholds convey the most information

about the statistical dependence of set number values among the associated pixels or groups of pixels in the mask.
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3.6. A general coding scheme

What has been described is a specific example of a general coding scheme comprising the following steps:

1. Order the source symbols according to their probabilities, with ”0” having the largest probability, ”1” the next

most probable, etc. A crude estimate of the order of probabilities is sufficient.

2. Partition the source samples into a certain number of groups. These source samples may be the direct output
of the source, a transform of the source, or a quantized version of the source or transform. The groups can be

defined by image regions, image subbands, spatial orientation trees, time ranges, etc.

3. Create a list with initial groups, find the maximum sample value v, inside those groups and entropy code those

numbers.
4. For each group with v, > 0, do

(a) remove the group from the list and divide it into subgroups;

(b) entropy code a binary mask with n bits (one for each subgroup) such that a bit is set to 1 if the maximum

in that subgroup vy,, is equal to v, and otherwise set to 0;

(¢) if vy > 1 then entropy code every vy, < v, possibly aggregating them to create the proper source

extensions;

(d) add to the list each subgroup with more than one element and with v,,, > 0.

5. If the group list is empty then stop; otherwise, go to step 4.

Note that within this general scheme, there 1s a great deal of flexibility in the choices of rules to partition the

groups, the number of groups, the entropy coding scheme, and the sizes of extensions.

This coding scheme, like SPTHT, requires simple, fast arithmetic operations and is extremely fast. The searches
for maximum values are in an integer alphabet of 0 to 15 in subgroups which are not large. The partitioning and
binary mask creation are even simpler and faster operations. There are no floating point multipliications or intensive

iterative search operations of any kind.

3.7. Coding results

We shall now present the results of amplitude-and-group-partitioning (AGP) coding in several scenarios to show its
overall flexibility, efficiency, and speed. We will use it on block DCT transformed images and wavelet transformed
images. We shall consider two types of groups for partitioning: groups of pixels within subbands (denoted QT) and
spatial orientation trees (denoted WV) with partitioning rules as in SPTHT. We also consider both lossy and lossless
coding. Note that the entropy coding method is adaptive Huffman, which is faster than adaptive arithmetic, but
slightly less efficient. A summary of the combination of different transforms and group partitioning implementations

is shown in Table 5. The results for these different implementations are presented in Tables 6.

In order to obtain the cited rates for this non-embedded coding technique, several quality factors related to
quantization step size had to be tried before converging on the desired rate. A significant result is that the AGP
method produced the best results yet seen on block DCT’s, surpassing the efforts of Xiong et al.[10,11] using SPTHT.
The results for 16 x 16 DCT’s were better than those for 8 x 8, especially at the lower rates. However, at these low

rates, blocking effects, such as those seen in JPEG reconstructions, are still prevalent.

The wavelet transform with AGP obtained better looking results than with DCT, especially at low bit rates,
despite the similarity in PSNR’s. What is especially noteworthy is that the QT-10/18 method, which encodes
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| Method | Image transform | group partitioning | Entropy coding |

WV-9/7 wavelet pyramid - 9/7 tap filters? spatial orientation tree | adaptive Huffman
WV-10/18 | wavelet pyramid - 10/18 tap filters® spatial orientation tree | adaptive Huffman
QT-10/18 | wavelet pyramid - 10/18 tap filters® recursive 2% x 2% adaptive Huffman
DCT-8 8 x 8 discrete cosine recursive 2° x 2° adaptive Huffman
DCT-16 16 x 16 discrete cosine recursive 2% x 2% adaptive Huffman

Table 5. Methods implemented to test the proposed AGP coding schemes.

Image Rate Coding Method
(bpp) | DCT-8 [ DCT-16 | QT-10/18 | WV-9/7 | WV-10/18
Lena 0.25 32.51 33.46 34.16 34.10 34.25
0.50 36.18 36.82 37.23 37.21 37.30
0.75 38.27 38.70 39.01 39.00 39.04
1.00 39.81 40.13 40.38 40.38 40.45
Barbara 0.25 26.79 28.56 28.19 27.81 28.05
0.50 30.86 32.48 32.17 31.61 32.48
0.75 33.88 35.19 34.95 34.36 34.89
1.00 36.24 37.35 37.17 36.55 37.02
Goldhill 0.25 29.89 30.41 30.50 30.53 30.60
0.50 32.69 33.11 33.17 33.13 33.17
0.75 34.64 34.98 35.08 34.94 35.13
1.00 36.28 36.56 36.67 36.53 36.67

Table 6. Peak signal to noise ratios (PSNR, in dB) obtained with different realizations utilizing the alphabet and
group partitioning (AGP) scheme.

subbands independently, achieves nearly the same PSNR’s as the WV-10/18, which uses spatial orientation trees

across subbands. The QT-10/18 method can therefore deliver progressive resolution coding.

The proper comparison to SPTHT as a coding technique is the WV-9/7 method, which uses the same filter and
decomposition. The PSNR’s are almost exactly the same. However, some potential advantage was yielded in favor
of speed for AGP by use of Huffman code instead of arithmetic code. Referring to Tables 2 and 7 and accounting
for the differences in processor speeds, the AGP method with Huffman code is roughly two times faster than SPTHT

with arithmetic code in encoding and four times faster in decoding.

4. CONCLUSIONS

We have presented the principles and performance results of the SPIHT and AGP coding methods. Both deliver
high performance with low complexity. SPTHT can furnish progressive fidelity with precise rate control, while AGP
can deliver progressive resolution with compression controllable by a quality factor. Although not discussed fully in
this paper, these methods are applicable and efficient for a wide range of rates from very low to the highest possible
with lossless recovery. In these methods, one can consider ways to improve performance, but one must always be
mindful of the increase in complexity and the possible destruction or impairment of other desirable attributes, such

as progressive capabilities and precise control of rate.
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10.

11.

Rate | WV - 10/18 | QT - 10/18 | DCT - 16
(bpp) | enc dec enc | dec | enc | dec
0.25 0.16 0.03 0.20 | 0.03 | 0.22 | 0.03
0.50 0.21 0.07 0.23 | 0.05 | 0.25 | 0.06
0.75 0.26 0.10 0.25 | 0.07 | 0.27 | 0.07
1.00 0.31 0.13 0.28 | 0.09 | 0.30 | 0.10

Table 7. CPU times for compression of Lena with 133 MHz Pentium processor running under Windows NT.
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