
header for SPIE use

Lapped Orthogonal Transform Coding by Amplitude and Group
Partitioning

Xiangyu Zou1 and William A. Pearlman2

Center for Digital Video and Media Research
Electrical, Computer & Systems Engineering Dept.

Rensselaer Polytechnic Institute
Troy, NY 12180-3590

ABSTRACT

Transform coding has been the focus of the research for image compression. In previous research, the Amplitude and Group
Partitioning (AGP) coding scheme is proved to be a low complexity algorithm with high performance1,2 , clearly one of the
state-of-art transform coding techniques. However, the previous AGP is used along with the Discrete Cosine Transform
(DCT) and the discrete wavelet transform. In this paper, a different transform, the Lapped Orthogonal Transform (LOT),
replaces the DCT in conjunction with the AGP. This is the first time LOT and AGP have been combined in a coding method.
The definition and design of the LOT are discussed. An objective metric to measure the performance of transform, coding
gain, is calculated for both the DCT and the LOT. The LOT has slightly higher coding gain than the DCT. The principles of
the LOT based AGP image codec (LOT-AGP) are presented and a complete codec, encoder and decoder, is implemented in
software. The performance of the LOT-AGP is compared with other block transform coding schemes: the baseline JPEG
codec4 and the DCT based AGP image codec1 (DCT-AGP) by both objective evaluation and subjective evaluation. The Peak
Signal to Noise Ratio (PSNR) is calculated for these three coding schemes. The two AGP codecs are much better than the
JPEG codec on PSNR, from about 1.7dB to 3 dB depending on bit rate. The two AGP schemes have PSNR differences only
to a small degree. Visually, the LOT-AGP has the best-reconstructed images among these three at all bit rates. In addition,
the coding results of two other state-of-art progressive image codecs are cited for further comparison. One is the Set
Partitioning in Hierarchical Trees (SPIHT) algorithm5 with a dyadic wavelet transform, and the other is Tran and Nguyen's
method with the generalized LOT transform6. The AGP coding and the adaptive Huffman entropy coding of LOT-AGP are
less complex and the memory usage is smaller than in these two progressive codecs. Comparing these three codecs, i.e. the
LOT-AGP and the two progressive codecs in PSNR small only small differences in PSNR. SPIHT has about 1 dB higher
PSNR than the LOT-AGP and Tran and Nguyen's method for the test image Lena. For the test image Barbara, the PSNR of
the LOT-AGP is about 0.5 dB higher than that of the SPIHT and 0.5 dB lower than that of Tran and Nguyen's method. This
low-complexity and high performance codec may provide a new direction for the implementation of image compression.

Keywords: image compression, lapped orthogonal transform (LOT), low complexity, entropy coding

1. INTRODUCTION

Very crucial to many applications, such as sharing image and video on the INTERNET, are techniques for image
compression with acceptable visual quality for decoded images. There has always been intense interest in development of
efficient image compression algorithms. A lot of work in image compression has focused on transform coding.

The transform coders are designed to remove the redundancy in images for purposes of bit rate reduction, based upon signal
processing and information theory. The JPEG standard is one of the most widely know standards for lossy image
compression. The approach recommended by the JPEG ∗ is a transform coding approach using the Discrete Cosine Transform
(DCT) of 8×8 sub-blocks4. Nevertheless, for the DCT, the blocks do not fit the boundaries of the real objects in the image
scene, leading to visually annoying blocking artifacts, especially for compression at low bit rates.

1 Currently with Motorola, Inc., Schaumburg, IL 60196, ; e-mail: xzou@eurpd.csg.mot.com.
2E-mail: pearlw@rpi.edu.

2

A new class of transformation called the Lapped Orthogonal Transform (LOT) mitigates blocking artifacts and shows greater
coding efficiency than the DCT3,7,8 . A fast computable approximation to the LOT has been designed to save the computation
cost7,8 . Therefore, the LOT is a good candidate when picking a transformation for image compression.

A major concern for the implementation of image compression is the algorithmic complexity, which has prevented realizing
truly high performance codec in image compression. However, there has been promising progress in achieving high
compression performance with low complexity. The image codec, called amplitude and group partitioning (AGP), sits at the
opposite end of trade off between complexity and compression1,2 .

AGP was used by Said and Pearlman 1 to encode wavelet and block DCT of images. The DCT coding by AGP (DCT-AGP),
despite its high coding efficiency, produces reconstructed images that show blocking artifacts at low bit rates. The purpose of
this paper is to alleviate blocking effects with a new LOT coding by AGP (LOT-AGP). The LOT-AGP has high compression
quality and reduced blocking artifacts with a small increase in computational cost due to the LOT.

2. LOT

2.1. Introduction
In transform coding systems, the input signal is typically divided into blocks, which are then subjected to an energy-
preserving unitary transformation. The aim of the transformation is to convert statistically dependent pixels into a set of
essentially independent transform coefficients, preferably packing most of the signal energy into a minimum number of
coefficients, preferably packing most of the signal energy into a minimum number of coefficients. The resulting transform
coefficients are quantized, coded, and transmitted. At the receiver, the signal is recovered by computing the inverse
transformation after decoding and dequantizing the transmitted data.

The DCT transform coding is widely used such as in the JPEG standard. However, the basis functions of the DCT have
abrupt changes at the endpoints of their supports, which cause one of the main problems of the DCT, blocking effects
especially at low bit rates. These effects are perceived in reconstructed images as visible discontinuities, or artifacts, at the
cross-block boundaries. In order to avoid this, we should choose basis functions without abrupt changes.

Some approaches have been introduced to reduce blocking effects, such as overlapping and filtering10,11. However, the
overlapping method increases bit rates for coding, and the filtering method blurs images at the cross block regions. A more
successful method is a lapped transform for block signal coding3,7,8 .

2.2. LOT
2.2.1. Introduction
Historically, the Lapped Orthogonal Transform (LOT) denotes a lapped transform whose input length is equal to twice its
output length (L = 2M). Previous research showed the LOT is more appropriate for image coding, comparing with other
lapped transforms, because the LOT achieves higher compression efficiency for images and has less computational cost8.

2.2.2. Design of the LOT
In order to make the design of LOT robust, we can begin with a family of valid LOTs. Then, the optimal LOT within this
family or subspace can be found. Our first valid LOT matrix3 is 0P :

() ()

−−−

−−
=

00

00
0 2

1
DDJDDJ

DDDD
P

ee

ee (1)

where eD and oD are the 2MM × matrices containing the even and odd DCT basis functions of length M, respectively. This
particular choice leads to the fast computation of the LOT.

If Z is an orthogonal matrix of order M , we can get a family of LOTs like the following:
ZPP 0= (2)

The covariance matrix of the LOT coefficients for a given signal covariance matrix xxR is 000 PRPR xx
T= . If Z is the matrix

whose columns are the eigenvectors of 0R , P should minimize the required bit rate for a given distortion level. The signal
model chosen in this work is a first order Markov model with ρ = 0.95. The quasi-optimal LOT is calculated for M =8 and L
= 2M. The basis functions of the LOT decay toward zero at the boundaries. Thus the discontinuity from zero to the boundary
value is much lower than that of the standard DCT functions, so that the blocking effects will be reduced.

3

We are more interested in a fast algorithm of the LOT, which is independent of the signal model. The matrix 0P can be
implemented by a manipulation of the DCT transform and the orthogonal factor Z can be approximated by3:

≈

Z

I
Z ~0

0
(3)

where Z~ is an orthogonal matrix of order 2M . For 16≤M case, Z~ can be further approximated as a cascade of

12 −M plane rotations, in the form of 1221
~

−= MTTTZ L . Each plane rotation is defined as:

()

=

I

Y

I

T ii

00
00
00

θ (4)

The first identity factor in the above equation is of order 1−i , i.e., the top left element of ()iY θ is in the position
)1 ,1(−− ii of the 22 MM × matrix iT . The matrix ()iY θ is a 2×2 butterfly:

()

−

=
ii

ii
iY

θθ
θθ

θ
cossin
sincos

(5)

where iθ is the rotation angle.
Using the fast LOT implementation, we can approximate the basis functions of the quasi-optimal LOT in Figure 3. The
angles that optimize the LOT for the maximum coding gain are8:

[] []πππθθθ 13.0,16.0,13.0,, 321 = (6)
There are choices of other combinations of angles for different optimization criteria. The angles in equation (6) are used in
this work.
2.2.3. The LOT Filter Bank
The transform coding can be regarded as a special case of multirate filter bank coding, so the basis functions of some
transform can be viewed as the impulse responses of a bank of filters. The basis functions of the LOT are good bandpass
filters, which are centered at () Mk π21+ , with a bandwidth of Mπ , 1,,1,0 −= Mk K . In the stop band, the DCT has an
alias level, i.e. the maximum stop band gain for all the filters, of -10 dB. The fast LOT has an alias level of around -17 dB, an
improvement of 7 dB. The alias will not be canceled perfectly, unless the subband signal is transmitted without distortion,
which can hold only for lossless coding. In low-bit-rate compression, the distortion is most likely high, so aliasing exists. The
lower alias level of the LOT reduces the edge effects at the block boundaries, i.e. the blocking effects in an image coding
application.

2.2.4. The LOT of Finite Length Signals
In our previous discussion, we assume the input and output are infinite. In image compression, a two-dimensional LOT
would typically be separable, and so we would need to compute the LOT of the rows and the columns of the image. Since
each row or column is finite-length sequence, some modification is needed to the original equation.

A simple way to calculate the LOT at boundaries, also used in this work, is obtained by reflecting the data at the segment
boundaries. This is equivalent to using half the even DCT basis functions.

2.3. Transform Gain of the LOT and the DCT
An optimal transform should minimize the required bit rate under some given distortion level. This is equivalent to
maximizing the "energy compaction" measure12, or so-called "transform gain",

NN

i

i

N

i

i

TC

N
G

1

1

2

1

21

=

∏

∑

=

=

σ

σ

(7)

where 2
iσ is the variance of the ith transform coefficient and also the ith diagonal entry of the matrix 000 PRPR XX

T= .

The transform gain TCG was compared among the DCT and the LOTs for the block size of eight for a one dimensional signal
or 8×8 for a two dimensional signal. Two LOTs were involved in the calculation. One was the quasi-optimal LOT as in the
Figure 3; the other was the fast LOT as in Figure 4. First, a signal covariance model is considered, which is the first-order

4

Markov model for correlation coefficient ρ = 0.95 in the the covaiance matrix in Equation (8) below. Secondly, some test
images are used to calculate the transform gain.

=

−

−

−

−

1
1

1
1

21

2

2

12

ρρρ
ρρρ

ρρρ
ρρρ

L

L

MOM

L

L

L

L

L

L

XXR (8)

The first order Markov Model, with 95.0=ρ .

The quasi-optimal
LOT (16×8)

The fast LOT
(16×8) The DCT (8×8)

Transform Gain TCG 8.3886 8.3125 7.6312

Table 1. The transform gain TCG of one-dimensional block transform for first order Markov Model, with ρ = 0.95.

The quasi-optimal
LOT (16×8) The fast LOT (16×8) The DCT (8×8)

Lena (256×256) 25.1789 24.4513 21.9906

Lena (512×512) 57.7503 55.6129 49.6647

Barbara (512×512) 24.4118 23.6405 19.2908

Table 2. The transform gain TCG for three testing images.

From these two tables, we would conclude that the LOT has higher transform gain than the DCT. These tables also show that
the fast LOT is close to the quasi-optimal LOT based upon first order Markov model. This finding suggests that the fast LOT
should be picked for practical application, because of the considerations of computational cost and transform performance.

3. AMPLITUDE AND GROUP PARTITIONING CODING

3.1. Introduction
The whole process of transform coding is divided into several stages, mainly transformation, quantization, and encoding.

3.2. Quantization
Uniform quantization is defined as division of the input amplitude by a quantizer step size Q followed by rounding to the

nearest integer, according to

=

Q

F
F Q , where QF is the index of the quantization interval, or quantization bin number. The

reverse process of quantization is dequantization, which is mapping the bin number to the midpoint of the associated
quantization interval by 2QQFF Q +×=′ . Quantization affords a compressed representation of the original signal, but
introduces error or distortion.

The JPEG standard recommends some quantization tables, composed of quantization step sizes for different transform
coefficients based upon visual tests. The JPEG default quantization tables are not used here. Instead, the same quantization
step is used for each coefficient of the LOT. This approach followed by entropy coding achieves better compression results,
especially at high bit rates13.

3.3. Amplitude Partitioning
After transformation and quantization, the data is concentrated around zero but also distributed widely. If we encode these
samples directly with an entropy code, such as Huffman Code, the size of the alphabet is huge. Under some scenarios, the
length of codes could exceed the length of a machine word. This "overflow" could bar the design of entropy codebooks.

5

When more sophisticated techniques, such as encoding several samples together or encoding samples conditionally, are
introduced, the large size of alphabet may make the implementation impossible. Efficient approaches to address large
alphabets have appeared in several places. For example, such a method is used in the JPEG standard4.

A short description of this method, alphabet partitioning, also called amplitude partitioning1, is:
• The source alphabet is divided into a relatively small number of sets.
• Each sample is located by two symbols:

1. A symbol identifying its set.
2. A symbol identifying its location within that particular set.

The symbols in items 1 and 2 are called the set number and the set index, respectively. This pair of numbers represents each
sample. When encoding this pair, the set number is entropy coded and the set index is coded simply, like the binary
representation of that index itself.

This reduction of complexity is associated with some sacrifice of compression ratio. If the probability distribution of symbols
inside sets is close to uniform, the loss in compression efficiency, or the increase of rate, is relatively small. This observation
is reasonable, because a uniformly distributed source can be optimally coded with fixed length codes. There is an algorithm,
whose optimization criterion is reducing complexity and minimizing the increase of rate, to guide the design of partitioning
tables1. However, the optimal solution depends upon the statistical model of the source. The authors here use a good
amplitude partition as in Table 3 for all test images. Each symbol from the source is assigned to a magnitude set. A symbol is
represented by a set number, a set index, and a sign bit, if nonzero.

3.4. Group Partitioning
After amplitude partitioning, only the set number of each symbol is encoded with a powerful and more complex entropy
code, such as adaptive Huffman code. The alphabet for set numbers has shrunk to a small and manageable size. For instance,
using the method suggested in Table 3, this alphabet comprises twenty symbols, i.e. {0, 1, …, 19}. On the other hand, we do
pay the penalty in inefficiency for encoding set indexes with fixed length codes. However, with such a small size alphabet,
we can further exploit the dependence between neighboring samples, and achieve compression ratios larger than that of the
zero order entropy. One technique is to use conditional coding, which is nicely integrated into the technique called the group
partitioning.

There are various versions of group partitioning in previous research1. They emanate from one general scheme. We illustrate
the general scheme with one of those versions, where the original block has nn 22 × pixels. The group partitioning method is
to code set numbers of a block in a hierarchical manner.
1. Encode the maximum set number in the nn 22 × block by an entropy code.
2. Divide the original block into four 11 22 −− × nn sub-blocks. Create a binary mask, where a “1” or “0” signifies whether or

not the maximum set number is reached in its respective sub-block. This four-bit binary mask is also entropy-coded. Set
n to n-1 and return to step 1 for each sub-block whose maximum set number is non-zero. Continue until 2×2 pixel blocks
have been reached.

3. Encoding 2×2 pixels uses the similar approach as nn 22 × pixels, entropy-coding the whole block with a maximum set
number and a binary mask indicating the location of the maximum set number.

4. When treating each 2×2 block at pixel-level, entropy-code a pixel’s set number if that set number is smaller than the
maximum set number of this 2×2 block, otherwise skip its set number.

5. Encode a pixel’s set index and sign bit with their binary representation.

We have some observations about the process above:
• Whenever the maximum set number of any nn 22 × block is 0, for any n in the process down to n=1, the encoding process

is stopped and that block is represented with only one bit of information. This is a big advantage of recursive partitioning
from a large block to a smaller block. It can represent a large block of zeros very efficiently, which is a very common
scenario for an image source after transformation and quantization.

• If the maximum set number of any block is 1, the encoding process is also very simple. Only set indexes and sign bits of
pixels are coded. This kind of distribution of data also happens frequently.

• When the maximum set number of one block is small enough, such as less than three using the alphabet partitioning
table in Table 3, the conditional codes are used to encoding the maximum set number of sub-blocks or pixels. Those
binary masks are also coded using codes conditioned upon their corresponding maximum set number.

6

Magnitude
Set Number

Magnitude
Interval

Sign
Bit

Index
Length

0 [0] No 0
1 [1] Yes 0
2 [2] Yes 0
3 [3] Yes 0
4 [4, 5] Yes 1
5 [6, 7] Yes 1
6 [8, 11] Yes 2
7 [12, 15] Yes 2
8 [16, 23] Yes 3
9 [24, 31] Yes 3
10 [32, 47] Yes 4
11 [48, 63] Yes 4
12 [64, 127] Yes 6
13 [128, 255] Yes 7
14 [256, 511] Yes 8
15 [512, 1023] Yes 9
16 [1024, 2047] Yes 10
17 [2048, 4095] Yes 11
18 [4096, 8191] Yes 12
19 [8192, 16383] Yes 13

Table 3. The amplitude partitioning table used in this work

With these features, the group partitioning is powerful enough to achieve very high compression ratio. The group partitioning
also has a lot of flexibility to adjust some important parameters such as the extent of conditional coding. The recursive
partitioning of nn 22 × block into four 11 22 −− × nn sub-blocks is only one example of group partitioning. Other hierarchical
recursive partitioning schemes are indeed possible. 2×2 blocks can be encoded as two aggregated symbols of 2, 3 or 4
together if the maximum set number is small.

General Scheme of Combination of Amplitude Partitioning and Group Partitioning

The encoding scheme is 1:
1. Order the source symbols according to their probabilities, with "0" representing the most common symbol, "1" the

second most common, etc.
2. Partition the source samples into a certain number of sets.
3. Create a list with the initial sets, find the maximum sample-value mv , i.e. the maximum set index, inside those sets and

entropy-code those numbers.
4. For each set with 0>mv do

a) Remove the set from the list and divide it into subsets;
b) Entropy-code a binary "mask" with n bits (one for each subset) such that a bit is set to 1 if the maximum in that

subset, miv is equal to mv and otherwise set to 0;
c) If 1>mv then entropy-code every mmi vv < , possibly aggregating them to create the proper source extensions;
d) Add to the list of sets each subset with more than one element and with 0>miv .

5. If the set list is empty, then stop; otherwise, go to step 4.

The binary masks are encoded conditionally upon their corresponding maximum set numbers. When a set’s maximum set
number is less than 3, conditional codes are also used to encode this set’s maximum subset numbers.

The encoding process can be stopped at a very early stage if the maximum set number of some set equals zero. When a
maximum set number of a set is one, the corresponding binary mask will represent the maximum set number of its subsets,
ones or zeros. The encoding process is thus very efficient to represent large blocks of zero or values close to zero.

7

A variation of this implementation can introduce more use of conditional codes or code a block of data together. However,
this variation will increase the alphabet size and finally put too many burdens on the implementation.

3.5. Overview of Encoder and Decoder

LOT AGP
 encoder

inverse
LOT

AGP
decoder

input data

reconstructed
data

Quantization

de-
Quantization

Figure 1. The structure of the encoder and decoder.

Figure 6 is the summary of the overall structure of the encoder and decoder used in this work. All the coefficients of the LOT
of the input data are quantized with a uniform quantizer of the same step size Q. The bin numbers are then inputted to the
AGP encoder. The mean-squared reconstruction error increases and the rate of the coder decreases with increasing Q. The
entropy code is an adaptive Huffman code, which is relatively simple but very efficient. One advantage of the adaptive
Huffman code is that the encoding process does not require learning time. The Huffman encoder encodes data, collects
statistical information of input data and adjusts the codebook at the same time. The Huffman decoder reconstructs the
codebook in the same way as the encoder. The approach saves the overhead information of transmitting the codebook along
with the encoded image data.

4. CODING PERFORMANCE AND CONCLUSION

4.1. Introduction
It is interesting to compare the coding performance of different schemes for image compression. The JPEG standard is one
popular example for transform coding4. The JPEG coder used below is the PVRG-JPEG CODEC 1.1, which can be
downloaded from ftp://havefun.stanford.edu/pub/jpeg/JPEGv1.2.tar.Z. In previous research, the DCT transform coding by
AGP (DCT-AGP) is a state of art case for transform coding7. The authors implement the LOT transform coding by AGP
(LOT-AGP), which is closely related to the DCT-AGP. The block size for both LOT and DCT is 8×8 for comparison.

4.2. Objective Evaluation
In image coding, it is customary to use a normalized error measure, called Peak SNR , which is defined as

=

2

2

10
255

log10
r

PSNR
σ

, where 2
rσ is the mean-squared reconstruction error, to evaluate the performance14. Three test

images were encoded, and decoded by three image codecs, which are the PVRG-JPEG CODEC 1.1, the DCT-AGP, and the
LOT-AGP. The PSNR of the reconstructed images were recorded as a function of bit rate in bits per pixel (bpp), which is
determined from the actual size in bytes from the compressed files. The subject test images are Lena (512×512), Barbara
(512×512), and Gold-Hill (512×512).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
26

28

30

32

34

36

38

40

42

44

DCT based AGP codec
LOT based AGP codec
JPEG codec

8

Figure 2. The plot of PSNR in dB vs. bits per pixel using the image Lena(512×512).
Figure 2 suggests that the performance of the LOT-AGP is close to that of the DCT-AGP. When these two compress the test
image, Lena, into the same file size, the DCT-AGP has slightly larger PSNR than the LOT-AGP. However, these two codecs
are much better than JPEG codec on compression efficiency, from about 1.7dB to 3 dB depending on the bit rate. The test
image, Barbara, gives different results than the first test image, Lena, because Barbara has more high frequency components
than Lena. The analogous result for Goldhill conveys the same information as Figure 7 because of the similarity between this
test image Goldhill and Lena.

From these three plots, we can conclude: The LOT-AGP and DCT-AGP are much more efficient in compression than the
JPEG standard. For some images, the DCT-AGP has slightly higher PSNR than the LOT-AGP. On the other hand, for images
which have a lot of high frequency information, the LOT-AGP is better than the DCT-AGP.

Figure 3. Left: the plot of PSNR in dB vs. bits per pixel using the image Barbara (512×512); Right: The Plot of PSNR in dB
vs. bits per pixel using the image Goldhill (512×512).

Exact numerical data about the PSNR difference are in Table 4. The author omitted the JPEG codec in this table because its
compression results are inferior to the two AGP codecs. For further comparison, the coding results of two other progressive
image coders are cited below, which are the best progressive wavelet coder SPIHT14, and a LOT, having length 8, based
progressive image coder6.

PSNR in dB

Image Rate
(bits per pixel) LOT-

AGP
DCT-
AGP

SPIHT
arith.
codec14

LOT-8
prog.
codec6

0.10 26.91 27.76 - -
0.25 32.41 32.52 34.11 33.57
0.50 36.13 36.21 37.21 36.75
0.75 38.20 38.28 39.04 -

Lena (512×512)

1.00 39.69 39.84 40.41 40.09
0.15 24.62 24.67 - -
0.25 27.31 26.80 27.58 28.80
0.50 31.76 30.86 31.40 32.70
0.75 34.66 33.88 34.26 -

Barbara(512×512)

1.00 36.91 36.24 36.41 37.43
0.10 26.33 26.82 - -
0.25 29.80 29.89 30.56 -
0.50 32.78 32.71 33.13 -
0.75 34.70 34.65 34.95 -

Goldhill(512×512)

1.00 36.37 36.29 36.55
Table 4. PSNR in dB for various image coding algorithms

0 0.5 1 1.5 2 2.5
24

26

28

30

32

34

36

38

40

42

44

DCT based AGP codec
LOT based AGP codec
JPEG codec

0 0.5 1 1.5 2 2.5
24

26

28

30

32

34

36

38

40

42

44

DCT based AGP codec
LOT based AGP codec
JPEG codec

9

For the test image Lena (512×512), the PSNR of the DCT-AGP is less than 0.2 dB higher than that of the LOT-AGP at most
bit rates. The LOT-AGP has about 0.8 dB higher PSNR than the DCT-AGP using the test image Barbara (512×512). There is
roughly 0.1dB gain in PSNR for LOT-AGP over DCT-AGP for the test image Goldhill (512×512).

The two progressive codecs are more complex that the LOT-AGP. However, the LOT-AGP delivers close PSNR results to
the two progressive codecs. For the test image Lena, the SPIHT codec offers the highest PSNR at the same bit rate. For the
test image Barbara, the LOT-AGP codec outperforms SPIHT at several bit rates. Generally, the LOT-AGP codec has
comparable compression performance to the two progressive codecs.

4.3. Subjective Evaluation
PSNR is one of the objective metrics for evaluating a reconstructed image. However, it does not measure the extent of the
blocking artifacts in images. The DCT-AGP and LOT-AGP reconstruct test images at different bit rates for viewing on a
high-resolution monitor. Some are printed in the following to illustrate the visual results.

Blocking effects are more obvious at low bit rates, such as 0.10 bpp, 0.15 bpp and 0.25 bpp. Images reconstructed by the
DCT-AGP at those low bit rates are totally messed up by blocks. However, the LOT-AGP keeps much more detail of original
images at these low bit rates, like the hair of Lena, the pattern on the cloth and table cloth in Barbara, and background
buildings and the street stones in Goldhill. At 0.50 bpp, blocks are still noticeable in some regions of the images from the
DCT-AGP. The LOT-AGP gives almost no blocking artifacts at this rate, 0.50 bpp. The images, compressed at 0.5 bpp, were
zoomed in to the ratio of 1:2 or 1:3 for further observation. Blocking artifacts become much more prominent for the DCT-
AGP than the LOT-AGP.

For the bit rate 0.75 bpp, it is surprising to spot blocks in some regions of the images from the DCT-AGP. Most of these
blocks are recognized in the background of the images. The LOT-AGP produces high visual quality images at the same rate.
After images zoomed in to the ratio of 1:2 or 1:3, we have the similar observation as the bit rate 0.50 bpp. When the bit rate
goes up to 1.00 bpp, the images have almost no noticeable artifacts. Moreover, the same observation holds when images are
zoomed in to the ratio of 1:2 or 1:3. Overall, images compressed by the LOT-AGP have better visual quality, i.e. fewer
blocking artifacts, than the DCT-AGP. When the bit rate increases, the LOT-AGP finally outperforms the DCT-AGP in
PSNR comparisons. The LOT-AGP at the same bit rate has more ringing effects than the DCT-AGP.

10

Figure 4. Lena (512×512) compressed at 0.50 bpp. Top: by the LOT-AGP, PSNR = 36.13 dB; bottom: by the DCT-AGP, at
0.50 bpp, PSNR = 36.21 dB.

11

Figure 5. Barbara (512×512) compressed at 0.50 bpp. Top: by the LOT-AGP, PSNR = 31.76 dB; bottom: by the DCT-AGP,
PSNR = 30.86 dB.

12

4.4. Conclusions
The principles and performance of the LOT-AGP are discussed here. LOT-AGP delivers higher quality images at various bit
rates than the traditional DCT transform coding schemes. Extremely low bit rate as 0.10 bpp or 0.15 bpp has little importance
for implementations. Compressing images in the range of rates from 0.25 to 0.75 bpp seems to be the ideal place to enjoy the
advantage of the LOT-AGP. On the other hand, this scheme only increases computational cost by a small amount over that of
the DCT. The LOT-AGP meets our expectation for a low-complexity codec.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. Ricardo L. de Queiroz for providing his LOT software. The authors are thankful to Dr. Amir
Said for his suggestions and comments on the amplitude and group partitioning coding scheme.

5. REFERENCES

1. A. Said and W. A. Pearlman. “Low-Complexity Waveform Coding via Alphabet and Sample-Set Partitioning,” in Visual
Communications and Image Processing '97, J. Biemond and E. J. Delp, eds., Proc. SPIE 3024, pp. 25 – 37.

2. W. A. Pearlman. “High Performance, Low Complexity Image Compression,” Applications of Digital Image Processing
X, Proc. SPIE 3164, July 1997, pp. 234 – 246.

3. H. S. Malvar and D. H. Staelin. “The LOT: Transform coding without blocking effects,” IEEE Trans. Acoustics, Speech,
Signal Processing, vol. 37, April 1989, pp. 553 – 559.

4. G. K. Wallace. “The JPEG Still Picture Compression Standard,” Communications of the ACM, vol. 34, April 1991, pp.
31 – 44.

5. A. Said and W. A. Pearlman. “A New Fast and Efficient Image codec Based on Set Partitioning in Hierarchical Trees,”
IEEE Transactions on circuits and Systems for Video Tech., June 1996, pp. 243 – 250.

6. T. D. Tran and T. Q. Nguyen, “A progressive transmission image coder using linear phase paraunitary filter banks,”
Proc. 31st IEEE Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 1997.

7. H. S. Malvar and D. H. Staelin. “Reduction of blocking effects in image coding with a lapped orthogonal transform,” in
Proc. ICASSP 88, NY, April 1988, pp. 781 – 784.

8. H. S. Malvar. Signal Processing With Lapped Transforms. Norwood, MA: Artech House, 1992.
9. A. B. Watson. “Image Compression Using the Discrete Cosine Transform,” Mathematica Journal, 4(1), 1994, pp. 81 –

88.
10. H. C. Reeve, III, and J. S. Lim. “Reduction of blocking effect in image coding,” in Proc. ICASSP 83, Boston, MA, pp.

1212 – 1215.
11. D. E. Pearson and M. W. Whybray. “Transform coding of images using interleaved blocks,” IEE Proc., Part F, vol. 131,

August 1984, pp. 466 – 472.
12. N. S. Jayant and Peter Noll. Digital Coding of Waveforms, PRENTICE-HALL, INC. Englewood Cliffs, NJ, 1984.
13. Stéphane Mallat. A Wavelet Tour of Signal Processing. ACADEMIC PRESS, San Diego, CA, 1998.
14. A. Said and W. A. Pearlman. “A New Fast and Efficient Image codec Based on Set Partitioning in Hierarchical Trees,”

IEEE Transactions on circuits and Systems for Video Tech., June 1996, pp. 243 – 250.

