
1

Quantifying the Coding Performance of Zerotrees
of Wavelet Coef�cients: Degree-k Zerotree

Yushin Cho and William A. Pearlman

Abstract� Locating zerotrees in a wavelet transform allows
encoding of sets of coef�cients with a single symbol. It is an
ef�cient means of coding if the overhead to identify the locations
is small compared to the size of the zerotree sets on the average.
It is advantageous in this regard to de�ne classes of zerotrees
according to the levels from the root until the remainder of the
tree contains all zeroes. We call a tree with all zeroes except for
the top k levels a degree-k zerotree. A degree-k zerotree coder
is one that can encode degree-0 through degree-k zerotrees. We
quantify the bit savings of a degree-k2 over a degree-k1, k2 > k1,
coder. Because SPIHT is a degree-2 zerotree coder and EZW
a degree-0 zerotree coder, we are able to explain the superior
ef�ciency of SPIHT. Finally, we gather statistics of degree-k
zerotrees for different values of k in the bitplanes of several
image wavelet transforms to support our analysis of the coding
performance of degree-k zerotree coders.

Index Terms� zerotree, zerotree coder, SPIHT, EZW, wavelet
image compression.

I. INTRODUCTION

Two popular wavelet image coders, EZW [1] and SPIHT
[2], use discovery of zerotrees to encode sets of wavelet coef�-
cients ef�ciently. While the reason for different zerotree coding
performance of the two schemes in terms of zerotree was not
clearly stated in the literature, we establish a framework to
explain it formally.

Both EZW and SPIHT use the idea of decaying spectral
power density and successive quantization approximation. For
each coding pass of these algorithms, a signi�cance map is
constructed, which contains the signi�cance information of
every coef�cient with respect to a given threshold. When the
coef�cient's magnitude exceeds or equals the threshold, it is
said to be signi�cant and a `1' is posted; otherwise, it is said
to be insigni�cant and a `0' is posted. The threshold decreases
successively by a factor of 2 for each new pass, enabling the
more important coef�cients to be coded �rst.

Generally, the wavelet based image coding in EZW and
SPIHT consists of two passes: sorting and re�nement. The
sorting pass encodes the location of the �rst signi�cant
bit (highest `1' in binary expansion of magnitude) of each
coef�cient and the locations of the insigni�cant (magnitude
below current threshold or `0' in current bit plane) coef�cients

Y. Cho is with Sony Electronics, San Jose, CA 95112 USA; E-mail:
cho.yushin@gmail.com

W. A. Pearlman is with Rensselaer Polytechnic Institute, Electrical,
Computer and Systems Engineering Dept., Troy, NY 12180-3590; E-mail:
pearlw@ecse.rpi.edu; Tel/Fax: (518) 276-6082/8715

This work was performed in the Center for Image Processing Research at
Rensselaer Polytechnic Institute. The equipment and facilities were augmented
by CISE Infrastructure Award No. EIA 0224433 of the National Science
Foundation, for which we are grateful. The government has certain rights
in this material.

and tree-structured sets of insigni�cant coef�cients, while the
re�nement pass simply encodes (records) the lower order bits
of signi�cant coef�cients. In EZW, these passes are named
differently as dominant and subordinate passes, respectively.
Note that the coding of every zerotree is achieved in the
sorting pass. The concept of a zerotree is based on the property
that if a coef�cient in a wavelet transform is insigni�cant,
it is very likely that its descendant coef�cients in higher
frequency subbands are also insigni�cant. If a coef�cient and
all of its descendant coef�cients are insigni�cant (i.e. zero in
a bitplane), a zerotree is found in the EZW algorithm. The
zerotree de�ned in EZW is simply a tree consisting of all
zero values. We denote this zerotree as degree-0 zerotree.

On the other hand, the zerotrees in SPIHT are de�ned
in a wider sense. SPIHT can represent two more classes of
zerotrees. It treats a root coef�cient and its corresponding
descendants separately. So, if a tree has a signi�cant root
coef�cient and remaining coef�cients in the tree are all in-
signi�cant, all these insigni�cant coef�cients are coded by
one zerotree symbol, while the signi�cant root is coded by
another symbol. We denote this class of zerotree to be coded
as degree-1 zerotree since every coef�cient except at the top
level is all zeros.

In addition, SPIHT can treat indirect descendant coef�cients
separately from a root and children coef�cients. (Indirect
descendant coef�cients mean all coef�cients except the root
and its direct children.) Thus, if any coef�cients at the chil-
dren level are signi�cant and all coef�cients below them are
insigni�cant, all the zeros below children level are coded by
one zerotree symbol. The root and children coef�cients are
coded separately. We denote this class of zerotree to be coded
as degree-2 zerotree since every coef�cient except at the top
two levels is zero.

Our models of zerotrees are based on their degree. At
present, no image coder that can code zerotrees with more
than degree-2 has been reported. The degree-2 zerotree is the
maximum complexity of zerotree discovered so far and is used
by the SPIHT image compression algorithm. In the viewpoint
of block entropy coding, the entropy coding performance of
a zerotree is de�ned and explained simply. Based on the
suggested framework, the possibility of further improvement
of SPIHT or any other zerotree-based algorithm is discussed
[3].

Ramaswamy et al. [4] presented a criterion of `cumulative
zerotree count' to analyze the performance of the SPIHT
coder. However, its purpose was to evaluate the wavelet
�lters in the SPIHT algorithm. Moreover, only the number
of zerotrees was measured and the height of the zerotree was
not considered.



2

II. TESTING FOR ZEROTREES

Every coef�cient of a wavelet transform is stored by its sign
and binary expansion of its magnitude. Thresholds for testing
signi�cance are positive integer powers of 2, so these powers
correspond to numbers or levels of bitplanes. The search for
signi�cant coef�cients starts from the highest bitplane with
most signi�cant bits (MSB's) and proceeds successively to
the lower bitplanes until it reaches the lowest (0) bitplane
with the least signi�cant bits (LSB's). When a coef�cient �rst
shows `1' in a bitplane, it is signi�cant; otherwise it remains
insigni�cant.

The bitplanes of a 4-level wavelet transform are shown
in Figure 1. In the �gure, there are 13 bitplanes shown,
where bitplane 0 is the least signi�cant bitplane (LSB) and
bitplane 12 is the most signi�cant bitplane (MSB). The two
least signi�cant bitplanes, 0 and 1, are assumed zeros here
since they are not coded. The white areas indicate zeros,
and the grey ones indicate not-all-zeros. Trees are formed
within bitplanes by four-fold successive branching from a
coef�cient to its offspring in the next higher resolution (lower
resolution number) at the same spatial orientation. A zerotree
in a bitplane is a tree of all `0's at locations where there are
no `1's in any higher bitplane. Therefore, because of the order
of the search, once a coef�cient is found to be signi�cant, it
can no longer belong to a zerotree.

Since most of the energy is concentrated in the lower
frequency subbands, the large magnitude wavelet coef�cients
are found in the lower frequency subbands with very few
exceptions. Thus, the top bitplanes contain signi�cant bits
(i,e. '1's) only in lower frequency subbands, as shown in the
grey areas in bitplane 12 of Figure 1. Therefore, the zerotrees
in these bitplanes tend to be long, extending from the low
frequency subband at the top left to a high frquency subband
at the bottom. In the lower bitplanes, we tend to �nd blocks of
zeros only at the higher frequencies, since coef�cients in the
lower frequency subbands tend to have '1's in higher bitplanes,
as illustrated also in Figure 1. Thus, the zerotrees in the lower
bitplanes are often shorter than those in the higher bitplanes.

In EZW, once a wavelet coef�cient is tested as signi�cant
for a given threshold, each of the four subtrees branching from
this coef�cient should be tested for its signi�cance, i.e. if the
subtree has any signi�cant bit for a given threshold. Thus, four
symbols (one for each subtree) necessarily follow, regardless
of the signi�cance of the four branched descendants.

Meanwhile, SPIHT handles this situation differently. It
codes parent coef�cients and children coef�cients separately.
It has a special syntax representing whether any of its children
coef�cients is signi�cant. If there is no signi�cant child
coef�cient, code `0'; otherwise, code `1'. Then code together
these four bits, each of which speci�es the signi�cance of a
child coef�cient. Here, the syntax requires only one symbol
or one bit (output `0' for the value of D(i, j) in the original
SPIHT article [2]) if there is no signi�cant child coef�cient.

There is also more advanced and sophisticated syntax de-
�ned in SPIHT, to represent the tree subset having zeros for all
descendant coef�cients of the four children. This again takes
only one bit (output `0' for the value of L(i, j) in the original

MSB

LSB

The shortest zerotree

bitplane 0

bitplane 1

bitplane 2 : zeros

: not-all-zeros

bitplane 11
bitplane 10

The tallest zerotree

bitplane 12

bitplane 11

Fig. 1. Zerotrees on bitplanes

article) if all those descendant coef�cients are zeros.
These are the most important reasons why the SPIHT algo-

rithm improves the EZW algorithm in compression ef�ciency.

III. DEGREE-k ZEROTREE

We establish de�nitions and theorems regarding the ef�cacy
of zerotrees, which can formally explain the differences of
zerotree coding performance between popular EZW, SPIHT
and possibly other zerotree-based algorithms. Viewing a ze-
rotree as an entropy coding scheme, we classify it into different
classes depending on the fullness of zeros at each level............. level 0

level 1

t branches ............
0 0 ............0 level h0 0 0 0

0

Fig. 2. A height h, t-ary tree

Through all following de�nitions, theorems, and proofs, we
assume that each zerotree is of height h, t-ary, and complete
(i.e. full leaves at bottom level), as shown in Fig. 2. And let
us call this tree a source tree or a source zerotree. Note that
the bottom level of a zerotree always indicates the highest
resolution of subband.

The level 0 of a tree indicates the root node (i.e. the top)
and the level h indicates the leaf nodes (i.e. the bottom). Note



3

that the level is numbered starting from the top (root) level.
Thus, a height h tree has h + 1 levels, i.e. level 0 to level h.
At level i, there are ti nodes and the total number of nodes
in the tree is simply T =

∑h
i=0 ti = th+1−1

t−1 .
Each node of the tree is associated with a binary number

(i.e. 0 or 1), corresponding to a two symbol alphabet, {0, 1}.
Each node has its value, which is the signi�cance of a wavelet
coef�cient for a given threshold. Representing each node as
a random variable X with a zero-order statistic, i.e., 0 and 1
are equally probable, we need N bits to encode a sequence
of N nodes, X0, X1, · · · , XN−1. Thus, for a height α, t-ary
subtree, the required number of bits to code it is equal to the
total number of nodes in the subtree, i.e. tα+1−1

t−1 (bits).
De�nition 1 (Degree-k zerotree): For any complete t-ary

tree of height h, if all nodes from the bottom level (i.e. the
level h) to the level k have zero values, we call the tree a
`degree-k zerotree'. In other words, all nodes except the top
k levels have zero values in a degree-k zerotree......................... 0

00 0

0 0

0

0 0 0

0

00

0

0 0 0

All 0's

...

...

1

00 0

0 0

0

0 0 0

0

00

0

0 0 0 All 0's

Non-zero

(a) degree-0 zerotree (b) degree-1 zerotree

...

...

1

10 0

0 0

0

0 0 0

0

00

1

0 0 0

All 0's

Not all 0's

(c) degree-2 zerotree
Fig. 3. Degree-0, degree-1 and degree-2 zerotrees

So, the degree-0 zerotree is the tree having all zeros (See
Fig. 3 (a)). The degree-1 zerotree (See Fig. 3 (b)) is the
tree having all zeros except the root node. And, the degree-2
zerotree (See Fig. 3 (c)) is the tree having all zeros except the
root node and the children nodes of root node.

Table I shows how EZW and SPIHT differently code the
degree-0, -1, and -2 zerotrees in Fig. 3. As discussed in [1], the
EZW coder has four symbols: POS (Positive Signi�cant), NEG
(Negative Signi�cant), ZTR (Zerotree root), and IZ (Isolated
Zero). IZ means a coef�cient is insigni�cant but has some
signi�cant descendant.

The second symbol `0' (bold faced in Table I) alone in
SPIHT's code for both degree-0 and degree-1 examples in-
forms that there exists a degree-1 zerotree. The second symbol
`1' (bold faced in Table I) in SPIHT's code for the degree-2
example informs that there does not exist a degree-1 zerotree.
The last symbol `0' (bold faced) in SPIHT's code for degree-
2 example informs that there exists a degree-2 zerotree. Note
that 2 bits are required to code each symbol of EZW without
entropy coding.

TABLE I
EXAMPLE OF CODED SYMBOLS GENERATED BY EZW AND SPIHT FOR

DEGREE-1 AND DEGREE-2 ZEROTREE

EZW SPIHT
degree-0 zerotree ZTR 0,0

in Fig. 3 (a)
degree-1 zerotree POS,ZTR,ZTR,ZTR,ZTR 1,0

in Fig. 3 (b)
degree-2 zerotree POS,ZTR,POS,POS,ZTR, 1,1,0,1,1,0,0

in Fig. 3 (c) ZTR,ZTR,ZTR,ZTR,ZTR,ZTR,ZTR,ZTR

Now we derive the rule which can be generally applied to an
image coding algorithm using zerotrees of wavelet coef�cients.
Basically, without using a zerotree symbol, a source degree-k
zerotree of a height h, t-ary is coded by two parts:

1) Non-zero part : Code all symbols from top (root) level
(i.e. level 0) to level k− 1, which are not all zeros (For
degree-0 zerotree, there is no non-zero part). The number
of the symbols is Nk =

∑k−1
i=0 ti. By the de�nition of

degree-k zerotree, at least one node from level k − 1 is
non-zero (i.e. one). These symbols can be modeled as a
sequence of random variables, i.e. X0, X1, · · · , XN−1.
Since 0 and 1 are assumed to be equally probable, Nk

bits are required to represent this sequence.
2) Zero part : Code all symbols from level k to bottom

level (i.e. level h), which are all zeros. The number of
the symbols is

∑h
i=k ti. Since we assumed 0 and 1 are

equally probable,
∑h

i=k ti bits are required to represent
this sequence of zeros.

However, if we use a zerotree symbol, the zero part can be
coded by only one symbol.

The number of bits saved by the use of a degree-k zerotree
symbol is the number of nodes from level k to bottom level
in the zerotree minus one for the zerotree root symbol.

De�nition 2 (Bit savings of a degree-k zerotree symbol):
In representing a degree-k zerotree of height h and t-ary, the
bit savings Sk by using a degree-k zerotree symbol is simply:

Sk =
h∑

i=k

ti − 1 (bits)

For example, for a height 3, 4-ary, degree-1 zerotree, the
total number of nodes T is 10. We use one bit to represent
the root node at level 0, and use another bit to represent the
degree-1 zerotree. Then, the bit savings S1 is 9-1 = 8, since
without degree-1 zerotree symbol it needs 9 bits to represent
the 9 nodes from level 1 to level 3 (bottom). The bit savings
Sk is larger for the taller zerotree, i.e. the larger height h.

De�nition 3 (Coding fraction of degree-k zerotree):
Following above de�nition, the coding fraction F of degree-k
zerotree in height h and k-ary tree is:

T − Sk

T
= 1− Sk

T
.

For example, the bit savings S1 of 8 (bits) for the above
example, the coding fraction is calculated as 10−8

10 = 0.2,
which means that only 20% of the original nodes in the source
tree is coded by exploiting the degree-1 zerotree symbol, to
represent the tree.



4

Therefore, the coding fraction F decreases as the bit savings
obtained by zerotree increases. The range of coding fraction
F is: 0 < F ≤ 1.

Theorem 1: For k1 < k2, the bit savings of degree-k2

zerotree over degree-k1 zerotree, Dk1,k2 , is:

Dk1,k2 =
k2−1∑

i=k1

ti (bits)

and the difference of coding fraction is:
Dk1,k2

T
.

Proof: The difference of bit savings is:

Dk1,k2 =

(
h∑

i=k1

ti − 1

)
−

(
h∑

i=k2

ti − 1

)
=

k2−1∑

i=k1

ti (bits) .

Corollary 1: The difference of bit savings between degree-
0 zerotree and degree-1 zerotree is only one bit.

The proof is straightforward since a degree-0 zerotree will
represent one more symbol than a degree-1 zerotree, i.e. root
node. This implies that the difference of coding fraction is
1/T , which is very small for large T and thus the coding
performance of degree-0 and degree-1 zerotree is very close.

De�nition 4 (Degree-k zerotree coder): A degree-k
zerotree coder is a zerotree coder which can represent all
zerotrees with degree-i, 0 ≤ i ≤ k.

degree-2 zerotree coder

degree-1 zerotree coder

degree-0 zerotree coder

SPIHT

EZW

Fig. 4. Relationship of coding performances among degree-0, 1, 2 zerotree
coders

By the de�nition of `degree-k zerotree coder' above, the
degree-2 zerotree coder, as an example, can code all degree-0,
-1, and -2 zerotrees. Hence, it is a more powerful coder than
both degree-0 and -1 zerotree coders and has lower coding
fraction (See Fig. 4). Note that a degree-0 zerotree source is
represented with two symbols 00 by SPIHT algorithm.

Examples of coded bitstream for degree-0,1,2 zerotree
sources by degree-0, 1, 2 zerotree coders are demonstrated
in Table II. Assume that we use only two symbols 0 and 1 to
code each binary decision of the zerotree coder. In the table,
the di means degree-i. The 0i or 1i indicates the existence of
degree-i zerotree, 0i for existence and 1i for non-existence.
The d0, d1, and d2 source zerotrees correspond to Figs. 3
(a),(b), and (c), respectively.

Note that a higher degree zerotree coder generates a shorter
symbol stream among the three kinds of zerotree sources.

Theorem 2: For coding a degree-k2 zerotree source, the
maximum bit savings of degree-k2 zerotree coder over degree-
k1 zerotree coder with k1 < k2 is:

tk2−k1 − 1 (bits).

TABLE II
EXAMPLE OF CODED SYMBOLS BY DEGREE-0, 1, 2 ZEROTREE CODERS

source zerotree
zerotree coder d0 zerotree d1 zerotree d2 zerotree

d0 coder 00 10100000000 1010010100000000

1010000000000

d1 coder 00 10101 10100101011010100

d2 coder 00 10101 10111020110

Proof: A degree-k2 zerotree coder can simply represent
a degree-k2 zerotree source with one symbol. However, since
k1 < k2, a degree-k1 zerotree coder rooted at top level 0 of a
degree-k2 source zerotree cannot represent the source zerotree.
Instead, by having the roots of degree-k1 zerotree coders at
level (k2 − k1), a degree-k2 zerotree can be represented by
a multiple of degree-k1 zerotree coders. The number of these
degree-k1 zerotree coders minus one equals the bit savings.

If k1 = 0, degree-0 zerotrees rooted at level k2 are coded
by degree-0 zerotree coders rooted at level k2. Similarly, if
k1 = 1, degree-1 zerotrees rooted at level k2 + 1 are coded
by degree-1 zerotree coders rooted at level k2 + 1. In this
way, degree-k1 zerotrees rooted at level k2− k1 are coded by
degree-k1 zerotree coders rooted at level k2−k1. The numbers
of these additional zerotree coders rooted at level k2 − i, i =
0, 1, · · · , k1 are : tk2 , tk2−1, · · · , tk2−k1 , respectively. Fig. 5
shows that a degree-k2 zerotree is coded by tk2−k1 degree-k1

zerotree coders (shaded part).

level 0
level 1
level k1

level k2

a degree-k2
source zerotree

all 0's

not all 0's

a degree-k1
zerotree coder

level k1

all 0's

not all 0's

k1

tk2-k1 degree-k1
zerotree coders

level 0

all 0's all 0's

level (k2-k1)

Zerotree Source Zerotree Encoder

Fig. 5. A degree-k2 zerotree coded by tk2−k1 degree-k1 zerotree coders

From the above de�nitions and theorems, our analysis on
the performance difference between EZW and SPIHT is: EZW
algorithm is only using degree-0 zerotrees, while SPIHT is
using degree-1 and -2 zerotrees as well. The D(i, j) of types
A and B in SPIHT correspond to degree-1 and -2 zerotrees,
respectively.

Ideally, if we were to use a higher degree zerotree coder,
i.e. degree-m, m > 2, better coding performance would
be expected. The hurdle for this, however, is the increased
complexity in the implementation of the set partitioning en-
gine. Also, because the number of wavelet decompositions, or
equivalently the height of a spatial orientation tree, is usually
not more than 5, 6, or 7, the zerotrees of degree greater than
2 do not occur frequently. An experimental analysis of the
frequency of degree-1,2,3 zerotrees is presented in the next



5

section. In our experiments with degree-3 zerotree SPIHT
coder, no coding improvement is achieved. In each source tree,
if it is not a degree-2 zerotree, then we test if it is a degree-
3 zerotree, and �nally we code a degree-3 zerotree symbol
to represent the test result. If the tree is a degree-3 zerotree,
there is apparent coding gain. However, if it is not, then the
coded degree-3 zerotree symbol works as overhead. In most
wavelet transformed images the frequency of occurrence of
the degree-3 zerotree is very low. And this means there is no
coding improvement with degree-3 zerotree coders. The same
is expected to be true for higher degree zerotree coders.

IV. EXPERIMENTAL ANALYSIS

We will show the effectiveness of a higher degree zerotree
coder by showing the actual occurrences of higher degree
zerotrees in experiments. Also, we try to show that the charac-
teristics of zerotrees depend on the signi�cance of the bitplane
in which they are located. Tables III - VI show the distributions
of degree-0, -1, -2, and -3 zerotrees coded by SPIHT, for the
512 × 512 Lena at 1.0 bpp with 8 level decomposition, and
Tables VII - X show the corresponding distributions for 5
levels of decomposition. Each entry indicates the number of
zerotrees for the speci�c bitplane and zerotree height. Note
that the zerotree height is equivalent to the resolution level of
the location of a zerotree root. We label resolution level 0 for
the highest resolution subbands. The bottom level of a zerotree
corresponds to resolution level 0. In the table, resolution level
0 is not shown since a zerotree root can not located there.
The higher number bitplane represents the signi�cance map
corresponding to the higher threshold. The information on
bitplanes 0 and 1 is not coded at all at a rate of 1.0 bpp.
For lower bitrates (i.e. < 1.0 bpp), the trends of zerotree
characteristics can be expected simply by discarding the lowest
bitplanes �rst because of the property of embedded coding.

A. The Effectiveness of a Higher Degree Zerotree Coder:
Existence of Higher Degree Zerotrees

One important observation is that the occurrence of degree-
2 zerotrees is as frequent as that of degree-0 and -1 zerotrees,
as seen in Tables III, V, VII, and IX.

This proves the idea that a degree-2 zerotree coder is
superior to a degree-1 zerotree coder, in representing a degree-
2 zerotree for a 4-ary source tree (i.e. quadtree), since a degree-
2 zerotree coder can directly encode a degree-2 zerotree with
just one symbol, whereas a degree-1 zerotree coder would need
three more symbols. From this example, where higher degree
zerotree sources are found frequently, it is more effective
in coding ef�ciency to use a higher degree zerotree coder.
Meanwhile, the occurrences of degree-3 zerotrees are much
less than those of degree-0, or -1 or -2 zerotrees, as shown in
in Tables IV, VI, VIII, and X.

B. Location of Zerotree Root vs. Signi�cance of Bitplane
The next observation is that the number of zerotree roots

in a given subband depends on the signi�cance level of the
bitplane. The resolution level of a zerotree root is equivalent

TABLE III
DISTRIBUTION OF DEGREE-0, -1, AND -2 ZEROTREES IN LENA CODED BY

SPIHT, DECOMPOSITION LEVEL = 8

Height of degree-0 or -1 zerotree
(or the resolution level of zerotree root)

bitplane 8 7 6 5 4 3 2 1
12 3 2 0 0 0 0 0 0
11 0 3 8 0 0 0 0 0
10 0 0 20 19 0 0 0 0
9 0 0 14 44 35 0 0 0
8 0 0 7 49 152 62 3 0
7 0 0 4 31 218 374 98 0
6 0 0 2 19 175 599 689 12
5 0 0 0 9 141 609 1380 678
4 0 0 0 2 89 605 1800 2442
3 0 0 0 0 16 482 2465 6885
2 0 0 0 0 0 10 78 299
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Height of degree-2 zerotree
(or the resolution level of zerotree root)

bitplane 8 7 6 5 4 3 2 1
12 0 1 0 0 0 0 0 0
11 1 3 4 0 0 0 0 0
10 0 3 13 5 0 0 0 0
9 0 0 19 34 13 0 0 0
8 0 0 7 43 86 25 1 0
7 0 0 2 18 146 232 38 0
6 0 0 2 15 119 403 451 0
5 0 0 3 7 103 480 1180 0
4 0 0 0 4 82 500 1879 0
3 0 0 0 0 36 377 2229 0
2 0 0 0 0 0 4 40 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

to the height of the zerotree as well. Generally, it is seen that
the tall zerotrees are very few, while there are many short
zerotrees. Tall and short zerotrees are depicted in Fig. 1. The
zerotree roots found at higher bitplanes (such as bitplanes 12,
11, 10) are located in the lowest frequency subbands (such
as resolution level 8,7,6), i.e. tall zerotrees. Meanwhile, the
zerotree roots found at lower bitplanes (such as bitplanes
3,4,5) are located in the highest frequency subbands (such as
resolution level 1,2,3), i.e. short zerotrees.

In summary, we make two observations. First, at higher
bitplanes, all zerotrees found are tall and short zerotrees are
never found. Second, at lower bitplanes, all zerotrees found
are short; in other words, no zerotree root is found at lower
resolution levels, such as 8, 7, and 6.

Because of the energy gain factor of two (
√

2 by horizontal
�ltering × √

2 by vertical �ltering ) obtained after each level
of wavelet decomposition (by 9/7 biorthogonal �lter in these
experiments), the higher bitplanes actually do not have any
values de�ned for higher resolution subbands areas simply
because those areas of the bitplanes are outside of the dynamic
range of those subbands. This explains why there are no short
zerotrees at higher bitplanes, such as bitplanes 12 down to 9 in
Table III. There are no tall zerotrees at lower bitplanes, because
the zerotrees located at lower resolution subbands (such as
8, 7, and 6) at former (higher) bitplane coding passes have
been already partitioned into shorter zerotrees and �nally into
separate coef�cients. In this case, no zerotree candidates are



6

TABLE IV
DISTRIBUTION OF DEGREE-3 ZEROTREES IN LENA CODED BY SPIHT,

DECOMPOSITION LEVEL = 8

Height of degree-3 zerotree
(or the resolution level of zerotree root)

bitplane 8 7 6 5 4 3 2 1
12 1 0 0 0 0 0 0 0
11 0 3 0 0 0 0 0 0
10 0 7 5 0 0 0 0 0
9 0 7 17 4 0 0 0 0
8 0 4 32 38 2 0 0 0
7 0 1 20 143 39 0 0 0
6 0 2 15 142 294 7 0 0
5 0 0 14 98 514 22 0 0
4 0 0 9 99 607 37 0 0
3 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

left for further zerotree testing. Instead, the coef�cients are
being kept in the list of signi�cant coef�cients and only the
re�nement bits corresponding to current threshold are coded.
Note that when a coef�cient is tested as signi�cant for a given
threshold, it is moved to the list of signi�cant coef�cients,
which is called SL (Subordinate List) in EZW and LSP (List
of Signi�cant Pixels) in SPIHT.

V. CONCLUSION

We have tried to establish a model of zerotrees and quantify
the coding performance of zerotrees of wavelet coef�cients. A
degree-k zerotree means a tree with all zero node values except
in the top k levels. And the degree-k zerotree coder means
the source tree coder which can encode degree-i zerotrees,
0 ≤ i ≤ k. Thus, the higher degree zerotree coder will have
higher coding performance.

Based on this model, we classify the popular image coders
EZW and SPIHT as examples, and this leads to an answer for
the question as to why SPIHT is better than EZW. It is because
EZW is a degree-0 zerotree coder and SPIHT is a degree-2
zerotree coder. SPIHT can encode a degree-1 or -2 zerotree
with one symbol for each, while EZW will need three more
symbols for each than does SPIHT. The SPIHT symbols are
binary, while the EZW ones are quaternary. EZW compensates
somewhat for this redundancy through adaptive arithmetic
coding of the signi�cance symbols. Even without subsequent
entropy coding, SPIHT still beats EZW in overall ef�ciency,
owing to its capability to code higher degree zerotrees. We also
remark that, although experiments were conducted only on
two-dimensional wavelet transforms of images, the theorems
and coding formulas are valid for general t-ary branching
zerotrees. So we can apply this work to one-dimensional
wavelet transforms of biomedical signals (t = 2) and three-
dimensional wavelet transforms of volume images (t = 8).

REFERENCES

[1] J. M. Shapiro, �Embedded image coding using zerotrees of wavelet
coef�cients,� IEEE Transactions on Signal Processing, vol. 41, pp. 3445�
3462, 1993.

[2] A. Said and W. A. Pearlman, �A new fast and ef�cient image codec based
on set partitioning in hierarchical trees,� IEEE Transactions on Circuits
and Systems for Video Technology, vol. 6, pp. 243�250, June 1996.

TABLE V
DISTRIBUTION OF DEGREE-0, -1, AND -2 ZEROTREES IN IN GOLDHILL

CODED BY SPIHT,
DECOMPOSITION LEVEL = 8

Height of degree-0 or -1 zerotree
(or the resolution level of zerotree root)

bitplane 8 7 6 5 4 3 2 1
13 4 0 0 0 0 0 0 0
12 1 0 0 0 0 0 0 0
11 0 5 0 0 0 0 0 0
10 0 11 11 0 0 0 0 0
9 0 2 40 28 0 0 0 0
8 0 2 44 142 24 0 0 0
7 0 0 16 165 345 67 0 0
6 0 0 13 109 712 843 130 0
5 0 0 3 54 592 2518 1971 21
4 0 0 0 38 332 2966 4559 67
3 0 0 0 12 31 634 3540 97
2 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Height of degree-2 zerotree
(or the resolution level of zerotree root)

bitplane 8 7 6 5 4 3 2 1
13 0 0 0 0 0 0 0 0
12 3 0 0 0 0 0 0 0
11 1 4 0 0 0 0 0 0
10 0 6 8 0 0 0 0 0
9 0 7 26 11 0 0 0 0
8 0 1 32 82 12 0 0 0
7 0 1 21 154 166 25 0 0
6 0 0 2 131 448 483 9 0
5 0 0 0 25 587 1866 77 0
4 0 0 1 10 412 2765 129 0
3 0 0 0 3 29 806 35 0
2 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

[3] Y. Cho and W. A. Pearlman, �Quantifying the coding power of zerotrees
of wavelet coef�cients: a degree-k zerotree model,� in 2005 IEEE
International Conference on Image Processing (ICIP '05), Sep 2005.

[4] V. N. Ramaswamy, N. Ranganathan, and K. R. Namuduri, �Peformance
analysis of wavelets in embedded zerotree-based lossless image coding
schemes,� IEEE Transactions on Signal Processing, vol. 47, no. 3, pp.
884�889, March 1999.



7

TABLE VI
DISTRIBUTION OF DEGREE-3 ZEROTREES IN GOLDHILL CODED BY

SPIHT, DECOMPOSITION LEVEL = 8

Height of degree-3 zerotree
(or the resolution level of zerotree root)

bitplane 8 7 6 5 4 3 2 1
13 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0
11 3 0 0 0 0 0 0 0
10 1 5 1 0 0 0 0 0
9 0 9 12 1 0 0 0 0
8 0 3 38 20 0 0 0 0
7 0 0 35 111 25 0 0 0
6 0 0 10 170 305 9 0 0
5 0 0 3 93 786 74 0 0
4 0 0 0 31 587 70 0 0
3 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

TABLE VII
DISTRIBUTION OF DEGREE-0, -1, AND -2 ZEROTREES IN LENA CODED BY

SPIHT, DECOMPOSITION LEVEL = 5

Height of degree-0 or -1 zerotree
(or the resolution level of zerotree root)

bitplane 5 4 3 2 1
11 256 0 0 0 0
10 247 0 0 0 0
9 174 23 0 0 0
8 99 195 29 0 0
7 50 381 304 18 0
6 18 415 953 133 0
5 6 378 1440 985 12
4 2 290 1670 2848 131
3 0 187 1942 6951 765
2 0 0 49 281 14
1 0 0 0 0 0
0 0 0 0 0 0

Height of degree-2 zerotree
(or the resolution level of zerotree root)

bitplane 5 4 3 2 1
11 0 0 0 0 0
10 9 0 0 0 0
9 70 13 0 0 0
8 68 101 11 0 0
7 27 255 155 6 0
6 24 262 648 63 0
5 17 274 1276 213 0
4 5 241 1781 439 0
3 1 167 1745 730 0
2 0 0 22 15 0
1 0 0 0 0 0
0 0 0 0 0 0

TABLE VIII
DISTRIBUTION OF DEGREE-3 ZEROTREES IN LENA CODED BY SPIHT,

DECOMPOSITION LEVEL = 5

Height of degree-3 zerotree
(or the resolution level of zerotree root)

bitplane 5 4 3 2 1
11 0 0 0 0 0
10 0 0 0 0 0
9 12 0 0 0 0
8 64 22 0 0 0
7 59 148 13 0 0
6 38 301 129 0 0
5 24 340 290 0 0
4 17 392 347 0 0
3 0 143 251 0 0
2 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

TABLE IX
DISTRIBUTION OF DEGREE-0, -1, AND -2 ZEROTREES IN IN GOLDHILL

CODED BY SPIHT,
DECOMPOSITION LEVEL = 5

Height of degree-0 or -1 zerotree
(or the resolution level of zerotree root)

bitplane 5 4 3 2 1
11 256 0 0 0 0
10 254 0 0 0 0
9 218 14 0 0 0
8 125 156 3 0 0
7 40 436 209 9 0
6 11 471 1068 300 0
5 5 262 2244 2584 57
4 3 148 2341 5184 266
3 0 28 410 3320 423
2 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

Height of zerotree
(i.e. resolution level of zerotree root)

bitplane 5 4 3 2 1
11 0 0 0 0 0
10 2 0 0 0 0
9 31 7 0 0 0
8 54 86 1 0 0
7 30 250 80 3 0
6 7 388 584 96 0
5 4 279 1749 527 0
4 6 167 2244 905 0
3 0 20 524 302 0
2 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0



8

TABLE X
DISTRIBUTION OF DEGREE-3 ZEROTREES IN GOLDHILL CODED BY

SPIHT, DECOMPOSITION LEVEL = 5

Height of zerotree
(i.e. resolution level of zerotree root)

bitplane 5 4 3 2 1
11 0 0 0 0 0
10 0 0 0 0 0
9 7 0 0 0 0
8 70 5 0 0 0
7 73 111 11 0 0
6 32 336 140 0 0
5 3 504 445 0 0
4 0 400 527 0 0
3 0 0 0 0 0
2 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0


