
Introduction

The goal of 3D reconstruction is to recover the 3D properties of

a geometric entity from its 2D images. Depending on the types of

geometric entities, the 3D properties may include 3D coordinates

of a 3D point (full reconstruction) or it’s 3D depth (z coordinate)

or its 3D shape (3D orientation) (partial reconstruction) of an

object.

For visualization, the recovered 3D data is often represented as an

image. Such an image is often referred to as range image, depth

image/map, surface profiles, or 2.5-D images.
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Techniques

• Passive Approach

Shape from monocular images (single image).

Shape from multiple images (two images and a sequence

of images).

• Active approach

Active stereo with projector (e.g. MS Kinect sensor or

Intel RealSense )

Shape from range sensors (e.g. RADAR or Sonar or

LiDAR) that emits either radio, sound or light wave and

measures their time of flight.
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3D from Optical Images

These techniques recover 3D information from optical images.

They can be divided into two groups

• 3D reconstruction from single images

Collectively referred to as Shape from X techniques, these

techniques infer 3D data from a single image in conjunction

with other visual cues or geometric properties.

• Stereo

Recover 3D information from two images from different view

points (passive stereo) or one image and a projector (active

stereo)

• Structure from motion

Recover 3D structure from a sequence of images or video.
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Stereo Vision

Stereo vision is a technique for the reconstruction of the

three-dimensional description of a scene from images observed

from multiple viewpoints.
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Stereo Vision (cont’d)

Passive stereo (for a review see Poggio [14])

Active stereo
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Passive Stereo

• Token detection.

• Token matching (e.g. pointwise matching).

• 3D reconstruction using the matched tokens.
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Different tokens

• Points

• Lines

• Conic curves
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Passive Stereo Using 2D/3D Points

• Theoretical basis : triangulation
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3D Triangulation Example
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Passive Stereo

Human eyes fully exploit the idea of passive stereo. Two eyes act

like two cameras. They produce two images of the 3D world.

Given the two images, our brain performs the triangulation to

produce the 3D information.
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Passive Stereo (cont’d)

3D movies produce two images of the same world captured by two

different cameras are projected onto the screen at the same time.

To enable the left eye only sees the left image and right eye only

sees the right image, two images are often made under different

spectrum such as old technique of using a red and blue filter or

recent technique of through polarization. Current stereoscopic

technology separates the stereo frames by polarization. The two

images are then merged by the brain to produce the synthetic 3D

perception.
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Theoretical basis : triangulation under rectified images
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Rectified camera geometry: two cameras optical axes parallel to

each other, same focus length (image planes co-planar), and
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corresponding points on the same image row.

Since triangle XU1U2 is similar to triangle XO1O2, we have

Z − f

Z
=

b− u1 + u2

b

Hence,

Z =
fb

u1 − u2

where b is called the base distance, u1 − u2 the disparity. It is

clear disparity is inversely proportional to depth. As depth

approaches infinity, disparity approaches zero. Disparity is often

used as a surrogate measure of depth.
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Major Issues

• Establish correspondences

• Reconstruct 3D points from matched 2D points via

triangulation.
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Establishing Correspondences

Establishing correspondences amounts to matching points from

one image to points in another image such that each matched pair

is generated by the same 3D point.
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Establishing Correspondences: an example

see Figure 7.1 of Trucco’s book
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Establishing Correspondences (cont’d)

Establishing correspondences is difficult since

• the information associated with each image point is often not

sufficient to uniquely establish the pointwise correspondence.

left
right

left image

right image

• Image points in one image may not have corresponding points
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in another image due to 1) two cameras have different views;

2) occlusion; 3) missing points due to feature detection

techniques.
Region occluded

in right image

Region occluded

in left image

Left
Right

Left image
Right image
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Reducing baseline distance b (narrow-angle-stereo) can alleviate

the correspondence and occlusion problem, but it may lead to less

accurate depth estimate.

Let d = u1 − u2 be the disparity, then we have

Z =
bf

d

Linearizing both sides of the above equation yields

∆Z =
f∆b

d
−

fb∆d

d2

It is clear that as b decreases, ∆Z increases.
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Epipolar Constraint

Pointwise matching can be established more efficiently using a

simple yet powerful constraint: Epipolar constraint

Left image

Left Camera

Epipolar line

Right image

Right camera

U1
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Epipolar Constraint (cont’d)

Epipolar constraint says that given U1 from the left image, its

corresponding point on the right image must lie on the epipolar

line. Epipolar line is the projection on the right image by the 3D

line going through U1 and the left camera center. This effectively

reduces the point search from 2D to 1D, substantially reducing

the search time.
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Epipolar Geometry

Right image

Left

camera
Right

camera

Left image

Epipolar lines

Baseline

Epipolar plane

Epipoles

All epipolar lines go through the epipole. The epipole on the left

(right) image is the image of the optical center of the right (left)

camera. In rectified stereo images, epipolar lines are parallel and

conjugate epipolar lines are collinear.
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Computing Epipolar Geometry

Let P be a 3D point and Pl and Pr be the coordinates of P in the

left and right camera coordinate system respectively.
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Then we have

Pl = RPr + T

or

Pr = RT (Pl − T )

where R and T specify the relative orientation of the right camera

frame with respect to the left one. The coplanar constraint on Pl,

Pr, and T leads to

(T × Pl)
T (Pl − T ) = 0

Since Pl − T = RPr, we have

(T × Pl)
TRPr = 0

Since (T × Pl)=S Pl, where S a skew matrix
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S =







0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0







As a result, we have

P T
l EPr = 0

where E = STR is called the essential matrix. Note by the

construct of S, E has a rank of 2 and two of its singular values

equal and the third is 0.
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Essential Matrix

The essential matrix E establishes a link between the epipolar

constraint and the relative orientation (rotation and translation)

of the two coordinate systems. It has only 5 degrees of freedom.
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Fundamental Matrix

Pl and Pr represent the 3D coordinates of P in the left and right

camera coordinate systems respectively. Let Ul and Ur be the

homogeneous pixel coordinates of point P in the left and right

images. We know

λlUl = WlPl

λrUr = WrPr

where Wl and Wr are two 3× 3 matrices involving the intrinsic

left and right camera parameters.

Substituting the above equations into the essential matrix

equation yields
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UT
l FUr = 0

where F = W−T
l EW−1

r is called the fundamental matrix.

F algebraically encodes the epipolar constraint.

What is the rank of F ?

The rank of F remains 2 due to E.

See table 8.1 (p226) of Hartley’s book for a summary of epipolar

geometry and the fundamental matrix.
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Fundamental Matrix (cont’d)

Unlike the essential matrix E which only encodes the information

about the relative orientation between the two cameras, the

fundamental matrix F encodes both the relative orientation (

extrinsic parameters) and the intrinsic parameters. It only has 7

degrees of freedom.
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Epipolar lines determination

Given a point Ul on the left image, the equation of the epipolar

line on the right image is: FTUl. Note a line equation on the

right plane can be written as αcr + βrr + γ = 0, where (α, β, γ)

are line coefficients and they are equal to FTUl

Given a point Ur on the right image, the equation of the epipolar

line on the left image is: FUr.
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Determination of Epipoles

Let the image coordinates of the left and right epipoles be el and

er respectively. Since every epipolar line passes through the

epipoles, for any image point on the left Ul, we have

UT
l Fer = 0

Since Ul in general is non-zero, so we have

Fer = 0

which means that the solution to er is the eigen vector of F that

corresponds to zero eign value (the null eigen vector).

Similarly, we will find that el is the null vector of FT . Refer to

page 157 of Trucco’s book and page 219 of Forsyth’s book on the

step by step algorithm to compute epipoles.

Hence, F <===> Epipoles , in other words, given F, we can

31



compute epioles or given epipoles we can obtain F.
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Epipolar Geometry for Lines and Circles

As shown in the figure above, the left line equation is

αc+ βr + γ = 0 and the corresponding right line equation is

α′c′ + β′r′ + γ′ = 0. Given the line on the left image, we can
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obtain the equation for the backprojection plane that contains the

3D line and the left camera center as







xl

yl

zl







T

W T
l







α

β

γ







= 0 (1)

Similarly, we can obtain the right backprojection plane equation

as







xr

yr

zr







T

W T
r







α′

β′

γ′







= 0 (2)
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where the left 3D coordiantes







xl

yl

zl







and the right 3D

coordinates







xr

yr

zr







are related by R and T as







xl

yl

zl







= R







xr

yr

zr







+ T (3)

Substituting Eq. 3 into Eq. 1 yields
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(R







xr

yr

zr







+ T )TW T
l







α

β

γ







= 0 (4)

Or







xr

yr

zr







T

RTW T
l







α

β

γ







= −T TW T
l







α

β

γ







(5)
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Combining Eq. 2 with Eq. 5 by solving







xr

yr

zr







produces







xr

yr

zr







= A−1b (6)
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where

A =






















α′

β′

γ′







T

Wr







α

β

γ







T

RWl
















b =










0

−T TW T
l







α

β

γ
















Substituting Eq. 6 into Eq. 2 yields
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(A−1b)TW T
r







α′

β′

γ′







= 0 (7)

Eq. 7 relates image line parameters with the stereo parameters

Wl, Wr, R, and T .

Alternatively, let (c1, r1, 1)
T and (c2, r2, 1)

T be two points on the

line segment on the left image, and (c′1, r
′
1, 1)

T and (c′2, r
′
2, 1)

T be

the corresponding points on the corresponding line segment on

the right image.
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Then from fundamental equation we have,







c1

r1

1







T

F







c′1

r′1

1







= 0







c2

r2

1







T

F







c′2

r′2

1







= 0 (8)

Hence,







c1 − c2

r1 − r2

0







T

F







c′1 − c′2

r′1 − r′2

0







= 0 (9)
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


c1 − c2

r1 − r2





T

F2




c′1 − c′2

r′1 − r′2



 = 0 (10)

where F2 is the first 2× 2 sub-matrix of F . From the line

equations, we have




c1 − c2

r1 − r2





T 


α

β



 = 0




c′1 − c′2

r′1 − r′2





T 


α′

β′



 = 0 (11)

Substituting Eq. 11 into 10 yields the epipolar geometry for lines
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as



β

−α





T

F2




β′

−α′



 = 0 (12)

Let n and n′ be respectively the normal to the back projection

plane on the left and right image. We have

n =

W T
l







α

β

γ







||W T







α

β

γ







||2
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n′ =

W T
r







α′

β′

γ′







||W T
r







α′

β′

γ′







||2

With respect to the left camera frame, n′ becomes Rn′. The

orientation of the 3D line N w.r.t the left camera frame that

produces the two image lines can be computed as

N = n×Rn′

Alternatively, if we use point plus orientation representation for a

line, any point on the left image can be expressed as
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


c

r



=




c0

r0



 + λ




Nc

Nr





It can be re-written as







c

r

1






=







c0

r0

1







+ λ







Nc

Nr

0







Similarly for a point on the right image, we have






c′

r′

1






=







c′0

r′0

1







+ λ′







N ′
c

N ′
r

0







Plugging the two equations above into the fundamental equation

yields
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[







c0

r0

1







+ λ







Nc

Nr

0






]T F [







c′0

r′0

1







+ λ′







N ′
c

N ′
r

0






]=0. After

simplification, we have

λ′







c0

r0

1







F







N ′
c

N ′
r

0







+ λ







Nc

Nr

0







F







c′

r′

1






=0

Geometrically, we can also think two epipolar planes, one

constructed by P0 and the left and right camera center and

another by P and the left and right camera center, where P0 is a

given point on the 3D line and P is any point on the line.
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Homography

Fundamental equations is true for any 3D point. But its mapping

is one to many and cannot uniquely determine the corresponding

points. To have a one-to-one mapping, assumption must be made

about the 3D point. If we assume it is located on a plane (note

other geometric constraints can also apply) or only pure rotation

involves between the left and right images, the correspondence

becomes unique. Such a unique correspondence relationship can

be characterized by homography.

Homography is to establish relationship between two

corresponding points in two different images, assuming the

corresponding image points are generated by 3D planar points.

With this, a unique relationship can established between the two

matched points.
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λl







cl

rl

1







= Wl

[

Rl Tl

]










x

y

z

1










= Wl

[

Rl Tl

]










x

y

0

1










= Wl

[

Rl2 Tl

]







x

y

1







(13)

= W 3×3
l M3×3

l2







x

y

1







(14)48



where Rl2 is the first two columns of Rl, Ml2 =
[

Rl2 Tl

]

.

Similarly, for the right camera, we have,

λr







cr

rr

1







= WrMr2







x

y

1







(15)
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Combining Eqs (1) and (2) by eliminating
[

x y 1
]T

yields,

λlM
−1
l2 W−1

l







cl

rl

1







= λrM
−1
r2 W−1

r







cr

rr

1







λ







cl

rl

1







= WlMl2M
−1
r2 W−1

r







cr

rr

1







(16)

where λ = λl

λr
.
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Let H = WlMl2M
−1
r2 W−1

r , we have,

λ







cl

rl

1







= H







cr

rr

1







This is the Homography equation, and H is the homography

matrix. H is a function of the camera parameters, independent of

points. But note H varies with the plane on which 3D points are

located as the plane equation is determined by Rl, Tl, Rr, and Tr.
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Homography-pure rotation

When there is only a pure rotation between the left and right

camera frame, we have Pl = RPr.

λ







cl

rl

1







= WLRW−1
r







cr

rr

1







= H







cr

rr

1







(17)
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Homography Matrix

When the 3D scene are planar or when only rotation is involved

between the two cameras, the two corresponding points are

uniquely related via the homography. Homography matrix

describes completely the relationship between corresponding

points. Let H be the homography matrix,

λ







cl

rl

1







= H







cr

cr

1







with F, with one to many mapping (i.e. one point maps to many

points on the epipolar line). With H, we have a one-to-one

mapping.

Note H and F can co-exist for planar 3D point. But pure
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rotation, F does not exist, i.e., for stereo, two images must be

taken from two different view points.
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Stereo Calibration

Stereo calibration involves determining the parameters of a stereo

system using corresponding 2D points from the left and right

images. The parameters of a stereo system include the intrinsic

parameters (focal length and principle points) Wl and Wr, and

the extrinsic parameters R and T including the rigid

transformation describing the relative position and orientation of

two cameras.
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Stereo Calibration

Stereo calibration can be done either through separate calibration

of each camera or joint calibration of two cameras via

fundamental matrix.
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Stereo Calibration by Each Camera

We can perform calibration on the left and right camera

separately, producing Wl, Rl, and Tl for the left camera and Wr,

Rr, and Tr for the right camera respectively.

We can then have (try to prove this yourself)

R = RlR
T
r

T = Tl −RTr

57



Stereo Calibration using Fundamental Matrix

Like conventional camera calibration, it involves two steps:

recover F and extract camera parameters from F .

Given n pairs of corresponding points, a system of linear

equations can be established involving the elements of F . F can

then be solved as a linear least-squares problem by minimizing

n∑

i=1







cli

rli

1







T

F







cri

rri

1







subject to rank (F)=2

What is the minimum value of n ?
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Solution to F

Given each pair of matched 2D points Ul = (cl, rl, 1)
T and

Ur = (cr, rr, 1)
T and the fundamental equation, UT

l FUr = 0,

offers a linear equation for the 9 unknowns in F .

Let F1, F2, and F3 be the three columns of F matrix, the

fundamental equation UT
l FUr = 0 can be written re-written as

UT
l F1cr + UT

l F2rr + UT
l F3 = 0

which can be written as

(UT
l cr UT

l rr UT
l F3)V = 0

where V 9×1 = (F1 F2 F3)

Each pair of left and right point produces one linear equation for

F . Given N pairs of points (Uli , Uri), i=1,2,...,N, we can solve V
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by minimizing ||AV ||22, which leads to

AV = 0

where A is defined as follows

AN×9 =








UT
l1
cr1 UT

l1
rr1 UT

l1

...

UT
lN
crN UT

lN
rrN UT

lN








So, given a minimum of 8 pairs of points (cannot be co-planar), V

can be solved, depending on the rank of A.

If rank(A)=8, the solution to V is the only null vector of A, and

the solution is up to a scale factor. See Algorithm

EIGHT POINT on page 156 of Trucco’s book for details.

If rank(A) < 8, then there many solutions to V , equal to linear
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combinations of all null vectors of A.

Since F is singular, SVD can be used to find another matrix F ′

that is closest to the computed F but still singular.

F = UDST

setting the smallest value in D to zero yields D′

F ′ = UD′ST

Alternative, we can impose rank(F)=2 during estimation of F,

i.e., find V by minimizing

||AV ||22

subject to rank(F)=2, which can be implemented as

F3 = k1F1 + k2F2, where Fi represents the ith column of F. The

constraint provides 3 additional linear equations for F but it also
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introduces two unknown parameters k1 and k2. This will lead to

a total of 11 unknowns with N + 3 equations. A minimum of 7

points is enough to solve for F up to a scale factor. But the

solution will no longer be linear as F3 = k1F1 + k2F2 involves

multiplications of Fi with k1 and k2.
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Nonlinear solution to F

The linear solution is often not accurate and it can be improved

with a non-linear optimization method proposed by Luong ea al

(1993). It vastly improves the results. Their non-linear method

minimizes

N∑

i=1

[(UT
li
FUri)

2 + (UT
ri
FTUli)

2]

subject to rank(F)=2

Without imposing the rank constraint, the above equation can be

implemented in a linear manner with two A matrices (one for first

term and one for second term) on top of each other. However,

adding the rank constraint via F3 = k1F1 + k2F2, the solution can

no longer be linear. First order and second order non-linear
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methods may be used.

To further improve the results, Hartley introduced a

normalization procedure (page 156 of Trucco’s book) to avoid

numerical instability due to ill-conditioned matrix.

Torr and Fitzgibbon (PAMI,BMVC, 2003) show that the 8-point

may not be the best method since its results depend on the

coordinate system used. They proposed an invariant approach to

estimate the fundamental matrix.
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Degeneracies

The solution to F may not be unique (not even up to a scale

factor) when degeneracies occur. Degeneracies occur if the rank of

matrix A is less than 8. Degeneracy may occur because of a

special configuration of the 3D control points such as coplanar

points (or points on a special quadric surface) or because of

special configuration between two cameras such as pure rotation.

The former may be referred to as critical surface while the latter

may be referred to as critical motion. See section 10.9 of

Hartley’s book for more in-depth discussion on degeneracies.
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Stereo Calibration

Given F , it is still difficult to simultaneously recover Wl, Wr, R,

and T. If the two cameras are calibrated, we can recover E from F

using E = W T
l FWr. Given E, we can then recover R and T using

Horn’s method (to be discussed later)
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Rectified Stereo Geometry

For computational convenience, the two image planes are often

chosen to be coplanar and parallel to their base line (this means

equality in focus length). Such an arrangement can be

accomplished either physically or through analytic

transformation. This arrangement makes the search for

correspondence points much easier. The corresponding point for

any point on the left image may be found on the same row in the

right image.
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Rectified Geometry

f
f

b

image

plane 1
image

plane 2

u
1 u

2Z

2

1

1

2
Z Z

X X
1

X

optical axis 1 optical axis 2

U1 U2

2OO
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Rectification

Given a calibrated stereo, we can compute the rotation matrices

needed to rotate the cameras such that the conjugate epipolar

lines are collinear, the rectified left image and right images are

co-planar and they are parallel to the base line (note the scale

factor d can vary). The new image coordinates are obtained by

projecting the original coordinates on the new image plane.

Left

camera
Right

camera

Rectified image plane

d
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Also see figure 7.8 of Trucco’s book.
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Rectification Algorithm
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Rectification Algorithm

Assuming the relative orientation between the two cameras has

been obtained via a stereo calibration procedure, i.e., we have R

and T , which specify the relative orientation and translation of

the right camera frame with respect to that of the left camera

frame.

• Identify a rotation matrix Rl such that when it is applied to

the left camera, the image plane of the left camera is parallel

to the base line. Note Rl specifies the relative ordination of

camera frame before rotation to the camera frame after

rotation. For example, let T be the baseline vector relative

the original left camera frame and let (1 0 0)T be the x-axis

after rotation, we then have Rl
T

||T || = (1 0 0)T . This means

the first row of Rl is
T

||T || . Let rl1 , rl2 ,and rl3 be the three
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rows of Rl, and

T

||T ||
=







tx

ty

tz







√

t2x + t2y + t2z

=







t′x

t′y

t′z







(18)

Then

rl1 =







t′x

t′y

t′z







T

(19)
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since rows of Rl are orthogonal to each other, we can set

rl2 =
1

√

t′2x + t′2y







t′y

−t′x

0







T

(20)

Note this step shows that the selection of the rl2 is arbitrary

as long as it is orthogonal to rl1 . This freedom means, with a

different rl2 , we may end up with a different rotated left

camera frame and hence a different rectified left image. It is

only natural to ask if the different rectified images are the

same or not. If not, is it possible to select a rl2 that can lead

to the best rectified image in terms of distortion, coverage,

etc.??
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Finally,

rl3 = rl1 × rl2 (21)

• Create the rectified left image

Let Ul = (cl, rl, 1)
T and U ′

l = (c′l, r
′
l, 1)

T be the corresponding

image point on the left camera before and after rectification.

They can be related

λ







c′l

r′l

1







= W ′
lRlW

−1
l







cl

rl

1







(22)

where λ is a scale factor and W ′
l is the intrinsic camera

matrix for the rotated left camera. W ′
l is usually equal to Wl

75



but it can be different and can be changed if needed. The

above equation is obtained from equations

λ(cl rl 1)
T = W (xc yc zc)

T , λ(c′l r
′
l 1)

T = W ′(x′
c y′c z′c)

T , and

and (x′
c y′c z′c)

T = RL(xc yc zc)
T . Because of pure rotation,

an image point on the left image before rotation can be

uniquely mapped to the corresponding left image after

rotation through the homography matrix W ′
lRlW

−1
l . As a

result, we can solve for (c′l, r
′
l) uniquely.

• Find the rotation matrix for the right camera

For the right camera, we cannot follow the same procedure as

we did for the left camera to produce Rr as the rotated right

camera image plane must be co-planar with the rotated left

image plane. This means after rotation, the left and right

camera frames must have the same orientation, plus a

translation, i.e., (x′
l, y

′
l, z

′
l)

T = (x′
r, y

′
r, z

′
r)

T + T ⇒
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Rl(xl, yl, zl)
T = Rr(xr, yr, zr)

T + T . Combining it with the

fact that (xl, yl, zl)
T = R(xr, yr, zr)

T + T , we have Rr = RlR

• Create the rectified image on the right camera

Apply W ′
rRrW

−1
r to each point on the right image to

compute the new image coordinates for the rectified right

image using equation 22.

• Adjust the scale d (fsx and fsy) in W ′
l and W ′

r appropriately

so that the rectified image fits to the original image size. The

same scale factor should be applied to the row and column for

both left and right images.

Please note W ′
l and W ′

r are the intrinsic matrix for the left and

right camera and they are assumed to the same. The rectification

procedure needs be modified if W ′
l and W ′

r are different. One way

is to compute W ′ = 0.5(W ′
l +W ′

r). Then, replace both W ′
l and
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W ′
r by W ′. Note only W ′

l and W ′
r are changed to W ′. Wl and Wr

remain unchanged.
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Rectification

Questions: 1) how to find the best rl2, and (2) how to adjust the

scale factor d = fsx
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Backward Mapping

While creating the rectified image from the original image,

instead of mapping from (c, r) to (c′, r′), we can map from (c′, r′)

to (c, r) to avoid holes in the rectified image.

This can be done as follows

For each pixel (c′, r′) in the rectified image, we can use equation

22 to identify an image point (c, r) in the original image and

transfer the intensity of (c, r) to that of (c′, r′). If (c, r) is located

between pixels, we can use the intensities of its four neighbors to

infer its intensity through a linear interpolation.

Additional information on backward mapping can be found in

page 161 of Trucco’s book
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Backward Mapping
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Examples of Rectification

82



Techniques for establishing correspondence

• Correlation methods (dense matching)

• Feature-based sparse matching

• Matching constraints

• Hypothesis generation and verification

For all above methods, we assume we are dealing with rectified

images and that match takes place along the same row with a

disparity (δd) range. The disparity range can be determined by

the max and min z distance to the camera, using the fact

δd =
fb

z

Hence, the disparity range for a point (c, r) is
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[c± δdmin, c± δdmax], where

δdmin =
fb

zmax

δdmax =
fb

zmin

d mind max d maxd minC
C

search area

left image right image
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Correlation methods

The principle of the correlation-based methods is to find two

corresponding points based on the intensity distributions of their

neighborhoods. The similarity between two neighborhoods is

measured by their cross-correlation.

The underlying assumptions include: 1) corresponding image

regions look similar, 2) pointed and distant or single light source,

3) corresponding points are visible from both viewpoints.
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Correlation methods (cont’d)

Given an image point on the left image, the task is to locate

another point in a specified region on the right image that is

maximally correlated with the one on the left.

Let W1 and W2 be the vectors representing elements in window 1

and window 2, their correlations can be computed using two

matching metrics:

• Sum of Squared Differences (SSD), which computes the

squared difference between the corresponding elements in W1

and W2 and obtain their sum, and use the sum to represent

the correlation. SSD is defined as follows

SSD(c) = (W1 −W2(c))
T (W1 −W2(c)) ↓
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• Normalized cross-correlation C12 =
σ2

12

σ1σ2

↑.

The window size varies, typically 5× 5 or 7× 7.

87



Example of Correlation-based Matching)
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Correlation methods (cot’d)

Issues in using correlation based method

• Different methods may be used to compute the correlations.

Two measures (cross correlation and sum of squared

differences (ssd) ) to compute correlation are introduced in

Trucco’s book.

• The correlation window size is usually chosen differently,

depending on images. Some algorithms determine the window

size automatically and adapt to different parts of the image.

• The search region also varies from algorithms. If the object is

far from the camera, small disparity is expected and we can

then search in a small neighborhood around the point with

the same as the left image point. If we are dealing with a

rectified image, we can only search along the same row on the
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right image. Many techniques assume δdmin = 0 and the

window size is set to [c− δdmax, c+ δdmax]. But in practice,

due to errors with image, it is often necessary to search the

entire row as well as the the neighboring rows.

• To reduce the impact of noise, this technique is often

preceded by a smoothing operation.

• Correlation methods need textured images to work well.

• To account for different illuminations, image intensity is

usually normalized by subtracting the mean (remove the

brightness) and divided by the standard deviation (removes

contrast).

• To impose the local smoothness constraint on the disparity

map, constraints often employed to encourage small disparity

(depth) variation for neighboring pixels. Alternatively, we can
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also perform a post smoothing processing such as median

fitering to smooth the disparity map.

• Global methods are often used to perform matching for all

pixels simultaneously using models such as the Markov

Random Field as a prior to explicitly impose surface the

smoothness constraint by solving an energy minimization

problem. See section 12.5 of [17].

• With the availability of training datasets such as KITTI [4],

deep learning methods such as [10] have achieved better

performance.
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Sparse Matching

Instead of matching every pixel, sparse matching methods restrict

the search for correspondences to a sparse set of geometric

entities. Typical examples of geometric entities include edge

points, corner points, and lines. Each entity is described by some

feature descriptors . For example, for edges, feature descriptors

may include edge direction and strength. For dominant points,

aggregated feature descriptors such as histograms of gradients

(HOGs) are often used.

Using the feature descriptors, points are then matched based on

the closeness between their feature descriptors. The assumption is

that feature descriptor values remain unchanged across images for

the corresponding points.

94



Matching Constraints

• Smooth constraint (surface locally smooth z=f(d))

– 0 order disparity constraint: two neighboring image points

should have close disparity.

– first order disparity constraint (disparity gradient):

disparity gradient is upper-bounded.
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Matching Constraints (cont’d)

• Physical and geometric constraints:

– Physical constraints (monotonic ordering): the 3D point

generated by two corresponding image points should be:

a) located on the surface of the same object; b) visible

from both views; c) not located inside the object; d)

unique (one to one matching); d) spatial ordering is

preserved.
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The spatial ordering constraint fails at the forbidden zone.

where N is located in the forbidden zone of point M.
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Matching Constraints (cont’d)

• Multiple views (> 2)

U1 U2

U3

P

image 1

image 2

image 3

– predict point in third image (0 order constraint).
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– predict tangent in third image (first order constraint)

– predict curvature in third image (second order constraint)

Check the point in the third image to ensure its geometric

properties match the predicted ones.

Like fundamental matrix for two views, trifocal tensor for

three views. It is a 3× 3× 3 tensor that constrain the

geometric relationships among three views;

it contains 3 fundamental equations, one for each pair of views.
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pT1 F12p2 = 0, pT1 F13p3 = 0, pT2 F23p3 = 0. Note they are not

independent. See chapters 14 and 15 of Hartley’s book.
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Matching Constraints (cont’d)

• Locally known surface form (e.g. locally planar or sphere).

Given the plane parameters, we can then uniquely determine

the corresponding points.
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Prediction and verification

• Extract primitive features from the images

• Assign initial correspondences between the points in two

images using the extracted features

• Estimate the 3D pose and model based on the initial point

correspondences

• Backproject the estimated 3D model onto the image and

measure the discrepancies between the projected image and

the original image.

• Iteratively refine the current matches to minimize the

projection errors subject to the local smoothness constraint,

using a relaxation or an optimization technique.
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Reconstruction

• Known camera parameters-full reconstruction

– Linear technique and non-linear techniques

• Unknown camera parameters

– Unknown extrinsic parameters but known intrinsic

parameters-Euclidean reconstruction, i.e.,the

reconstruction is up to an euclidian transformation.

∗ recover R and T and then perform full reconstruction

– both intrinsic and extrinsic parameters are

unknown-projective reconstruction, i.e., the reconstruction

is up to a projective transformation.

∗ Simultaneous estimation of camera parameters and 3D

reconstruction
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Reconstruction: known camera parameters

This means we know R , T , Wl and Wr, where R and T specify

the relative orientation between two cameras. Such reconstruction

is called full reconstruction. Assume the object frame coincide

with the left camera frame and let the two image points be (cl, rl)

and (cr, rr), algebraically, we can solve the 3D coordinates

(xl, yl, zl) relative to the left camera frame as follows:
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λl







cl

rl

1







= Wl







xl

yl

zl







λr







cr

rr

1







= Wr







xr

yr

zr







= Wr(R
T







xl

yl

zl







−RTT )

given a total of 5 unknowns (xl, yl, zl, λl, λr) and 6 linear

equations of the unknown, we can setup a least-squares linear

system to solve for the five unknowns.
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Reconstruction: known camera parameters (cont’d)

Alternatively, we can solve (xl, yl, zl) geometrically. See the figure

below for the geometric approach solution. Due to image noise,

the two rays (representing the two image points) may not

intersect. The goal is to identify the line segment that interests

with and orthogonal to the two rays. The center of the line

segment is the 3D coordinates we need to compute.
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The left line equation: (xl, yl, zl)
T = λlW

−1
l (cl, rl, 1)

T and the

right line equation (xr, yr, zr)
T = λlW

−1
r (cr, rr, 1)

T . Relative to

the left camera frame, the right line equation is changed to

(xl, yl, zl)
T = RλlW

−1
r (cr, rr, 1)

T + T . Their intersection can be
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found by combining the first and third equations by solving

λ = λl = λr.
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Reconstruction: known camera parameters (cont’d)

The linear solutions, while simple, often do not produce accurate

solution. An non-linear solution can be used to improve the linear

estimates. The non-linear solution can be formulated as

minimizing

(Pl(X)−




cl

rl



)T (Pl(X)−




cl

rl



) +

(Pr(X)−




cr

rr



)T (Pr(X)−




cr

rr



)

where Pl(X) and Pr(X) are the projected image points on the

left and the right image for 3D point X, respectively. (cl, rl) and
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(cr, rr) are the corresponding observed image points.
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Reconstruction: unknown extrinsic parameters

Without knowing the relative relations between the two cameras,

the reconstruction is up to Euclidean transformation

(rotation, translation, and reflection), i.e., the reconstruction can

preserve the object shape but not the scale, position and

orientation of the reconstructed. Such reconstruction is called

Metric or Euclidean reconstruction. Euclidean

transformation is a special kind of affine transformation, where

the shape, distances, and angles are invariant before and after

transformation.

Euclidean reconstruction (i.e., recovering only object shape) can

be obtained theoretically by performing a full 3D reconstruction

with an arbitrary R and T or performing a simultaneous

estimation of the extrinsic camera parameters (R and T) and 3D

reconstruction.
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Alternatively, to perform a full reconstruction, we can perform a

stereo calibration to obtain the fundamental matrix F, based on

which we can obtain the essential matrix E. Given E, we can

receiver R and T. Specifically, given 8 or more point

correspondences on the left and right images, we can use the

8-point method to obtain the fundamental matrix F up to a scale

factor. Given F and the intrinsic camera parameters, we can then

obtain the essential matrix E, from which we can then recover R

and T using the two methods below.
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Computing R and T from E: Method 1

Given E, we can solve for (R, T ) up to four solutions using two

methods. Method 1 is based on Horn [9]. See pages 164 and 165

of Trucco’s book or the paper for detail. The four (R, T ) solutions

lead to four reconstructions, only one of them is geometrically

consistent.
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Computing R and T (cont’d)

Following Horn’s method [9], let S by the skew matrix computed

from T . Given E = STR, the four solutions for T are

TT T =
1

2
Trace(EET )I − EET

a where I is the 3× 3 identity matrix. The two solutions for the

orientation can be found using

R =
Cofactor(E)T − SE

T TT
where Cofactor(E) is the co-factor matrix of E, i.e.,

Cofactor(E)ij = (−1)i+jDij . Dij is the determinant of the

submatrix of E, formed by omitting ith row and jth column.
aNote EET = STRRTS = STS = I(t2x + t2y + t2z)− TTT
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Computing R and T from E: Method 2

As T × S = 0, we have T · E = 0, which leads to ETT = 0

Hence, T is solved up to a scale factor as the null vector of ET ,

i.e., the last column vector of V , which results from SVD of ET ,

i.e., ET = UDV T . We can plug the solution to EET = STS to

solve the scale factor as s = trace(EET )
2trace(TTT )

.

Similarly, R can be solved directly from E, i.e., R = U ′W−1V ′T ,

where U ′ and V ′ correspond to the SVD matrices of E, and

W =







0 −1 0

1 0 0

0 0 1







Refer to https://en.wikipedia.org/wiki/Essential matrix for more

details.
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Reconstruction: unknown camera parameters

Here we are interested in reconstruction with only matched image

points and in the absence of any information on both the intrinsic

and extrinsic parameters. The reconstruction is called projective

reconstruction, and it is unique up to an unknown projective

transformation matrix H, where H is a function of interior and

exterior parameters of the stereo system. Such a reconstruction

neither preserves the object shape nor its position and orientation.

Projective reconstruction can be obtained by performing

simultaneous estimation of the camera parameters and the 3D

reconstruction. Hartley (chapter 9.2, p248) a stated the projective

reconstruction upgrades to affine reconstruction (up to an affine

transformation) if two cameras relate via pure translation.
aMultiple View Geometry in computer vision, Richard Hartley and Andrew

Zisserman
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Alternatively, if we are given a minimum of three images from the

same camera, then we can use self-calibration techniques to

recover the intrinsic camera parameters. We can then obtain the

relative orientation from the essential matrix using Horn’s

method, and eventually obtain the full 3D reconstruction.
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Stereo from Lines and Conics

• Stereo from lines

• Stereo from conic curves
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Stereo from Lines

X
0

C1

C2

N

n1

n2

R, T

world 

R1, T1
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Line Matching

If two line segments match, then any two points from the first line

segment must match two points on the second lines. The two

points on the second line can be found from the intersections

between the second line segment and the epipolar lines .
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Stereo from Lines (cont’d)

Assume the object frame coincides with the left camera frame and

R and T capture the relative orientation of the right camera

frame w.r. t. the left camera from. Let the 3D line be

parameterized by it’s orientation N and a point on the line X0.

Given the corresponding 2D image line on the left row-column

frame as α1c1 + β1r1 + γ1 = 0, the normal of the left

backprojection plane is n1 = W T
1







α1

β1

γ1






. Simimarly, given the

corresponding 2D image line for on the right row-column frame as

α2c2 + β2r2 + γ2 = 0, the normal for the right backrprojection
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plane is n2 = W T
2







α2

β2

γ2






.

We hence have

nT
1 N = 0

nT
2 R

TN = 0

nT
1 X0 = 0

nT
2 (R

TX0 −RTT ) = 0

The first two equations allow to solve for N . Specifically, based

on the first two equations, given n1 and n2, the line orientation N

w.r.t the left camera can be computed as N = n1 ×Rn2.

The last two equations allow to solve for X0 up to a scale factor.
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Stereo from Conic Curves [16]

• Correspondences between ellipses can be established using

epipolar constraint. The corresponding points on the right

image are the intersections between the epipolar lines and the

ellipse.
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Z c

cX

Z c

cX

Camera Frame 1

Camera Frame 2

1

Y c 2

2

2

Yc

1

1

Image Plane 2

Image Plane 1

C1

C2

C P=(n,d)

(R,T)

Reconstructed circle

projected ellipse

detected ellipse

back-projection

 projection

• Reconstruction

Let A and B be the 3× 3 symmetric matrices that

respectively specify the left and right image and left image

ellipses, we hence have

124









cl

rl

1







T

A







cl

rl

1







= 0.







cr

rr

1







T

B







cr

rr

1







= 0.

Substituting λl







cl

rl

1







= Wl







xl

yl

zl







and
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λr







cr

rr

1







= Wr







xr

yr

zr







into the ellipse equations above

yields the equations for the two cones in the left and right

camera frames as shown in the figure






xl

yl

zl







T

W T
l AWl







xl

yl

zl







= 0.

and






xr

yr

zr







T

W T
r BWr







xr

yr

zr







= 0.
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Substituting







xr

yr

zr







= RT







xl

yl

zl







−RTT to the right cone

equation yields the right cone expressed in the left camera

frame

[RT







xl

yl

zl







−RTT ]TW T
r BWr[R

T







xl

yl

zl







−RTT ] = 0.

The two cones are now expressed in left camera frames. As

shown in the figure, their surface intersection produces a

planar 3D conic curve. Assume the equation of the plane,

where the intersecting conic curve is located on, is

axl + byl + czl + d=0 w.r.t the left camera frame. Plugging

zl = −axl+byl+d
c

into the two cone equations above gives us
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two equations for the conic curve in terms of ratios of the

plane parameters (a/c, b/c, d/c). Solve these plane parameter

ratios (multiple solutions may exist) by ensuring the two

conic equations are identical (with the same coefficients) as

they represent the same conic curve. This gives us the

equations of the 3D conic curve. Finally, when the 3D conic

becomes a circle, one image from one camera is sufficient to

recover the orientation of the 3D circle if given the radius of

the 3D circle (prove this using above equations).
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Limitations with Passive Stereo

A key limitation with the passive stereo approach is the accuracy

with the reconstructed 3D points. This lack of accuracy may be

due to

• Positional errors (e.g., quantization error) with image

coordinates.

• Inaccuracy in point matching (e.g. mismatch),

• Errors with camera parameters (like focal length, baseline

distance, etc..)
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Bayesian Triangulation

Given observed image points Û1 and Û2 and their covariance

matrices ΣU1
and ΣU2

, the camera parameters Θ̂1, and Θ̂2, and

their covariance matrices ΣΘ1
, and ΣΘ2

, estimate the

corresponding 3D point X̂ and it’s covariance matrix ΣX by

maximizing

p(X̂|Û1, Û2, Θ̂1, Θ̂2)
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Bayesian Triangulation (cont’d)

Since p(Û1, Û2, Θ̂1, Θ̂2) is merely a normalizing constant,

maximizing p(X̂|Û1, Û2, Θ̂1, Θ̂2) is the same as maximizing

p(X̂, Û1, Û2, Θ̂1, Θ̂2).
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Bayesian Triangulation (cont’d)

Assuming the relations between Ûi, X̂, and Θ̂i can be modelled

by the following Bayesian Network
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We then have

p(X̂|Û1, Û2, Θ̂1, Θ̂2) =
P (X̂, Û1, Û2, Θ̂1, Θ̂2)

P (Û1, Û2, Θ̂1, Θ̂2)

= αP (X̂, Û1, Û2, Θ̂1, Θ̂2)

= P (X̂)P (Θ̂1)P (Θ̂2)P (Û1|X, Θ̂1)P (Û2|X, Θ̂2)

= αP (X̂)P (Θ̂1)P (Û1|X, Θ̂1)P (Θ2)P (Û2|X, Θ̂2)

= αP (X̂)
2∏

i=1

P (Θ̂i)P (Ûi|X, Θ̂i) (23)
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Bayesian Triangulation (cont’d)

Since Θ̂i ∼ N(Θi,ΣΘi
) ,

P (Θ̂i) =
exp(− 1

2 (Θ̂i −Θi)
TΣ−1

Θi
(Θ̂i −Θi))

2π|ΣΘi
|
1

2
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Bayesian Triangulation (cont’d)

Assume given X and Θ̂i, Ûi ∼ N(Ui,Σi).

Hence,

P (Ûi|X, Θ̂i) =
exp(− 1

2 (Ûi − Ui)
TΣ−1

i (Ûi − Ui))

2π|Σi|
1

2

We need Σi and Ui.
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Bayesian Triangulation (cont’d)

By perspective projection, we have Ûi = M(Θ̂i, X), where M is

the projection matrix. Assume the noise with camera parameters

are small, by a first order Taylor series approximation of

M(Θ̂i, X), we have

Ûi = M(Θ̂i, X)

= M(Θ, X) +
∂M

∂Θi

∆Θi
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Bayesian Triangulation (cont’d)

Since M(Θi, X) ∼ N(Ui,ΣUi
) and ∆Θi ∼ N(0,ΣΘi

), we have

Σi = ΣΘi
+ (

∂M

∂Θi

)ΣΘi
(
∂M

∂Θi

)T

Since Ui represents the ideal yet unobserved image projection

given Θi and X . Assume small perturbations with image and

camera, Ui may be approximated by M(Θ̂i, X).
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Bayesian Triangulation (cont’d)

To solve for p(X̂, Û1, Û2, Θ̂1, Θ̂2), we still need to compute p(X̂).

Assume X̂ is uniformly distributed, then maximizing

p(X̂, Û1, Û2, Θ̂1, Θ̂2) is equivalent to maximizing

E =
∏2

i=1 p(Ûi|Θ̂i, X)p(Θ̂i).
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Bayesian Triangulation (cont’d)

logE =
2∑

i=1

{log p(Ûi|Θ̂i, X) + log p(Θ̂i)}

=
2∑

i=1

{−
1

2
(Ûi − Ui)

TΣ−1
i (Ûi − Ui)−

log(2π)−
1

2
log |Σi| −

1

2
(Θ̂i −Θi)

TΣ−1
Θi

(Θ̂i −Θi)−

log(2π)−
1

2
log |ΣΘi

|}
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Bayesian Triangulation (cont’d)

Maximizing logE is equivalent to minimizing − logE. Removing

the constant terms in − logE and terms independent of X̂ yields

ǫ2 =
2∑

i=1

(Ûi −M(X̂,Θi))
TΣ−1

i (Ûi −M(X̂,Θi)) + log |Σi|

where

Σi = ΣUi
+ [

∂M

∂Θi

(X̂,Θi)]ΣΘi
[
∂M

∂Θi

(X̂,Θi)]
T

X̂∗ = argmin
X̂

ǫ2
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Deep Learning Based Passive Stereo

Deep learning based methods have been applied to passive stereo

problems, including feature learning for point matching and depth

estimation. A recent survey of deep learning methods can be

found in [11, 5, 13].
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Deep Learning for Depth Estimation

Deep learning methods for depth estimation can be grouped into

two categories: matching feature learning and end-to-end

learning.

Matching feature learning employs deep learning based methods

to learn features that best match corresponding patches.
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It includes 3 steps. 1) Generate groundtruth dataset. For every

reference patch on the left image, positive and negative matching

patches from the right image are given; 2) construct the loss

function. The loss function includes the main loss term derived

from given positive and negative patch pairs as well as additional

regularization terms that represent matching constraints,
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including epipolar constraint, the smoothness constraint,

disparity range constraints, the spatial ordering constraint, the

uniqueness constraint, etc.; 3) Train the model.

Once trained, the model can compute the matching cost for each

query patch pair and identify the pair with the minimal matching

cost, based on which the disparity (depth) can be derived from

the matched pairs.
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Deep Learning for Depth Estimation (cont’d)

Given a pair of left and right image, the end-to-end learning

method [20] below directly outputs the disparity map through

regression, without explicitly performing pixel matching. It

includes 4 steps: learn features for the entire image, use current

features to predict the cost for each pixel, producing the cost

volume, aggregate the cost volume to produce the matching map,

and derive the disparity map from the matching map. This

method, however, requires a lot of training data with groundtruth

disparity maps.
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Benchmark stereo datasets [17]
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Active Stereo Vision

Active stereo vision is a technique for the reconstruction of the

three-dimensional description of a scene from images observed

from one camera and one light projector.

See the Active Stereo slides at the link below for details.

http://www.ecse.rpi.edu/ qji/CV/ActiveStereo.pdf
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Monocular Approach

Problem Statement : Given a single 2D image of an object,

reconstruct the geometry of the visible surface of the object.

A monocular image alone does not contain sufficient information

to uniquely reconstruct 3D information. 3D information, however,

can be recovered from monocular images in conjunction with

certain visual cues or prior knowledge of certain geometric

properties of the object.
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Visual Cues

What are the visual cues used by human to infer depth or shape?

• Geometric properties

• Shade

• Distortion

• Vanishing points

• Blurriness

149



Geometric Properties

• Euclidean distance relationships between geometric entities

• Angular relationships between geometric entities
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Shape from X

• Shape from shading.

• Shape from texture.

• Shape from geometry.

• Shape from illumination (photometric stereo)

• Shape from (de-)focus.
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Shape from Shading

Shape-from-shading technique infers the shape (surface normals)

and depth of an image pixel based on its shade (or intensity).

The underlying theory of the technique is that the intensity of a

pixel is determined in part by, among many other factors, the

angle between surface normal (slope) and the illumination

direction. See fig. 9.1.
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Shape from Shading Geometry

N

L

P(x,y,z)X

Y

Z

θ
p(c,r)
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Surface radiance and Lambertian Model

Let S(x, y, z) be the surface radiance at point (x, y, z) relative to

the camera frame, n(x,y,z) be the surface normal at this point

relative to the camera frame, and L be a vector representing the

incident light also relative to the camera frame,

S(x, y, z) = ρLTn = ρ||L|| cos θ (24)

where ρ is the surface albedo and θ is the angle between L and n.

A surface reflectance model that follows the radiance equation 24

is called Lambertian Reflectance Model.

The above equation assumes distant and single illumination

source.
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The Image irradiance Equation

Let E(c, r) and I(c, r) be the image irradiance and intensity at

pixel (c, r) respectively. Then surface radiance S(x, y, z) relates to

E(c,r) via the fundamental radiometric equation, i.e.,

E(c, r) = S(x, y, z)
π

4
(
d

f
)2 cos4 θ (25)

where d, f , and θ represent the lens diameter, focal length, and

the angle formed by the principal ray through the point at

(x, y, z) and the optical axis. In the case of small angular

aperture, this effect can be ignored; therefore the image irradiance

can be regarded as proportional to the scene radiance, i.e.,

E(c, r) = αS(x, y) = αρLTn

Since E(c, r) is proportional to I(c, r), so for Lambertian model
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and a single distant light source, we have

I(c, r) = αβρLTn

where β is the coefficient that relates image irradiance to

intensity. Assuming the optical system has been calibrated, the

constant terms α and β can be dropped from the above equation,

leading to

I(c, r) = ρLTn(x, y, z) (26)

Equation 26 is the fundamental equation for shape from shading,

assuming Lambertian illumination model, a single distant, and

point light source. The goal of SFS is to recover surface normal

n(x,y,z) for each 3D point (x,y,z) from its image intensity I(c,r).
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Surface Normal Computation

Assume the surface depth z may be thought as a function of

(x, y), i.e., z=f(x,y). A 3D point P can therefore be represented

as P (x, y) = (x, y, f(x, y)). Hence the normal vector at (x,y,z) is

n(x, y, z) =

∂P
∂x

× ∂P
∂y

||∂P
∂x

× ∂P
∂y

||
=

[−p(x, y),−q(x, y), 1]T
√

1 + p2(x, y) + q2(x, y)

where p = ∂f
∂x

and q = ∂f
∂y

Note (x, y, z) is the coordinates of 3D

point relative to the camera frame. As a result, p and q are

specified with respect to the camera coordinate frame.
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Therefore for surface that follows the Lambertian Model, ideally

we have

I(c, r) = ρLT [−p(x, y),−q(x, y), 1]T
√

1 + p2(x, y) + q2(x, y)
(27)

As we don’t know (x,y,z), we need compute p and q as a function

of (c,r).
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Weak Perspective Projection Assumption

Since the object is assumed to be far away from the viewer

(camera), we can assume weak perspective projection. As a

result, we have

c =
fsx
z̄

x+ c0

r =
fsy
z̄

y + r0

which can translate to
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x =
(c− c0)z̄

fsx

y =
(r − r0)z̄

fsy

z̄ is the average object z distance to the camera. Given

P (x, y, f(x, y)) and P is also a function of c and r, hence

∂P

∂c
= (

∂x

∂c
, 0,

∂f

∂x

∂x

∂c
) = (

z̄

fsx
, 0, p(x, y)

z̄

fsx
)

∂P

∂r
= (0,

∂y

∂r
,
∂f

∂y

∂y

∂r
) = (0,

z̄

fsy
, q(x, y)

z̄

fsy
)

Hence, we can easily prove that

∂P
∂c

× ∂P
∂r

||∂P
∂c

× ∂P
∂r

||
=

∂P
∂x

× ∂P
∂y

||∂P
∂x

× ∂P
∂y

||
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Hence,

n(x, y, z) =
[−p(x, y),−q(x, y), 1]T
√

1 + p2(x, y) + q2(x, y)

=
[−p(c, r),−q(c, r), 1]T
√

1 + p2(c, r) + q2(c, r)
(28)
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Problem Statement

Given ρ and L, the problem is to reconstruct surface slopes p and

q and then surface height z for which

I(c, r) = ρR(L, p(c, r), q(c, r)) (29)

where R(L, p(c, r), q(c, r)) is the reflectance map of a surface. For

Lambertian Model, we have

R = LT [−p(c, r),−q(c, r), 1]T
√

1 + p2(c, r) + q2(c, r)

In general, R is complicate or is estimated numerically via

experiments. For each image point, we have one equation for two

unknowns (p and q). The problem is under-determined.
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Shape from Shading: A Local Approach

To uniquely solve p and q, we introduce a local approach, where

we find the normal for each pixel locally. Given a pixel (c, r), let

(p, q) be its normal. Assume all pixels in a local patch centered

Nc,r on (c, r) have the same p and q. Following Eq. 29, we have

I(ci, ri) = ρLT [−p,−q, 1]T

1 + p2 + q2
, where (ci, ri) ∈ Nc,r.

Given L and ρ, we can hence solve for p and q by minimizing the

following objective function

∑

(ci,ri)∈Nc,r

{I(ci, ri)− ρLT [−p,−q, 1]T

1 + p2 + q2
}2

This approach is similar to Lucas-Kanade method for optical flow

estimation. But the solution is non-linear.
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A Calculus of Variational: a global approach

Different from the local approach, here we finds p and q for all

pixels simultaneously. Find p and q for each point by minimizing

ǫ =
∑

c

∑

r

[(I(c, r)− ρR(p, q)]2 + λ(p2c + p2r + q2c + q2r ) (30)

where R(p, q) is the reflectance map and λ is the Lagrange

multiplier for imposing the normal smoothness constraint.

pc =
∂p
∂c
, pr = ∂p

∂r
, qc =

∂q
∂c
, qr = ∂q

∂r
. λ is always positive and

determines the relative importance between two terms (the

fundamental equation and smoothness).

Find p and q for each point by minimizing ǫ
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A global approach (cont’d)

In digital domain, pc, pr, qc, qr may be numerically approximated

as

pc = p(c+ 1, r)− p(c, r)

pr = p(c, r + 1)− p(c, r)

qc = q(c+ 1, r)− q(c, r)

qr = q(c, r + 1)− q(c, r)
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A global approach (cont’d)

As a result, find p and q for each point by minimizing

ǫ =
∑

c

∑

r

[(I(c, r)− R(p, q)]2 + λ[(p(c+ 1, r)− p(c, r))2

+ (p(c, r + 1)− p(c, r))2 + (q(c+ 1, r)− q(c, r))2 +

(q(c, r + 1)− q(c, r))2]
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A global approach (cont’d)

Taking partial derivatives with respect to p and q and set them to

zeros yield

pc,r = p̄c,r +
1

4λ
(I(c, r)−R(c, r))

∂R(c, r)

∂p

qc,r = q̄c,r +
1

4λ
(I(c, r)− R(c, r))

∂R(c, r)

∂q

p̄c,r and q̄c,r are the average of p and q over the four nearest

neighbors.
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pk+1
c,r = p̄kc,r +

1

4λ
(I(c, r)−R(c, r))

∂R(c, r)

∂p
|k

qk+1
c,r = q̄kc,r +

1

4λ
(I(c, r)−R(c, r))

∂R(c, r)

∂q
|k
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Convergence Properties

• Convergence-depending on the initial p and q.

• The optimal λ-normally around 1000.

• Stopping condition-residual error may not be always accurate
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Example of Shape from Shading
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Example of Shape from Shading
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Limitations with Shape from Shading Theory

• Assume single point distant illumination source

• Assume richly structued/texture surface

• Assume all visible surface points receive direct illumination

• Assume Lambertian surface.

• Assume weak perspective projection (a paper in ICCV03 to

extend it to perspective projection)

• Assume Z=f(x,y)

• Solution is not unique
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Other issues

• Estimate illumination direction.

• Estimate the reflectance map R(p,q).

– A more general reflectance model is the 3-lobe model or

the BRDF (bidirection reflectance distribution function)

model [18].

• Derive depth z from p and q.

– Given p and q, z may be computed by minimizing

ǫ =
∑

c

∑

r(zc − p)2 + (zr − q)2, where the partial
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directives pc and pr may be approximated numerically.

• Estimate surface albedo

• Handle specular surface, see Phone’s model in [18]

• Deal with inter-reflections.

176



Estimate illumination direction

• Obtain a ball of known radius, with uniform shading or

(color) and hence constant albedo.

• Place a single illuminator through a small hole and place the

camera on the same side of the light

• Hang the ball in front of the light and the camera, turn the

light on, and take a picture of the ball. Minimize the light

interference from other sources.

• Use the image of the ball as well as its radius, recover the

center of the ball, hence the equation of the ball w.r.t camera

frame. If this is not possible, use two cameras to recover the

center of the ball. We can recover the 3D coordinates of each

point of the ball, given its image pixel. From the 3D

coordinates, we can recover N(c, r), the normal for each point.

177



Estimate illumination direction (cont’d)

• Given the known shape of the ball and its uniform (but

unknown) albedo, for each pixel (c, r) in the image, we have

I(c, r) = ρL ·N(c, r). With all image pixels, we can setup a

system of linear equations to recover light direction L.
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Statistical Shape from Shading

Statistical Shape from Shading incorporates a statistical shape

prior to the objective function, allowing to use the global shape

prior plus the local smoothness to further regularize the objective

function.

Find p and q for each point by minimizing

ǫ =
∑

c

∑

r

[(I(c, r)− R(p, q)]2 + λ[(p(c+ 1, r)− p(c, r))2

+ (p(c, r + 1)− p(c, r))2 + (q(c+ 1, r)− q(c, r))2 +

(q(c, r + 1)− q(c, r))]2 − γ logP (p, q)

P (p, q) is the prior probability of the surface shape. It can be

manually specified or learnt from data. See [15].
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Photometric Stereo

At each point (x,y), we have

Ik(c, r) = ρnT (x, y, z)Lk,

where k = 1, 2, . . .N and N > 3, representing N light sources.
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Photometric Stereo (cont’d)

Given N illumination directions, we can setup a system of linear

equations involving

A = ρ











L1x
L1y

L1z

L2x
L2y

L2z

...

LNx
LNy

LNz











b =











I1

I2
...

IN











n can be solved for by minimizing ||An− b||2, which leads to

n = (ATA)−1AT b

ρ
, where ρ = ||(ATA)−1AT b||.
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Photometric Stereo (cont’d)

The assumptions of the above solution is that surface points can

not be in shadows for any of the light sources and illumination

directions are known.
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Photometric calibration

For SFS and photometric stereo, the image intensity I needs to

be photometrically calibrated to remove the camera gain (a) and

offset (b).

Let I be the observed intensity and I ′ be the intensity without

camera gain and offset. We have

I = aρLTn+ b

where a and b are the camera gain and offset.

Camera photometric calibration involves computing I ′ from I , i.e,

I ′ = I−b
a

. This may be accomplished via a geometric setup [8].

Via this calibration, we can eliminate the illumination strength

and surface albedo from the equation, if we assume the

illumination and albedo are the same for every image pixel,
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producing the so-called intrinsic image.
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Shape from Texture

Given a single image of a surface consisting of texture patterns,

estimate the shape of the surface from the distortions of the

observed image texture patterns.
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What is Texture

A texture surface is created by regular repetitions of a basic

texture element or regular repetitions of certain statistical

properties of surface color. The former may be referred to as the

deterministic texture while the latter may be referred to as the

statistic texture.

For deterministic textural elements, they can be characterized by

the shape parameters such as parameters for lines or ellipses if

they are the basic textural elements.
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For statistic texture, they are often characterized by their

statistical properties such as entropy, randomness, and spatial

frequency over a region.
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Sources of Texture Distortions

Texture distortions refer to texture properties change due to

imaging process.

A uniformly-textured surfaces undergo two types of projective

distortions

• Perspective distortion (distance)

• Foreshortening (orientation)
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Sources of Texture Distortions (cont’d)

Perspective distortion causes a uniform compression in the area of

a texture element as the distance between surface and the camera

increases.

Foreshortening causes an anisotropic compression of a texture

element.

The texture distortions provide information about the relative

distances (perspective distortion) and orientations

(foreshortening) of the textured surface in an image.
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For deterministic texture, perspective distortion can be quantified

by the area variations, while foreshortening distortion can be

characterized by the ratio of the major and minor axes.

193



194



Measures of Texture Distortions [1]

• Distortion measures (e.g., area, shape ratio)

• Distortion measure gradients (change of distortion measures)

While the first measure may be used to quantify distortion for a

single texture element, the latter may be applicable to a region

containing several textural elements.
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Steps for Shape Estimation from Texture

• identify a region in the image containing a texture element.

• determine the textural properties to use

• compute texture distortions w.r.t the selected texture

properties such as including area, aspect ratio, and density

gradients.

• estimate surface normal and distance from the computed

texture distortions.

This can be accomplished analytically or numerically with some

regression methods such as support vector regression, regression

neural network or even deep learning models. A good candidate

for final project !.
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Shape from Focus (Defocus)

• Object at different distances may appear different degrees of

focus (or sharpness) due to depth of field

• Infer the depth from the pixel sharpness or from the degree of

blurriness

See slides shape from focus.ppt for further information
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Shape from Geometry [7, 19]

Also referred to as shape from inverse perspective projection,

shape from geometry reconstructs a 3D geometric entity from a

single image in conjunction with geometric constraints on the 3D

geometric entity.

Active stereo actually exploit this idea.

The geometric constraints may come from the world model of the

object being viewed in the perspective projection.

More recent work constructs a deformable geometric model for

the objects. 3D reconstruction of the objects can be formulated

as estimating the parameters of the geometric models from their

images.
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3D Geometric Entities

The 3D geometric entities may include points, lines, planes, and

3D curves like circles or ellipses
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An Ill-posed Problem: Point
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An Ill-posed Problem: Line
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An Ill-posed Problem: Curves
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Geometric Constraints

The geometric constraints employed include

• Euclidean distance constraints.

• Angular constraints
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Euclidean Distance Constraints

The distance relationships may include distance among points,

lines, and planes

• distance between points

– two unknown 3D points

– a known 3D point and an unknown 3D point

• distance between a point and a line

– an unknown 3D point and a known line

– an known 3D point and an unknown line

• distance between a point and a plane

– an unknown 3D point and an unknown plane

– a known 3D point and an unknown plane
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Euclidean Distance Constraints (cont’d)

Distance relationship may also generalize to collinear and

coplanar. They include

• three unknown 3D points are collinear

• an unknown 3D point is on a known line

• an unknown 3D point is on an unknown plane

• a known 3D point is on an unknown plane
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Euclidean Angular Constraints

In addition to distance relationships, there also exist angular

relationships. They may include angle formed by

• two unknown planes.

• three unknown non-collinear points.

• a known line and an unknown plane.

A good candidate for final class project!
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Reconstruct 3D Points

A 3D point and its image offers two equations. The 3D point can

be reconstructed if a constraint is available about the 3D point.
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Reconstruct 3D Points

If an unknown 3D point X is located on a known plane, then X

can be solved for.
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Reconstruct 3D Points

If the distance between X and a known 3D point Y is known,

then X can be solved for.
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Reconstruct 3D Points (cont’d)

Given the images of three 3D points and the distances between

the 3D points. Then the 3D points can be reconstructed. This is

the famous 3-point problem. The solution is not unique however.

If we know one of the 3 points, then the other two points can be

determined uniquely.
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Reconstruct 3D Points (cont’d)

Similarly, for three non-collinear points, can they be

reconstructed if the three angles they form are known? Note the

three angles are not independent of each other (they sum to 180).
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Reconstruct 3D Points

If an unknown 3D point X is located on an known 3D line, then

X can be solved for.
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Reconstruct 3D Lines

A 3D line may be represented by a point on the line P0 and its

direction cosine N . Hence,

P0 + λN

is the equation of a line, where λ is a scaler.

A line therefore has a total of 5 parameters (3 for P0 and 2 for

N). The number of parameters may reduce to 4 if P0 is chosen

such that P T
0 N = 0. We can hence say a 3D line has four degrees

of freedom.
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The relationships between a 3D line and 2D line

Let the 3D line be P0 + λN and P0 = (X0, Y0, Z0). Let the

corresponding image line be αc+ βr+ γ = 0. Let n be the normal

of the backprojection plane formed by the 3D line and the

perspectivity center, and n be derived as n = W T







α

β

γ






. We

then have

nTP0 = 0 (31)

nTN = 0 (32)

where the first equation says that P0 is located on the

backprojection plane. It is the same as saying image projection p0
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of P0 is located on the image line. Note as we do not know where

p0 is, we cannot setup additional equations that relate p0 to P0.

The second equation derives from the fact that the 3D line is

located on the backprojection plane.

Each line offers two equations for four line parameters, additional

constraints are needed.
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Lines in a known plane

Let the plane parameters be d (origin distance to plane) and V

(plane normal), and the line parameters be P0 and N , we then

have

P T
0 V = d

NTV = 0

We can then solve for P0 and N using the above two equations

along with the two line projection equations. The 3D line is the

intersection of the back-projection plane with the given known

plane.
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Parallel Lines with known vanishing points

Given the vanishing point of a set of parallel lines, the orientation

of the lines can be determined as follows

Let the vanishing point be (u, v) and N = (Nx, Ny, Nz), then we

have

u = f
Nx

Nz

v = f
Ny

Nz

Using the above equation and the fact that N2
x +N2

y +N2
z = 1,

we can solve for N .
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Reconstruct 3D Lines: N Pencil Lines

Given M ≥ 3 lines intersecting at point P0, we can detect

p0 = (c0, r0) in the image and setup equations to relate p0 to P0,

i.e.,

λ







c0

r0

1







= WP0 (33)

In addition, we have two line projection equations for each line

nT
i P0 = 0 (34)

nT
i Ni = 0 (35)

where i=1,2,..,N . Note combining eq. 33 with eq. 34 seems to

provide enough equations to solve for P0 uniquely. But actually,
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their combination can only solve for P0 up to a scale factor, as

they both can only solve P0 up to a scale factor.

In addition, Eq. 35 only allows solving Ni up to a scale factor.
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Reconstruct 3D Lines: N Pencil Lines

Given M ≥ 3 lines intersecting at a point with known angles αij

(e.g., orthogonal to each other) between each pair of 3D lines as

shown in the figure below

We can then use eq. nT
i Ni = 0 plus the equations from the known

angles, i.e., NT
i Nj = cos(aij), to uniquely solve for Ni. The

solution is however non-linear. Unfortunately, given Ni, we can

still only solve for P0 up to a scale factor as Ni is independent of

P0 in the two line projection equations (Eqs. 34 and 35). The
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scale factor can be solved if we are given the distance of two

unknown points on one side of the wall.
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Collinear Points with Known Interpoint Distances

Suppose we observe the perspective projection of a 3D line whose

position and orientation are unknown. On this line there are

N(> 2) distinguished points with known interpoint distances. We

also observe their corresponding image points. This constitutes

enough information to determine all the parameters of the line as

well as the 3D positions of the points.
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Collinear Points with Known Interpoint Distances (cont’d)

Let P0 = (P0x
, P0y

, P0z
) and N = (Nx, Ny, Nz) be the first point

on the 3D line and the orientation of the line. Let P1 be the

second point on the line and (c1, r1) be the image projection of

P1, then we have

P1 = P0 + d1N

where d1 is the distance between P0 and P1.

From the perspective projection equation, we have

c1 = f
P0x

+ d1Nx

P0z
+ d1Nz

r1 = f
P0y

+ d1Ny

P0z
+ d1Nz
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Combining with the two line projection equations, we can setup a

system of linear equations involving the unknown parameters P0

and N , which can be solved by a constrained linear least-squares

method. Once P0 and N are solved, we can then use the

inter-point distance to solve the 3D coordinates for other points

on the line.
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Lines with known length and orientation

Given the length of a line segment as d and its orientation N , the

coordinates of two endpoints can be reconstructed.

Let the two endpoints be X1 = (x1, y1, z1) and X2 = (x2, y2, z2)

and their corresponding image points be U1 = (c1, r1) and

U2 = (c2, r2). Since

X2 = X1 + λN
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c1 =
fx1

z1

r1 =
fy1
z1

c2 =
f(x1 + dNx)

z1 + dNz

r2 =
f(y1 + dNy)

z1 + dNz

Hence the above four equations yield an over-determined system

of linear equations involving 3 unknowns x1, y1, and z1. Solving

X1, we can then obtain X2.
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Single View Metrology

Given an image of a shed on the left below, describe what you

need to reconstruct the 3D model of the shed on the right a. This

can be a homework. Additional information about single view

metrology can be found in [7, 19, 2].

aImage from Fig. 11.4 of [17]
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3D Conic Reconstruction

Given a 3D conic (ellipse or circle) and its image, we can not

uniquely determine the 3D conic.

Given we know the 3D conic is a circle and the radius of the 3D

circle, we can then reconstruct the 3D circle from its image as

follows.

Let A be the matrix that specifies the image ellipses, we hence

have






c

r

1







T

A







c

r

1







= 0.
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a Substituting λ







c

r

1







= W







x

y

z







into the ellipse equations

above yields the equation for the the cone in the camera frames as

follows
aNote the generic equation for a 2D image ellipse is : ax2+bxy+cy2+dx+

ey + f = 0. It can be expressed in matrix format as









x

y

1









T

A









x

y

1









= 0,

where

A =









a 1

2
b 1

2
d

1

2
b c 1

2
e

1

2
d 1

2
e f








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





x

y

z







T

W TAW







x

y

z







= 0.

Assume the equation of the plane, where the 3D conic curve is

located on, is ax+ by + cz + d=0 w.r.t the camera frame.

Plugging z = −ax+by+d
c

into the conic equation yields the 3D

conic equation in terms x and y and the plane parameter ratio

(a/c, b/c, d/c). Solving the plane parameter ratios using the

information that the 3D conic is a circle with known radius.
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3D Conic Reconstruction

If we are given the images of two 3D coplanar conic curves of

identical size but different orientations, we can then reconstruct

the two 3D conic curves.

Let the A and B be the matrix that respectively specify the two
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observed image conics. We can then construct the equations for

the two cones that the two image conics form as follows






x

y

z







T

W TAW







x

y

z







= 0.







x

y

z







T

W TBW







x

y

z







= 0.

Assume the two 3D conics are located on a 3D plane

ax+ by + cz + d=0 a w.r.t the camera frame. Plugging

z = −ax+by+d
c

into the two conic equations, yielding two 3D conic

equations in terms of X and Y . We can then solve the plane
aLet two planes be: p1 = (a, b, c, d)T and p2 = (a′, b′, c′, d′)T . Their inter-

section produces a line l = p1 × p2, where × represents cross product.
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parameters using the two conic equations and an additional

equation derived from the fact that the two 3D conics are

identical in size. Given the plane parameters, we can then obtain

the equations for the two 3D conic curves.
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Deep Learning for Monocular Depth Estimation

For a review of recent efforts for monocular depth estimation

using deep neural networks, see references [13, 21].

Given the GT depth, the model can be trained in a supervised

learning. It can also be trained with weakly supervised learning

by using relationships between multiple images. In addition, the

adversarial loss and structured loss (e.g. CRF) can also be aded

to the loss function as additional regularization terms.
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Hierarchy of 3D Reconstruction Techniques

1. Passive approach

• Passive stereo (two images)

• Shape from X (shading, texture, geometry, photometric

stereo, focus) (one image)

• Shape from image sequences (multiple images)

2. Active approach

• Active stereo (one projector and one camera like Kinect)

• Radar sensor, Lidar (laser imaging, detection, and

ranging), and other time of flight sensors
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Deep Learning Based 3D Reconstruction

The main idea is to learn a mapping function f(I, θ) that maps

the images I of an object into a 3D representations of the object.

A recent survey on image based 3D reconstruction can be found

in [6].

The methods can be divided into different categories, depending

on the number of input images, including one image (monocular

approach), multiple images, and a sequence of images (video).
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3D representations

The 3D representations can also vary, including volumetric

representation and surface representations. Volumetric

representation uses a 3D volume to represent a 3D object, where

each voxel assumes a binary value to indicate if it is part of the

object or not. It captures 3D points of both inside and on the

surface of the object. The binary value can also be replaced by a

probability value, indicating the probability of the voxel is part of

the object.
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3D representations (cont’d)

Surface representations only capture 3D points on the object

surface. They can be further divided into parametric surface

representation and non-parametric surface representation.

Parametric surface representations represent object surface with a

parametric model. One surface parameterizations is the spherical

parameterizations, which represent an arbitrary 3D surface by

cutting the surface into disk-like or triangle patches and unfolding

them into a 2D mesh.
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Another parametric 3D surface representation is the

deformation-based representation, which represents the 3D

surface with a 3D mesh and assumes the mesh can deform from

its mean shape to produce different 3D shape.
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3D representations (cont’d)

The most common non-parametric 3D surface model is 3D point

cloud
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Deep Model Architectures

The common architecture for 3D reconstruction from images is

the encoder and decoder structure, where the encoder takes the

input image and produces a latent reprobation Z and the decoder

takes Z as input and outputs the 3D representations y in terms of

3D volume, parameters for the parametric surface representations,

and 3D coordinates for point cloud representation.

The training loss function includes terms for 3D loss

(reconstruction loss-volumetric loss, parameter loss, or 3D point

loss) or 2D loss (projection loss).
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Deformable Mesh based 3D reconstructions

The basic idea is to learn a 3D deformable (morphable) model of

3D objects from their 3D training data and use the deformable

model to perform 3D reconstruction of an object by estimating

the deformable model parameters.

It includes two steps: deformable model construction and 3D

object reconstruction using the learned deformable model.

Deformable model reconstruction: given a large number of 3D

scans of different objects from the same category, a deformable

model is constructed through a PCA analysis in terms of bases

for the 3D object geometry and its mean shape.
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For example, to construct a deformable model for human faces, a

database of 3D scans of different faces with various facial shapes

is used.

S = S̄ +Bα

where S: target 3D face, S̄: mean shape, B : shape basis, and α:

shape coefficients.
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Deformable Mesh based 3D reconstructions (cont’d)

Given the learned deformable model and an image of an 3D

object, 3D reconstruction of the object can be formulated as an

optimization problem that estimates model parameters α and

camera parameters Θ by minimizing the differences between the

projected image and the observed image in terms of either

positional or intensity differences.
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α
∗,Θ∗ = argmin

α,Θ
||

projection matrix
︷︸︸︷

P (S̄ +Bα,Θ)− I ||22
︸ ︷︷ ︸

projection/rendering loss
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Recent developments in deep learning allows to efficiently predict

the 3D shape α and camera parameters Θ from an image through

a regression convolutional neural network. Excellent results have

been achieved in 3D deformable model reconstruction.
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Datasets for image-based 3D reconstruction
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Neural Radiance Fields (NeRF)

NeRF learns an implicit continuous volumetric

representations of a complex object or a scene from their 2D

images and uses the volumetric representation to render images

for arbitrary views. The complex geometry of a 3D

object/scene is implicitly represented using a neural network.
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NeRF View Synthesis

Volumetric Rendering: given the volumetric representation of

a 3D object with a neural network, produce an image of the 3D

object in a given view direction(i.e., given the camera pose).

Input: 3D coordinates of a 3D point and the camera pose (i.e., view

direction) Output: the RGB color for the corresponding image pixel

and its the density (opacity) (0-visible or 1-invisible).
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An image can be rendered given all possible 3D points as input to the
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neural network. The NeRF neural network can be used to render an

image for an arbitrary view for a complex 3D scene.
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NeRF Rendering Examples
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NeRF Training

Training: Collect data from different views with different camera

parameters, assuming the camera pose parameters are known.

Learn the parameters of the neural network FΘ by minimizing the

differences between the rendered images and the observed images,
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i.e.,

Θ∗ = argmin
Θ

∑

x,y,z∈V

||R(x, y, z, θ, φ|Θ)
︸ ︷︷ ︸

Image rendering

−I(θ, φ, x, y, z)||22

Note the learning process implicitly performs correspondence

matching, 3D triangulation of the matched points, and rendering

function for each camera view. It hence requires a lot of training

data from different view points and under different illumination

conditions.

In addition, the explicit volumetric representation of the 3D scene

can be extracted from the neural network using the density

function for each voxel and its 3D coordinates.
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NeRF Limitations

• NeRF only works with static scenes

• A trained NeRF model does not generalize well to other

scenes well

• Training is computationally expensive, taking 1-2 days to

train a scene on a GPU

• Inference (rendering) is slow: each pixel in the synthesized

images requires volume rendering.

The original NeRF paper may be found in [12]. A recent survey

on NeRF methods can be found in [3].
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