
Camera Calibration and Pose Estimation

1

Camera Calibration and Pose Estimation

The purpose of camera calibration is to determine intrinsic

camera parameters: c0, r0, sx, sy, and f . Camera calibration is

also referred to as interior orientation problem in

photogrammetry.

The goal of pose estimation is to determine exterior camera

parameters: ω, φ, κ, tx, ty, and tz . In other words, pose

estimation is to determine the position and orientation of the

object coordinate frame relative to the camera coordinate frame

or vice versus.

2

Camera Calibration

The purpose of camera calibration is to determine the intrinsic

camera parameters (c0, r0), f, sx, sy, skew parameter (s = cosα),

and the lens distortion (radial distortion coefficient k1). Skew

parameter is a function of the skew angle between the c and r

axes of a pixel. For most CCD camera, we have rectangular pixel.

The skew angle is 90. The skew parameter is therefore zero. k1 is

often very small and can be assumed to be zero. The intrinsic

camera matrix is

W =









fsx cosα c0

0
fsy
sinα

r0

0 0 1









If we assume α = 90, then we have

3

W =









fsx 0 c0

0 fsy r0

0 0 1









fsx and fsy are collectively treated as two separate parameters

instead of three parameters.

4

Camera Calibration Methods

• Conventional method: use a calibration pattern that consists

of a 2D and 3D data to compute camera parameters. It needs

a single image of the calibration pattern.

• Camera self-calibration: only need 2D image data of the

calibration pattern but need multiple 2D image data from

multiple views. Problem is often less constrained than the

conventional method.

5

Conventional Camera Calibration

Given a 3D calibration pattern, extract image features from the

calibration pattern. Use 2D image features and the corresponding

3D features on the calibration pattern. The features can be

points, lines, or curves or their combination.

• Determine the projection matrix P

• Derive camera parameters from P

Pfull =









sxfr1 + c0r3 sxftx + c0tz

syfr2 + r0r3 syfty + r0tz

r3 tz









6

Basics in Linear Algebra, Calculus, and Optimization

• 3 spaces of a matrix - column, row, and null space.

• Range, determinant, and rank of a matrix

• Eigen-value and eigen-vector of a matrix

• Pseudo-inverse (generalized) inverse of a general matrix

• Eiegn decomposition for square matrix, singular value

decomposition (SVD) for general matrix, and their

relationships.

• A system of linear equations and its linear least squares

solution

• Multivariate calculus

• Gradient based first order optimization method

7

Compute P: Linear Method using 2D/3D Points

Given image points m2×1
i = (ci, ri)

T and the corresponding 3D

points M3×1
i = (xi yi zi)

T , where i=1, . . . , N, we want to

compute P . Let P be represented as

P =









pT1 p14

pT2 p24

pT3 p34









(1)

where pi, i=1,2,3 are 3× 1 vectors and pi4, i=1,2,3, are scalers.

8

Compute P: Linear Method (cont’d)

Then for each pair of 2D-3D points, we have

MT
i p1 + p14 − ciM

T
i p3 − cip34 = 0

MT
i p2 + p24 − riM

T
i p3 − rip34 = 0

Each pair of 2D/3D points gives two equations on the projection

matrix. For 12 unknowns in the projection matrix, we need a

minimum of N=6 pairs of 2D/3D points. If N < 6, there is an

infinite number of solution. For N ≥ 6 points, depending on the

configurations of the points, there can be one unique exact

solutions.

9

Compute P: Linear Method (cont’d)

We can setup a system of linear equations involving matrix A and

vector V , where A is a 12× 12 matrix depending only on the 3-D

and 2-D coordinates of the calibration points, and V is a 12× 1

vector (pT1 p14 pT2 p24 pT3 p34)
T .

A =





















MT
1 1 ~0 0 −c1M

T
1 −c1

~0 0 MT
1 1 −r1M

T
1 −r1

...

MT
N 1 ~0 0 −cNMT

N −cN

~0 0 MT
N 1 −rNMT

N −rN





















where ~01×3 = [0 0 0]

10

Compute P: Linear Method (cont’d)

To have a robust and accurate solution, we choose N such that

N > 6. In this case, we can find one unique linear least squares

solution (depending on the condition of A matrix) by minimizing

ǫ2 = ||AV ||22, i.e.,
V ∗ = argmin

V
||AV ||22

Taking derivative of ǫ2 = ||AV ||22 w.r.t V and setting it to zero

yields

∂ǫ2

∂V
=

∂(AV)T (AV)

∂V
= 0

ATAV = 0

Solution to V lies in the null space of ATA. Note the null space of

ATA is the same as the null space A. Hence, ATAV = 0 is the

same as AV = 0

11

Rank of A

The solutions depend on the rank of A. In general, given AV = 0,

the rank of A is less than 12, which means the solution is not

unique. But due to effect of noise and locational errors, A may be

full rank, which means only the trivial solution V = 0 exists.

Besides the number of points, the rank of A may also change for

certain special configurations of input 3D points, for example

collinear points, coplanar points, etc. The issue is of practical

relevance.

12

Rank of A

Rank of A is a function of the input points configurations (see

section 3.4.1.3 of Faugeras). If 3D points are coplanar, then

rank(A) < 11 (in fact, it equals 8), which means there is an

infinite number of solutions. Faugeras proves that 1) in general

for non-coplanar of more than 6 points, Rank(A)=11; 2) for

coplanar points (N ≥4), rank(A)=8 since three points are needed

to determine a plane (11-3=8).

How about the rank of A if points are located a sphere or on the

planes that are orthogonal or parallel to each other ? Hint: how

many points are needed to determine a sphere ?

13

Linear Solution 1

Given ǫ2 = ||AV ||22, the linear least-squares solution is

V ∗ = argmin
V

ǫ2, which leads to

ATAV = 0

Solution to ATAV = 0 is not unique (up to a scale factor). It lies

in the null space of ATA. As the null space of ATA is the same as

that of A, we can find the null space of A. If rank(A)=11, then V

is the only null vector of A, multiplied by a scaler. If on the other

hand, rank(A) ≤ 11, the the solution to X is the linear

combinations of all null vectors of A. The null space of A can be

obtained by performing SVD on A, yielding

Am×n = Um×mDm×n(ST)n×n

14

where U and S are orthnormal matrix and D is a diagonal matrix,

whose diagonal entries are called singular values and are arranged

in descending order.

If rank(A)=11, the only null vector A is the last column

(corresponding to the smallest singular value) of S matrix.

Alternatively, we can also solve V by directly minimizing ||AV ||22,
which yields (ATA)V = 0 or (ATA)V = λV , where λ = 0. As a

result, solution to V is the eign vector of matrix (ATA),

corresponding to zero eigen value. This implies that the

eignvectors of ATA correspond to the columns of the S matrix.

Note V is solved only up to a scale factor. The scale factor can be

recovered using the fact that ||p3||22 = 1. Let the null vector of A

be V’. The scale factor α =
√

1
V ′2(9)+V ′2(10)+V ′2(11) . Hence,

V = αV ′.

15

Linear Solution 2

Let A = [B b], where

B =





















MT
1 1 ~0 0 −c1M

T
1

~0 0 MT
1 1 −r1M

T
1

...

MT
N 1 ~0 0 −cNMT

N

~0 0 MT
N 1 −rNMT

N





















b = (−c1 − r1 . . . − cN − rN)T

16

V = p34





Y

1





Y = (pT1 p14 pT2 p24 pT3)
T /p34

Then, AV = p34(BY + b). Since p34 is a constant, minimizing

||AV ||22 is the same as minimizing ||BY + b||22, whose solution is

Y = −(BTB)−1BT b. The rank of matrix B must be eleven.

17

Linear Solution 2 (cont’d)

The solution to Y is up to a scale factor p34. To recover the scale

factor, we can use the fact that |p3| = 1. The scale factor p34 can

be recovered as p34 = 1√
Y 2(9)+Y 2(10)+Y 2(11)

, where Y (9), Y (10),

and Y (11) are the last 3 elements of Y . The final projection

matrix (vector) is therefore equal to

V =





p34Y

p34





18

Linear Solution 3

Imposing the orthonormal constraint, RT = R−1, i.e., minimize

||AV ||2

subject to RT = R−1. Solution to this problem is non-linear !.

19

Linear Solution 3 (cont’d)

To yield a linear solution, we can impose one of the normal

constraints, i.e., ||p3||2 = 1, then the problem is converted to a

constrained linear least-squares problem. That is, minimize

||AV ||22 subject to ||p3||22 = 1.

ǫ2 = ||AV ||22 + λ(||p3||22 − 1) (2)

Note : the constraint is imposed in a hard way, i.e., it must be exactly

satisfied. Hence, λ is not a hyper-parameter but another variable that

must be solved as well (i.e., its first order derivative must be 0 too).

KKT condition decides if there exists a hard constraint solution. If not,

the constraint must be imposed a soft way, whereby the second term is

changed to (||p3||
2

2 − 1)2 and λ becomes a hyper-parameter and is not

required to be solved.

20

Decomposing A into two matrices B and C, and V into Y and Z

A = (B C)

V =





Y

Z





B
2N×9

=

























MT
1

1 ~0 0 −c1

~0 0 MT
1

1 −r1

.

.

.

MT
N

1 ~0 0 −cN
~0 0 MT

N
1 −rN

























C
2N×3

=

























−c1MT
1

−r1MT
1

.

.

.

−cNMT
N

−rNMT
N

























21

Y =





















p1

p14

p2

p24

p34





















Z = p3

22

Then equation 2 can be rewritten as

ǫ2 = ||BY + CZ||22 + λ(||Z||22 − 1)

23

Taking partial derivatives of ǫ2 with respect to Y and Z and

setting them to zeros yield

∂ǫ2

∂Y
= 0 =⇒ Y = −(BTB)−1BTCZ

∂ǫ2

∂Z
= 0 =⇒ CT (B(BTB)−1BT − I)CZ = λZ

Apparently, the solution to Z is the eigenvector of matrix

CT (B(BTB)−1BT − I)C. Given Z, we can then obtain solution

to Y .

24

Substituting Y into ||BY + CZ||2 leads to

||BY + CZ||2

= || −B(BTB)−1BTCZ + CZ||2

= ||(B(BTB)−1BT − I)CZ||2

= ZTCT (B(BTB)−1BT − I)T (B(BTB)−1BT − I)CZ

= ZTCT (B(BTB)−1BT − I)CZ

= ZTλZ

= λ

This proves that solution to Z corresponds to the eigen vector of

the smallest positive eigenvalue of matrix

CT (B(BTB)−1BT − I)C.

Note

(B(BTB)−1BT − I)(I −B(BTB)−1BT) = (B(BTB)−1BT − I)

25

Other Linear Techniques

• Another new method at

https://www.ecse.rpi.edu/˜qji/CV/new method.pdf

https://sites.ecse.rpi.edu/∼qji/CV/new method.pdf

Note all linear methods we introduce belong to the category of

direct linear transformation (DLT) formulation or the DLT

algorithm.

26

Robust Linear Method with RANSAC

The linear LSQ method is sensitive to image errors and outliers.

One solution is to use a robust method. The most commonly used

robust method in CV is the RANSAC (Random Sample

Consensus) method. It works as follows

• Step 1: Randomly pick a subset of K points from N (K>6)

points in the image and compute the projection matrix P

using the selected points.

• Step 2: For each of the remaining points in the image,

compute its projection error using the P computed from step

1. If it is within a threshold distance, increment a counter of

the number of points (the “inliers”) that agree with the

hypothesized P.

• Step 3: Repeat Steps 1 and 2 for a sufficient number of times

27

a, and then select the subset of points corresponding to the P

with the largest count.

• Step 4: Using the subset of points selected in Step 3 plus all

of the other inlier points which contributed to the largest

count, recompute the best P for all of these points.

More information on the RANSAC method may be found at

https://opencv.org/evaluating-opencvs-new-ransacs/

athe exact number of times is determined by the required probability that

one of subset does not contain the outliers

28

Unconstrained Non-linear Method

Let the 3D points be Mi = (xi, yi, zi)
T and the corresponding

image points be mi = (ci, ri)
T for i = 1, 2, . . . , N . From the

perspective projection equation λ(ci, ri, 1)
T = P (xi, yi, zi, 1)

T , we

can construct the loss function as the sum of the projection

(geometric) errors

ǫ2 =
N
∑

i=1

(
MT

i p1 + p14
MT

i p3 + p34
− ci)

2 + (
MT

i p2 + p24
MT

i p3 + p34
− ri)

2 (3)

Note other loss function such as the Sampson error (section 3.2.6

of Hartley’s book) function can be used. Sampson error represents

the first order approximation to the geometric error in equation 3.

29

Constrained Non-linear Method 1

Introducing the soft constraint that ||p3||22 = 1, the loss function

to minimize is changed to

ǫ2 =
N
∑

i=1

(
MT

i p1 + p14
MT

i p3 + p34
− ci)

2 + (
MT

i p2 + p24
MT

i p3 + p34
− ri)

2

+ λ1(||p3||22 − 1)2 (4)

Note where λ1 is the lagrangian multiplier and it is not a variable

to estimate but a hyper-parameter to tune.

30

Constrained Non-linear Method 2

Imposing the full the orthonormal constraints about R as

||p3||22 = 1 and (p1 × p3) · (p2 × p3) = 0 in a soft way yields a new

loss function

ǫ2 =
N
∑

i=1

(
MT

i p1 + p14
MT

i p3 + p34
− ci)

2 + (
MT

i p2 + p24
MT

i p3 + p34
− ri)

2

+ λ1(||p3||22 − 1)2 + λ2[(p1 × p3) · (p2 × p3)]
2 (5)

where the lagrangian multipliers (λs) are hyper-parameters to

tune.

31

Non-linear Least-Squares (NLS) Solutions

The solutions to non-linear least-squares problems are typically

iterative, starting from an initial guess.

• The gradient descent method (first order, applicable to any

objective function)

• Gauss-Newton method (or Levenberg-Marquardt) (first order,

applicable to only NLQ)

• The Newton method (second order, applicable to any

objective function)

Given an initial pi, non-linear methods iteratively update pi, i.e.,

pti = pt−1
i + η∆pi

They differ in the way ∆pi is computed.

32

Gradient Descent Method

First order gradient descent may be used to solve P iteratively.

For the loss function in Eq. 5, we can solve p3 as follows

pt3 = pt−1
3 + η∆p3

where η is the learning rate and ∆p3 = −∇p3
ǫ2, the gradient of

p3, is computed as follows

∇p3
ǫ2 =

N
∑

i=1

∂(
MT

i p1+p14

MT
i p3+p34

− ci)
2

∂p3
+

∂(
MT

i p2+p24

MT
i p3+p34

− ri)
2

∂p3

+ λ1
∂(||p3||22 − 1)2

∂p3
+ λ2

∂[(p1 × p3) · (p2 × p3)]
2

∂p3

where

33

∂(
MT

i p1+p14

MT
i
p3+p34

− ci)
2

∂p3
= −2(

MT
i p1 + p14

MT
i p3 + p34

− ci)
(MT

i p1 + p14)Mi

(MT
i p3 + p34)2

∂(
MT

i p2+p24

MT
i
p3+p34

− ri)
2

∂p3
= −2(

MT
i p2 + p24

MT
i p3 + p34

− ri)
(MT

i p2 + p24)Mi

(MT
i p3 + p34)2

∂(||p3||22 − 1)2

∂p3
= 4(pT3 p3 − 1)p3

34

∂[(p1 × p3) · (p2 × p3)]
2

∂p3
=

∂[(p1 × p3)
T (p2 × p3)]

2

∂p3

= 2(p1 × p3)
T (p2 × p3)[

∂(p1 × p3)

∂p3
(p2 × p3)

+
∂(p2 × p3)

∂p3
(p1 × p3)]

where

35

∂(p1 × p3)

∂p3
= (

∂p1
∂p3

)× pT3 + pT1 × (
∂p3
∂p3

)T

=









p11

p12

p13









T

×









1 0 0

0 1 0

0 0 1









=









(p11 p12 p13)× (1 0 0)

(p11 p12 p13)× (0 1 0)

(p11 p12 p13)× (0 0 1)









=









0 p13 −p12

−p13 0 p11

p12 −p11 0









Note: For X ∈ Rn, Y ∈ Rn, and Z ∈ RK ,
∂(X×Y)

∂Z
= ∂X

∂Z
× Y T +XT × ∂Y

∂Z
, where the cross product between

a row vector and a matrix is computed by computing the cross

product between the row vector with each row of the matrix as

shown above.

36

Alternatively, the vector cross product can be changed to matrix

and vector product

∂(p1 × p3)

∂p3
=

∂(P1p3)

∂p3
= P T

1

where P1 is the skew matrix of vector p1

P1 =









0 −p13 p12

p13 0 −p11

−p12 p11 0









(6)

Similarly, we have

∂(p2 × p3)

∂p3
=

∂(P2p3)

∂p3
= P T

2

37

Similarly, we can follow the same procedure to compute the

gradients for p1, p14, p2, p24 and p34.

Further information on multivariate calculus, see

https://en.wikipedia.org/wiki/Matrix calculus .

38

Gauss-Newton Method-unconstrained

For a loss function that involves minimization of the sum of

squared function values, i.e., the least-squared problem, we can

employ the Gauss-Newton method. Let

f(xi, yi, zi, ci, ri, P) =
MT

i p1+p14

MT
i p3+p34

− ci and

g(xi, yi, zi, ci, ri, P) =
MT

i p2+p24

MT
i p3+p34

− ri, the loss function in Eq. 3

can be written as

ǫ2 =
N
∑

i=1

f2(xi, yi, zi, ci, ri, P) + g2(xi, yi, zi, ci, ri, P) (7)

We can update p3 using

pt3 = pt−1
3 + η∆p3

39

where ∆p3 can be computed by performing the first order Taylor

expansion of f() and g(), and substituting them into Eq. 7 and

taking the derivative of the loss function wrt ∆p3 and setting it to

zero, yielding

∆p3 = −[(
∂f

∂p3
)(

∂f

∂p3
)T + (

∂g

∂p3
)(

∂g

∂p3
)T]−1[

∂f

∂p3
f() +

∂g

∂p3
g()]

We can similarly solve for p1 and p2.

40

Gauss-Newton Method-constrained

For constrained non-linear least squares problem, let C(p3) be the

equality constraint on p3. The loss function changes to

ǫ2 =
∑N

i=1 f
2(xi, yi, zi, ci, ri, P) + g2(xi, yi, zi, ci, ri, P) + λC(p3)

The Gauss-Newton method can be changed as follows. For p3 in

above equation, we have

pt3 = pt−1
3 + η∆p3

where ∆p3 can be computed as follows

∆p3 = −[(
∂f

∂p3
)(

∂f

∂p3
)T+(

∂g

∂p3
)(

∂g

∂p3
)T]−1[

∂f

∂p3
f()+

∂g

∂p3
g()+λ

∂C(p3)

∂p3
]

We can similarly solve for p1 and p2.

41

Levenberg Marquardt (LM) algorithm

LM algorithm is an improved version of Gauss-Newton method,

i.e., for p3, we have

pt3 = pt−1
3 + η∆p3

where ∆p3 , in the unconstrained case, is computed

∆p3 = −[(
∂f

∂p3
)(

∂f

∂p3
)T + (

∂g

∂p3
)(

∂g

∂p3
)T + αI]−1[

∂f

∂p3
f() +

∂g

∂p3
g()]

where I is an identity matrix and α is a damping factor that

varies with each iteration. The iteration starts with a large α and

gradually reduces α value as the iteration goes. With a small α,

the LM algorithm becomes Gauss-Newton method and becomes

the gradient descent method with a large α.

42

Newton Method-unconstrained

Newton method is the second order method and it assumes the

loss function is second order differentiable. Given a loss function

ǫ2 = f(xi, yi, zi, ci, ri, P), it performs the second order Taylor

expansion of f() wrt to p3 yields

f(xi, yi, zi, ci, ri, P
t) = f(xi, yi, zi, ci, ri, P

t−1) +
∂f()

∂p3
∆p3

+
1

2

∂2f()

∂p23
∆p3∆pT3

Taking the partial derivative of f() wrt ∆p3 and set to zero,

yielding

∂f()

∂∆p3
=

∂f()

∂p3
+ (

∂2f()

∂p23
)∆p3 = 0

43

Hence

∆p3 = −(
∂2f()

∂p23
)−1(

∂f()

∂p3
)

where ∂2f()
∂p2

3

is the Hessian matrix and ∂f()
∂p3

is the Jacobian matrix.

pt3 = pt−1
3 + η∆p3

44

Newton Method-constrained case

For constrained minimization, the loss function becomes

ǫ2 = f(xi, yi, zi, ci, ri, P) + λC(P)

∆p3 = −(
∂2f()

∂p23
+ λ

∂2C(P)

∂p23
)−1(

∂f()

∂p3
+ λ

∂C(P)

∂p3
)

where ∂2f()
∂p2

3

is the Hessian matrix and ∂f()
∂p3

is the Jacobian matrix.

pt3 = pt−1
3 + η∆p3

45

Separable Non-linear Least-squares Method

Let ĉi(p1,p3) =
MT

i p3+p14

MT
i p3+p34

= ai(p1
)

bi(p3
) and

r̂i(p2,p3) =
MT

i p2+p24

MT
i p3+p34

= ci(p2
)

bi(p3
)

Solve p1 and p2 in terms of p3 and substituting their solutions to

equation above. We can then solve for p3 non-linearly by

minimizing the projection error. It repeats until convergence.

46

Non-Linear Direct Solution to Camera Parameters

Another way of solving this problem is to perform minimization

directly with respect to the intrinsic and extrinsic parameters.

Let

Θ = (c0 r0 f sx sy ω φ κ tx ty tz)
T

f(Θ,Mi) =
MT

i p1 + p14
MT

i p3 + p34

g(Θ,Mi) =
M2

i p2 + p24
MT

i p3 + p34

Then the problem can be stated as follows :

47

Find Θ by minimizing

ǫ2 =
N
∑

i=1

[f(Mi,Θ)− ci]
2g[f(Mi,Θ)− ri]

2

Gradient descent can be used to solve for each parameter

iteratively, i.e.,

ΘT = Θt−1 − α∇Θǫ
2

Other methods to solve for non-linear optimization include

Newton method, Gauss-Newton, and Levenberg-Marquardt

method. See chapter 3 of Forsyth and Ponce’s book on how these

methods work. Refer to appendix 4 of Hartley’s book for

additional iterative estimation methods. Non-linear methods all

need good initial estimates to correctly converge. Implement one

of the non-linear method using Matlab. It could improve the

results a lot.

48

Linear Method v.s Non-linear Method

• Linear method is simple but less accurate and less robust

• Linear solution can be made robust via the robust method

such as the RANSAC method

• Linear method does not require initial estimate

• Non-linear method is more accurate and robust but complex

and require good initial estimates

The common approach in CV is two steps:

• Use a linear method to obtain initial estimates of the camera

parameters.

• Refine the initial estimates using an non-linear method.

49

Data Normalization

Hartley introduces a data normalization technique to improve

estimation accuracy. Details of the normalization technique may

be found on section 3.4.4 of Hartley’s book. The main idea is to

subtract the image coordinates for each point by their mean to

improve the numerical stability of the estimation. This

normalization should precede all estimation that involves image

data.

A brief discussion of this normalization procedure can also be

found at page 156 of Trucco’s book.

50

Compute Camera Parameters from P

P =









sxfr1 + c0r3 sxftx + c0tz

syfr2 + r0r3 syfty + r0tz

r3 tz









51

r3 = p3 tz = p34

c0 = p1p
T
3 r0 = p2p

T
3

sxf =
√

p1pT1 − c20 = ||pT1 × pT3 ||2

syf =
√

p2pT2 − r20 = ||pT2 × pT3 ||2
tx = (p14 − c0tz)/(sxf)

ty = (p24 − r0tz)/(syf)

r1 = (p1 − c0r3)/(sxf)

r2 = (p2 − r0r3)/(syf)

52

Compute Camera Parameters from P (cont’d)

Alternatively, we can compute W algebraically from P. Since

P = WM = W [R T] = [WR WT], let P3 be the first 3× 3

submatrix of P , the P3 = WR.

Following the RQ decomposition algorithm (different from the

QR decomposition) in

https://math.stackexchange.com/posts/1640762/revisions

we can decompose P3 into P3 = AB, where A is an upper triangle

matrix and B is an orthnormal matrix.

Hence, we have W = A and R = B.

Alternatively, we can use C = P3P
T
3 = WW T to solve W via

upper triangle Cholesky decomposition of C, i.e., C = UUT hence

W=U.

53

Given W , T can be recovered as T = W−1P4, where P4 is the last

column of P .

54

Upper Triangle Cholesky Decomposition

Upper triangle Cholesky decomposition of a matrix A starts with

a Cholesky decomposition of A, yielding

A = LLT ,

where L is a lower triangle matrix, followed by an RQ

decomposition of L

L = RQ

where R is an upper triangle matrix and Q is an orthnormal

matrix.

Hence,

C = LLT = RQQTRT = RRT

55

Approximate solution to imposing orthonormality

Let R̂ be the estimated rotation matrix R. It is not orthonormal.

We can find another orthonormal matrix
ˆ̂
R that is closest to R̂

via SVD. Let R̂ = UDV T , replacing D by the identity matrix I,

yielding
ˆ̂
R = UIV T .

ˆ̂
R is an orthonormal matrix that is closest to

R̂ .

56

Image Center using Vanishing Points

Let Li, i=1,2, . . . , N be parallel lines in 3D, li be the

corresponding image lines. Due to perspective projection, lines li

appear to meet in a point, called vanishing point, defined as the

common intersection of all the image lines ii. Given the

orientation of the Li lines be N = (nx, ny, nz)
T relative to the

camera frame, then the coordinates of the vanishing point in the

image frame are (nx

nz
,
ny

nz
).

Let T be the triangle on the image plane defined by the three

vanishing points of three mutually orthogonal sets of parallel lines

in space. The image center, i.e., the principal point (c0, r0), is the

orthocenter a of T .
ait is defined as the intersections of the three altitudes.

57

Estimating Scale Factor using Vanishing Points

Let (c1, r1) and (c2, r2) be the vanishing points for two sets of

parallel lines that are orthogonal to each other. Assuming the

image center (c0, r0) is known (i.e., at the image center), and the

horizontal and vertical scale factors are the same, i.e.,

fsx = fsy = fs. We can easily prove that

(fs)2 = (c1 − c0)(c2 − c0) + (r1 − r0)(r2 − r0)

The derivations of this equation use the facts: 1) ci =
fsni

x

ni
z

+ c0

and ri =
fsni

y

ni
z

+ r0, where i=1,2 and N i = (ni
x, n

i
y, n

i
z)

T is the

orientation of the ith line; and 2) (N1)T (N2) = 0.

58

Calibration with Planar Object

Since planar points reduces the rank of A matrix to 8, we cannot

uniquely solve for V using planar object as the solution to V is a

linear combination of the 4 null vectors of A matrix (up to four

scale factors).

But this becomes possible if we acquire two images of the planar

object, producing two A matrices. With each A providing 8

independent equations, we can have a total of 16 independent

equations, theoretically sufficient to solve for the intrinsic matrix

W. But since the two A matrices share the same W but different

extrinsic parameters, the extrinsic parameters must be eliminated

from the system of linear equations to only determine W.

59

Calibration with Planar Object (cont’d)

For planar calibration object, we can place the object frame on

the plane such that z=0. Hence, given the ith 2D/3D point, we

have

λi









ci

ri

1









= W
(

r1 r2 T
)









xi

yi

1









= H









xi

yi

1









(8)

where r1,r2, and T are respectively the first and second columns

60

of the rotation matrix, and the translation vector. Given a

minimum of 4 points, we can solve H using either linear or

non-linear methods. Given H, we have

W r1 = h1

W r2 = h2 (9)

Eq. 9 can be equivalently written as

r1 = W−1h1

r2 = W−1h2 (10)

Using the fact that r1 and r2 are unit vectors and they are

61

orthogonal to each other, we can derive the following

||r1||22 = 1 ⇒ hT
1 W

−tW−1h1 = 1

||r2||22 = 1 ⇒ hT
2 W

−tW−1h2 = 1

rT1 r2 = 0 ⇒ hT
1 W

−tW−1h2 = 0 (11)

Let K = W−tW−1, Eq. 11 can be re-rewritten as

hT
1 Kh1 = 1

hT
2 Kh2 = 1

hT
1 Kh2 = 0 (12)

Eq. 12 provides three equations for K. We need another image to

produce another three equations. In total, we have six equations

to solve for six unknowns in K as K is symmetric. Given K, we

can then apply upper triangle cholesky decomposition to K−1,

i.e., (K−1 = UUT)to solve for W (W=U). For details see

62

Zhengyou Zhang’s calibration method at

http://research.microsoft.com/en-us/um/people/zhang/Calib/

63

Camera Calibration using Lines and Conics

Besides using points, we can also perform camera calibration

using correspondences between 2D/3D lines and 2D/3D conics.

Furthermore, we can also extend the point-based camera

calibration to estimate the lens distortion coefficient k1. These

can be topics for the final project.

64

Line Basics

• In general, a line equation can be expressed as p = p0 + ηN ,

where p is an any point on the line, p0 is a given point on the

line, N is the orientation of the line, and η is scalar that

measures the distance between p and p0. The parameters of

the line include p0 and N . If p0 is chosen such that Op0 is

perpendicular to the line, we can reduce the number of line

parameters by one for a total 4 independent parameters for a

3D line, where O is the origin. This line equation applies to

both 2D and 3D line.

• Alternatively, given two points p1 and p2, the equation for the

line that goes through the two points is p = αp1 + (1− α)p2.

• A 2D line equation in row-column frame can also be

expressed as αc+ βr + γ = 0, where (α, β, γ) are the line

65

parameters. The orientation of the line is (α√
α2+β2

, −β√
α2+β2

).

Alternatively, given p1 and p2 in image plane in homogeneous

coordinates, the line between them can be computed as

l = p1 × p2, where × stands for the cross product and l is a

3× 1 vector that encodes image line parameters (α, β, γ). As

the norm of (α, β, γ) is 1, the the number of independent 2D

line parameters is 2.

• The intersection of two lines in 2D can be computed from the

cross product of their line parameters. Let l = (α, β, γ)T and

l′ = (α′, β′, γ′)T be the parameters of two 2D lines, their

intersection point p can be computed as p = l × l′. The

intersection point coordinates can be computed by dividing

the first two elements of p by the third element.

• An image line αc+ βr + γ = 0 in row-column frame, together

66

with the camera center, forms a plane (backprojection plane)

and the equation of the plane in camera frame is

[W T









α

β

γ









]T









xc

yc

zc









= 0, where nc = W T









α

β

γ









is the

normal of the back-projection plane relative to the camera

frame. The intersection of this plane with the image plane

zc = f gives the equation of the image plane in camera frame.

67

Camera Calibration using Lines

68

69

70

71

Camera Calibration under Weak Perspective Projection

For weak perspective projection in relative coordinate system, we

have




c′

r′



 = M2×3









x̄′

y′

z′









where the relative coordinates (c′i, r
′

i) and (x′

i, y
′

i, z
′

i) are obtained

72

by

c′i = ci − c̄

r′i = ri − r̄

x′

i = xi − x̄

y′i = yi − ȳ

z′i = zi − z̄

where (c̄, ȳ) and (x̄, ȳ, z̄) are respectively 2D and 3D centroid of a

set of points. Given a minimum of 3 pairs of (c′i, r
′

i) and

(x′

i, y
′

i, z
′

i), an unique solution to M can be found linearly. And,

more importantly, these points can be coplanar points.

73

Camera Calibration with Weak Perspective Projection

Given M and the parameterization for M introduced in the

previous chapter, M =





fsxr1
z̄c

fsyr2
z̄c



, we have

fsx
z̄c

= ||m1||2
fsy
z̄c

= ||m2||2

where m1 and m2 are the first row and the second row of the M

matrix.

74

Then,

r1 =
m1

||m1||2
r2 =

m2

||m2||2
r3 = r1 × r2

With weak perspective projection, we need a minimum of 3

points. But we can only solve the above parameters, i.e., the fsx
z̄c

,
fsy
z̄c

, and the orientation of the object frame relative to the

camera frame.

75

Camera Calibration with Lens Distortion

We present an approach for simultaneous linear estimation of the

camera parameters and the lens distortion, based on the division

lens distortion model proposed by Fitzgibbon a. According to the

divisional model, we have




ĉ− c0

r̂ − r0



 = (1 + ks2)





c− c0

r − r0





where s2 = (ĉ− c0)
2 + (r̂ − r0)

2. This is an approximation to the

athe paper appears in CVPR 01, pages 125-132

76

camera true distortion model. Hence,

λ

1 + ks2









ĉ− c0

r̂ − r0

0









= P















x

y

z

1















− λ









c0

r0

1









After solving for λ = p3(x y z 1)T and with some algebraic

simplifications yield

(D1 + kD2)V = 0

where V=(p1 p2 p3)
T , pi is the ith row of matrix P, and

77

D1 =





x y z 1 0 0 0 0 −ĉx −ĉy −ĉz −c0

0 0 0 0 x y z 1 −r̂x −r̂y −r̂z −r0





D2 =





xs2 ys2 zs2 s2 0 0 0 0 −c0xs
2 −c0ys

2 −c0

0 0 0 0 xs2 ys2 zs2 s2 −r0xs
2 −r0ys

2 −r0

The above equation can be solved as a polynomial eigen value

problem. MATLAB function polyeig can be used to obtain the

solution for both k and V . To use ployeig function, the matrices

on the left side of above equations must be square matrices. To

achieve this, multiple both sides of the above equation by

(D1 + kD2)
T yields the following, which can be solved for using

78

polyeig

(DT
1 D1 + k(DT

1 D2 +DT
2 D1) + k2DT

2 D2)V = 0b

The solution, however, assumes the knowledge of the image

center. We can fix it as the center of the image. Study shows that

the precise location of the distortion center does not strongly

affect the correction (see Ref. 9 of Fitz’s paper).

Alternatively, we can perform alternation, i.e., assume image

center as the principal point, then use the above to compute k

and the internal camera parameters. Then, substitute the

computed center back to recompute k and the camera

parameters. This process repeats until it converges, i.e., when the

change in the estimated parameters is small.

The procedure can be summarized as follows:
bwhen k is small, D1 is close to the A matrix.

79

1. Assume principal center is at image center. This allows to

compute ĉ− c0, r̂ − r0, and s2 = (ĉ− c0)
2 + (r̂ − r0)

2 for each

point.

2. Use Polyeig to solve for k and matrix P

3. Obtain the intrinsic camera parameters from P

4. Repeat steps 2) and 3) with the new principal center until the

change in the computed intrinsic parameters is less than a

pre-defined threshold.

80

Degeneracy with Camera Calibration

Degeneracy occurs when the solution to the projection matrix is

not unique due to special spatial point configurations.

see sections 3.2.3 and 3.3.3 of Forsyth’s book.

81

Camera Self Calibration

Self camera calibration refers to determining the interior camera

parameters of a camera by using only image data obtained from

different view directions or different view points.

Either camera or the object must move to acquire different

images.

82

Methods for Camera Self-Calibration

• General camera movement (involving both rotation and

translation)

• Only rotational movement (same view point but different

view directions)

• Only translational movement (different view points but same

view direction)

83

Camera Self-Calibration With Only Rotation

As we do not have 3D information, we can locate the object

frame anywhere to simplify the subsequent calculations.

Let’s assume that we select the initial camera frame as the

reference frame and the object frame coincide with the initial

camera frame. Let the image generated by the initial camera

frame be represented with subscript 0 indexed by i. Let j index

to the jth image point.

84

85

λ0,j









c0,j

r0,j

1









= WM0















Xj

Yj

Zj

1















= W[I 0]















Xj

Yj

Zj

1















= W









Xj

Yj

Zj









(13)

If we rotate the camera frame from the reference by a rotation

matrix Ri, we have

λi,j









ci,j

ri,j

1









= WMi















Xj

Yj

Zj

1















= W[Ri 0]















Xj

Yj

Zj

1















= WRi









Xj

Yj

Zj









(14)

86

Denote λ′

i,j =
λ0,j

λi,j
, substituting 13 to 14 to remove (Xj , Yj , Zj)

T

yields








ci,j

ri,j

1









= λ′

i,jWRiW
−1









c0,j

r0,j

1









(15)

Let Bi = WRiW
−1 =









Bi11 Bi12 Bi13

Bi21 Bi22 Bi23

Bi31 Bi32 Bi33









, we have









ci,j

ri,j

1









= λi,j









Bi11 Bi12 Bi13

Bi21 Bi22 Bi23

Bi31 Bi32 Bi33

















c0,j

r0,j

1









(16)

87

This leads to three equations

ci,j = λi,j(Bi11c0,j +Bi12r0,j + Bi13)

ri,j = λi,j(Bi21c0,j +Bi22r0,j + Bi23)

1 = λi,j(Bi31c0,j +Bi32r0,j + Bi33) (17)

Since λi,j = 1/(Bi31c0 +Bi32r0 +Bi33), substituting λi,j to the

above equations yields

ci(Bi31c0 +Bi32r0 +Bi33) = (Bi11c0 +Bi12r0 +Bi13)

ri(Bi31c0 +Bi32r0 +Bi33) = (Bi21c0 +Bi22r0 +Bi23)

Given N (j=1,2, ..,N) points, we can setup a system of linear

equations, through which we can solve B as the null vector of the

measurement matrix up to a scale factor.

Alternatively, we can divide the both sides of the above 2

88

equations by Bi33 and they can be rewritten in matrix format




−c0 −r0 −1 0 0 0 cic0 cir0

0 0 0 −c0 −r0 −1 ric0 rir0



bi =





−ci

−ri





(18)

where bi = (Bi11 Bi12 Bi13 Bi21 Bi22 Bi23 Bi31 Bi32)
T /Bi33 . If we

know at least 4 points in two images (such as i = 0, 1), we can

solve for bi up to a scale factor. The scale factor can be solved

using the fact that the determinant of WRiW
−1 is unit.

If Ri is known, then we can solve for W using the equation

BiW = WRi. In this case, one rotation, i.e., a total of two

images, is enough to solve for W .

To solve for W with a unknown Ri. From Bi = WRiW
−1, we

have

Ri = W−1BiW R−T
i = WTB−1

i W−T

89

Since R = R−T, therefore we have

(WWT)B−T
i = Bi(WWT) (19)

Assume C = WWT, we have

C =









sxf 0 c0

0 syf r0

0 0 1

















sxf 0 0

0 syf 0

c0 r0 1









=









s2xf
2 + c20 c0r0 c0

c0r0 s2yf
2 + r20 r0

c0 r0 1









(20)

equation 19 can be rewritten

BiCBT
i −C = 0 (21)

90

Since C is symmetric, Eq. 21 provides only six equations. To

solve for C, it is necessary to use two Bi, i.e., two rotations,

which leads to three images. Given two or more Bi, C can be

solved using equation 21 up to a scale factor. The scale factor can

subsequently be resolved using the fact that the last element of

W is 1.

Given C, from equation C = WW T , we can obtain W directly

from upper triangle Choleski factorization.

Section 11.1.3 of [5] introduced a method to recover the focus

length from a single rotation, assuming the principal point is

located in the image center.

91

Camera Self-Calibration With Only Translation

Like for the previous case, the camera frame coincides with the

object frame. We then translate the camera frame by Ti. For the

image points in the reference frame and the newly translated

frame, we have

λ0,j









c0,j

r0,j

1









= W[I T0]















Xj

Yj

Zj

1















= W









Xj

Yj

Zj









(22)

92

λi,j









ci,j

ri,j

1









= W[I Ti]















Xj

Yj

Zj

1















= W









Xj

Yj

Zj









+WTi (23)

From the above equations, we have

λi,j









ci,j

ri,j

1









= λ0,j









c0,j

r0,j

1









+WTi (24)

93

Equation 24 can be rewritten

λi,j









ci,j

ri,j

1









= λ0,j









c0,j

r0,j

1









+









sxf 0 c0

0 syf r0

0 0 1

















tix

tiy

tiz









(25)

then, we get three equations, assuming T is known a. Note the

three equations are not independent. In fact, each pair of points

offers only two independent equations for two unknowns λi,j and

λ0,j , plus the unknown W .

λi,jci,j = λ0,jc0,j + (sxftix + c0tiz)

λi,jri,j = λ0,jr0,j + (syftiy + r0tiz)

λi,j = λ0,j + tiz (26)

athere is no linear solution if T is unknown

94

Substituting λi,j = λ0,j + tiz to the above two equations yields

λ0,jci,j + tizci,j = λ0,jc0,j + sxftix + c0tiz

λ0,jri,j + tizri,j = λ0,jr0,j + syftiy + r0tiz (27)

Combining the two equations above to remove λ0,j yields

(rij − r0,j)tixfsx − (cij − c0,j)tiyfsy +

(ri,j − r0,j)tizc0 − (ci,j − c0,j)tizr0

= (rij − r0,j)tizci,j − (ci,j − c0,j)tizri,j

where W′ = (sxf syf c0 r0)
T . If we know at least 4 points in

three images (producted by two translations), we can solve W’,

then we can get the solution to W. Note the matrix is rank

deficient (rank=3) since the first and third columns as well as the

second and fourth columns are different only by a scale factor

given the same translation. Therefore, one translation is not

95

enough.

96

Camera Self Calibration Summary

Camera self calibration can be carried out without using 3D data.

It requires camera to move to produce different images. Camera

motions can be

• general motion-involving both rotation and translation.

Solution is unstable and less robust

• pure rotation-requires a minimum of two rotations (or three

images) if rotation is unknown. If rotation is known, one

rotation or two images is enough.

• pure translation-requires a minimum of two translations and

they must be known to have a linear solution.

• degenerate motions may happen and they cannot be used for

self calibration.

97

Pose Estimation

The goal of pose estimation is to estimate the relative orientation

and position between the object frame and the camera frame, i.e.,

determining R and T or extrinsic camera parameters.

Pose estimation is an area that has many applications including

HCI, robotics, photogtametry, etc..

98

Linear Pose Estimation

For pose estimation, it is necessary to know 3D features and their

2D image projections. They are then used to solve for R and T,

depending on if W is known or not.

Case 1: assume W is known, then from the projection equation

λW−1









c

r

1









= [R, T]















x

y

z

1















Given more than 6 sets of 2D/3D points, we can solve for R and

T linearly in the similar fashion to that of linear camera

calibration. The solution, however, does not impose the

constraint that R be orthnormal, i.e., R−1 = RT .

99

We can perform a postprocessing of the estimated R to find

another R̂, that is closest to R and orthnormal. See previous

pages for details.

Alternatively, we can still have a linear solution if we impose one

constraint, i.e., ||r3|| = 1 during optimization.

Case 2: if W is unknown, we can follow the same procedure as

camera calibration to first solve for P and then extract R and T

from P. Alternatively, we can assume some prior knowledge about

W such as the horizontal and vertical scale factors are equal, i.e.,

fsx = fsy and the principal point is located in the image center.

This knowledge can be imposed as constraints during the

estimation.

100

Non-linear Pose Estimation (cont’d)

Alternatively, we can set it up as a non-linear optimization

problem, with the constraint of R−1 = RT imposed, along with

any prior knowledge on W as discussed in the last slide.

101

Pose Estimation Under Weak Perspective Projection

For weak perspective projection in relative coordinate system, we

have




c′

r′



 = M2×3









x′

y′

z′









Given 2D/3D relative coordinates (c′i, r
′

i) and (x′

i, y
′

i, z
′

i), the goal

is to solve for matrix M . A minimum of 3 points are enough to

uniquely solve for the matrix M .

102

Pose Estimation Under Weak Perspective Projection

Given M and the parameterization for M introduced in the

previous chapter, we have

fsx
z̄c

= |m1|

fsy
z̄c

= |m2|

where m1 and m2 are the first row and the second row of the M

matrix.

Then,

r1 =
m1

|m1|
r2 =

m2

|m2|
r3 = r1 × r2

103

Pose Estimation Under Weak Perspective Projection

Given R, assuming W is known (i.e., calibrated camera), T can

be solved using

λW−1









c

r

1









= R









x

y

z









+ T

If W is unknown, under weak projection, we have

z̄c









c

r

1









=









fsxr1 fsxtx + c0z̄c

fsyr2 fsyty + r0z̄c

0 z̄c























x

y

z

1















104

Dividing both sides by z̄c yields





c

r



 = M2×3









x

y

z









+





vx

vy





where M2×3 is the first 2× 3 submatrix, vx = p14

p34

= fsx
z̄c

tx + c0

and vy = p24

p34

= fsx
z̄c

ty + r0. If we assume c0 and r0 are in image

center, we can solve for the translation tx and ty up to a scale

factor. We can never solve for tz .

With weak perspective projection, we need a minimum of 3

points. We can solve R but T up to a scale factor.

105

Learning-based Camera Calibration and Pose Estimation

• Direct regression approach

DeepFocal and DeepCalib [6, 1] that trains a

convolutional neural network that takes an image as input

and outputs it focus length.

106

PoseNet [3] that trains a convolutional neural network to

regress the 6-DOF camera pose from a single RGB image in

an end-to-end manner.

107

• Geometric model-based approach that employs a deformable

object model to perform simultaneous 3D reconstruction,

camera calibration, and pose estimation.

End-to-end recovery of human shape and pose [2]

Further information on the application of deep learning for

camera calibration and pose estimation may be found in this

paper [4].

108

References

[1] Oleksandr Bogdan, Viktor Eckstein, Francois Rameau, and Jean-Charles
Bazin. Deepcalib: A deep learning approach for automatic intrinsic cal-
ibration of wide field-of-view cameras. In Proceedings of the 15th ACM
SIGGRAPH European Conference on Visual Media Production, pages 1–
10, 2018.

[2] Angjoo Kanazawa, Michael J Black, David W Jacobs, and Jitendra Malik.
End-to-end recovery of human shape and pose. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7122–7131,
2018.

[3] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolu-
tional network for real-time 6-dof camera relocalization. In Proceedings of
the IEEE international conference on computer vision, pages 2938–2946,
2015.

108-1

[4] Kang Liao, Lang Nie, Shujuan Huang, Chunyu Lin, Jing Zhang, Yao Zhao,
Moncef Gabbouj, and Dacheng Tao. Deep learning for camera calibration
and beyond: A survey. arXiv preprint arXiv:2303.10559, 2023.

[5] Richard Szeliski. Computer vision: algorithms and applications. Springer
Science & Business Media, 2021.

[6] Scott Workman, Connor Greenwell, Menghua Zhai, Ryan Baltenberger,
and Nathan Jacobs. Deepfocal: A method for direct focal length estima-
tion. In 2015 IEEE International Conference on Image Processing (ICIP),
pages 1369–1373. IEEE, 2015.

108-2

