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Self camera calibration generally is not as effective as other calibration methods because 
it does not have the inherent 3D information embedded as compared to the conventional 
camera calibration methods. Among many factors, the accuracy of camera calibration 
technique depends on three major steps, they are: 

 Points used for calibration 
 Fundamental matrix estimation 
 The accuracy of 3D information used for camera rotation/translation. 

We make an effort to improve the performance of automated self calibration system by 
using more robust techniques for the defining steps.  
 
1. Computation of the Fundamental Matrix using RANSAC 

1.1 Harris Corner detector 
Corners are the intersections of two edges of sufficiently different orientations. They are 
important two dimensional image features to represent object shapes. Corners are stable 
across image sequences and useful in image matching for stereo and object tracking for 
motion, therefore playing an important role in matching, pattern recognition, robotics, 
and measuration. 
 
 Corners are generally located in the region with large intensity variations in every 
direction. The instrument to detect corners lies in image derivatives. Let xI  and yI  be 
image gradients in horizontal and vertical directions, we can define a matrix C as 
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where the sum are taken over a neighborhood of the pixel in consideration. This matrix 
characterizes the structure of the image gray level patterns. In fart, the geometric 
interpretation of the gray levels is encoded in the eigenvector and eigenvalues of the 
matrix. C is symmetric and it has two nonnegative eigenvalues 1λ  and 2λ . The 
eigenvectors of C encode the directions, while the eigenvalues encode the variational 
strength. A corner is detected if the minimum of the two eigenvalues is larger than a 
threshold. An alternative for detecting corners is: if   is larger than a 
threshold, where k is a small number (0.04). This method is called Harris Corner 
Detector, which is good for detecting corners with orthogonal edges. 
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1.2 Point Matching 
Correlation-based method is utilized to establish the correspondence between the left and 
right image points. The principle of this method is to find two corresponding points based 
on the intensity distributions of their neighborhoods. The similarity between two 
neighborhoods is measured by their cross-correlation. The underlying assumptions 
include:   
 

 Corresponding image regions are similar 
 Point and distant or single light source 
 Corresponding points are visible from both viewpoints 

 
Given an image point on the left image, the task is to locate another point in a 

specified region on the right image that is maximally correlated with the one on the left. 
For each left image pixel, its correlation with a right image pixel is determined by using a 
small correlation window of fixed size.  
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where (i, j) are the coordinates of the left image pixel. 
 d

r
= (d1, d2)T is the relative displacement between the left and right image pixels. 

2W+1 is the width of the correlation window. 
Il and Ir are the intensities of the left and right image pixels respectively. 

 2)(),( vuvu −−=Ψ  is the SSD correlation function. 
 

By moving the correlation window in certain region of the right image, the corresponding 
point is set as the pixel that has the highest correlation value.  
 
1.3 Computing Fundamental Matrix F and Essential Matrix E 
Both the fundamental and essential matrices could completely describe the geometric 
relationship between corresponding points of a stereo pair of cameras. We derived the 
essential and fundamental followed by the eight-point algorithm. 

 
The Essential matrix contains five parameters (three for rotation and two for the 

direction of translation).  Given the relative rotation R and translation T matrices, the 
skew symmetric singular matrix S is  
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From the epipolar geometry, we have 
                                                                                                                      (1.4) 0=r

T
l EPP

where Pl , Pr represent the 3D coordinates of P in the left and right camera  coordinate 
systems respectively.  is the essential matrix. tE S R=

Let Ul, Ur be the homogeneous pixel coordinates of point P in the left and right 
images. From full perspective projection, we know 
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where Wl and Wr are two matrices involving the intrinsic left and right camara 
parameters. Substitute the above equations into the essential matrix equation (1.4) yields 
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where fundamental matrix . Knowing F, we can compute the essential 
matrix . 
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 where f is a nine-vector containing the entries of the matrix F, and 
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Given a minimum of 8 corresponding pairs (cannot be co-planar), F can be solved up to a 
scale factor. The solution for f is given by the null vector of  A. For computing this, we 
evaluate the SVD of A and the eigenvector corresponding to the smallest eigenvalue of A 
is f. Ideally the rank of the matrix F should be 2, but in most cases, due to inaccuracies, 
the rank of the matrix so obtained is 3. To make F singular, we do the SVD of F and then 
set the value of the smallest element in the diagonal to zero. This algorithm is called the 
eight-point algorithm. 
 The linear solution from eight-point is often not accurate and it can be improved 
with a non-linear optimization method. This non-linear method minimizes function 
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Normally, we could use normalization of the coordinates of the corresponding 
points to decrease the influence of numerical instability. This is because if the coordinates 
of points are let’s say in the order of 100 or more then, the fundamental matrix obtained 
becomes a very ill conditioned matrix. Normalization procedure is done to improve the 
conditioning of the matrix and this is often helpful in getting an accurate estimate of F 
which can be used to obtain E and the epipolar geometry. We used the centroid of the sets 
of points in left image plane and right image plane to do normalization. XL, YL (XR, YR) 
denote the x and y coordinates of the centroid of the left(right) image plane. dL (dR) 
denotes the average distance of the points in left(right) image plane with respect to their 



centroid. We used the following matrix HL, HR to normalize the coordinate of points in 
image plane.  

                                                                             (1.10) 
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We used the normalized coordinates of image points in eight-point method to 

calculate the fundamental matrix F ′ . The normalization is done to both 2D and 3D 
coordinates in such a way that the average distance of each point from the origin in 2D 
case is 2  and the average distance of a 3D point from the origin is 3  [1,2]. The 
normalization factors are recorded and the image coordinates obtained at the end are 
again renormalized using the normalization factors recorded above. The actual 
fundamental matrix F could be calculated by the inverse process of normalization 
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1.4 Robust estimation of F and matching points using RANSAC   
The linear method is sensitive to image errors and outliers. Eight-point method will 
corrupt due to the outliers resulting from mismatching. However, by using randomly 
selected subsets during the implementation of linear method, we could end up with 
correct solution. RANSAC is an algorithm for robust model fitting by selecting a 
minimum sample set required for the model. Models containing outliers are rejected since 
they don’t generate sufficient consensus. The assumptions in RANSAC are 

 The model can be estimated from K data items; 
 There are N (N>K) data items in total. 

 
Assume that the whole set of data may contain up to a fraction ε of outliers, then  

the probability that all K data in a subset are good is (1 )Kε− , and the probability that all 
s different subsets will still contain at least one or more outliers is (1 (1 ) )K sε− − . So the 
probability that at least one random subset has no outliers is given by 

1 (1 (1 ) )K sP ε= − − −  
Thus the number of iterations needed is computed as 
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 In this project, we aim to find an optimal subset to compute the fundamental 
matrix F using RANSAC. Each time a minimal sample (8 pairs) is selected from the 
matches based on SSD from which a tentative F is calculated from eight-point method. 
The epipolar lines for each pair of matching points can be derived from F. Those matches 



with the distance from the corresponding epipolar lines smaller than a threshold are kept 
as inliers. The process is iterated until a sufficient number of samples have been taken. 
The F is calculated from the optimal subset with the largest number of inliers. Setting F 
as initial value, we continue to improve F with a non-linear optimization method, then we 
can compute the epipolar geometry to guide more additional matches. At this point only 
feature points being in epipolar correspondence should be considered for matching. The 
final F is derived from all correct matches. 
  
 The whole algorithm for this part of project can be described as follows: 

 Extract feature points in left and right images. 
 Construct a set of potential matches using SSD. 
 Implement RANSAC to randomly select subset to compute F, determine inliers, 

and find the optimal subset with the largest number of inliers to refine F. 
 Improve F with non-linear minimization. 
 Look for additional matches based on the epipolar geometry. 
 Derive F from all correct matches. 

 
4. Experimental results 

 

      
 

Figure 1.1. Left and right desk image 
 

      
 

Figure 1.2 Corner feature points in left and right image from Harris corner detector 



      
 

Figure 1.3a Matching points using RANSAC 
 

      
 

Figure 1.3b Epipolar lines using computed F from RANSAC 
 

      
 

Figure 1.4 Matching points with improved F  
 

 We first use Harris corner detector to extract the corner features in left image and 
right image (Figure 1.1).  Those corners shown in Figure 1.2 are candidate feature points 
for point matching. We can observe that corners at the telephone handle is not detected 
since Harris corner detector is good for detecting corners with orthogonal edges. The 



matching points based on SSD are shown in Figure 1.3. They include both magenta and 
yellow marked points. Magenta points are rejected by RANSAC since they don’t satisfy 
epipolar geometry. The inliers are those yellow marked matches in Figure 1.3b with the 
distance from the corresponding epipolar lines smaller than a threshold (1 pixel). These 
inliers  are used to compute the fundamental matrix F from which we draw the epipolar 
lines in Figure 1.3b. Using improved F by a non-linear optimization method, we can 
compute the epipolar geometry to guide more additional matches. For a feature point in 
left image, only the corners in right image that are within a small range (1 pixel) around 
the corresponding epipolar line are considered for matching. The final F is derived from 
all correct matches. The matching feature points and epipolar line in both left and right 
images are illustrated in Figure 1.4.  Compared with the inliers from RANSAC (Figure 
1.3b), more good candidates of matching points are obtained to guarantee a correct and 
stable F matrix. 

 
 

      
  

Figure 1.5 Left and right camera calibration board image 
 

      
 

Figure 1.6 Corner feature points in left and right image from Harris corner detector 
 



      
 

Figure 1.7a Matching points using RANSAC 
 

      
 

Figure 1.7b Using computed F from RANSAC  
 

   
 

Figure 1.8 Matching points with improved F  
 
 We implement the same procedure on another camera calibration board images. 
The results are shown in Figure 1.6, 1.7, and 1.8. Due to the similar grid in camera 
calibration board, our correlation method gives many wrong matches. Figure 1.7a shows 
that RANSAC successfully rejects those mismatches (magenta squares) and retain most 



of correct match points (magenta squares) in left and right images. Based on the epipolar 
geometry derived from improved F matrix, we add more matching features. However, it 
also adds some mismatches.  
  

Table 1.1 All the Parameters set in the algorithm 
RANSAC Nonlinear  

Image 
 

Corner 
threshold 

 
SSD 

window 
ε  p s Inlier distance 

threshold 
Inliers Error Error 

Desk 100 11 11×  0.5 0.99 8 1.0 pixel 241/295 0.21 0.18 
Board 180 9 9×  0.6 0.99 8 1.0 pixel 246/443 0.15 0.17 
 
 The parameters in the whole algorithm are listed in Table 1.1. The error is the 
nonlinear minimization error, which is calculated from the nonlinear objective function 
(formula 1.9) based on the matching points and F matrix. For camera calibration board, 
the improved F matrix gives higher error, which means that some mismatches appear. 
The fundamental matrices we obtained for these two sequences  of images are as 
follows (Table 1.2). 
 

Table 1.2 F matrix and number of matching points of two images 
Image Matching 

points 
F matrix 

 
Desk 

 
316 

0.00000039756912  -0.00010344066759   0.01025149810761
0.00009925074566   0.00000742648782  -0.09381208755582
-0.01121827458737  0.09274944097038   0.99118299976579
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Board 

 
521 

0.00000001980648  -0.00000576528799  -0.01777073875812
0.00000480980401  -0.00000189261424   0.96613911406288
0.01801435695895  -0.96497133090921   0.06737150198919
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A sequence of F matrices is computed for mutually correlated pairs in a sequence of 
camera calibration images which are used by camera calibration in section 3.  
 
2. Fundamental matrix estimation 
 
The basic theory of fundamental matrix estimation is discussed in the previous sections, 
the normalized 8 point method and the 8 point methods is discussed, In this section we 
discuss implementation of another algorithm which can be used to improve the results of 
the existing algorithms. 
 
2.1 Least squares regression 

 
Consider the following equation 

ε+= fAa T
ii   ,...1 ni =    (2.1) 

In the above equation, a  is the measured scalar with error ε , which is a gaussian error 
having standard deviation σ . Here the matrix A is a p dimensional matrix that is known 



and the matrix f is a p dimensional vector to be estimated. Then if the value n is greater 
than p the set of equations is overdetermined. The noise, however renders these equations 
inconsistent. Thus the least squares method is used to obtain the solution, here we obtain 
the pseudo inverse of A and then obtain the solutions for the values of f. We obtain the 
value of f by minimizing f in the direction of a particular coordinate, thus this becomes 
unstable sometimes as can be seen in figure 2.1(b) 

 
figure 2.1 : (a) the orthogonal distance and (b) ordinary least squares distance. It can be 
seen that the latter distance becomes less stable as the angle between the line and y-axis 
decreases, leading to unstable solutions. 
 
But if we instead of obtaining f from A which is n x p matrix, if we obtain f by applying 
the constraint , it is equivalent to calculating the algebraic Euclidean distance as 
shown in figure 2.1 (a)[6,7,8].  

;1=ff T

 
Unfortunately both these methods produce inaccurate results. This is because the residual 
error is assumed to e a gaussian and also because there is no proper normalization done 
while computing F. 

2.2 Invariant Linear Fitting 

As described in [3], we describe fundamental matrix in this method as a 4D conic. For 
simplicity, we estimate f using a the equation If the coordinate system is 
changed in one or both images, then the best fitting  to the transformed points must be 
exactly the result of the same transformation (s) applied to the  of the original points. 
In [5] an invariant norm for conics was suggested for Euclidean transformation It has 
been observed that the fundamental matrix is like a conic in four dimensional image 
space [7] . More on constructing these invariants is given in [6]  
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Consider the transformations of the image coordinates G in one image are such that 
xxG =~ , and image two xxG ′=′~ which leads to a transformation of F such that 
FGGF ′=~  with 
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Thus, from the above equations, it can be seen that 
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From this it can be seen that if 0, =′tt , then the norm and is invariant to 

rotations of the image plane. This leaves the upper left 2x2 submatrix to define the norm, 
because only these values are unaffected by the changes due to translation, and due to the 
orthogonality property of the rotation matrices, we have 
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the determinant of the quantity inside the brackets. The number of invariants is given by 
2 which is dim(A) – dim( )  thus there are at least two invariants. Thus the matrix 

 and the problem reduces to optimizing the value of 
subject to . Here the value M is called the moment matrix and is 

given by , where A is the matrix encoding the information about the points in the 
image. This can be rewritten as a generalized eigenvector problem : 
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but this is not so stable hence a faster and more stable method is proposed by [5] where f 
is partitioned into where the former contains the elements corresponding to the 
first2x2 submatrix of f and the rest are contained in the latter. The matrix M is partitioned 
correspondingly into 
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Which implies that  
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Then, 
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to minimize this for , if constfJf T =1111 λ is a lagrangian multiplier, then we must set the 
derivative w.r.t of . This yields, 1f 1111 ffQff TT λ−
 

11 fQf λ=      (2.10) 
 

which is the eigenvector solution of the above equation. It is important to note that unless 
the data points all lie on a single line, the matrix always has an inverse. Similarly the 
other quadric constraints can be imposed on the elements of F to restrict them to a certain 
subspace of fundamental matrices. We can also add an arbitrary linear constraint to F into 
the optimization as can be seen in [5]. 

22M

 
 
 

 
Figure 2.2 : Both (a) and (b) show the perpendicular distances to the fit. Under gaussian 
assumptions minimizing this gives the maximum likelihood estimate. (a) Taking 
eigenvalue minimizes the sum of squares of distances of the points to the line. Here the 
algebraic distance is equal to the geometric distance (b) The eigenvector of the moment 
matrix does not minimize the sum of squares of the points to a conic, here the algebraic 
distance is not equal to the geometric distance. 
 
Also the above algorithm could be used for iterative least squares minimization using the 
method described in [11]. The nonlinear constrained/unconstrained optimization can also 
be done to improve the results of the program. All the methods discussed above were 
implemented and tested on synthetic data. 



 
2.3 Discussion 
 
The results obtained using all the techniques mentioned above are discussed below one 
set is tested using the synthetic data, and the results are compared. As we already have 
information about the intrinsic camera parameters of the camera used we can analyze the 
performance of various methods used for obtaining the F matrix. 
 

1) Result using the conventional 8 point method/ least squares regression: 
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2) Result using the normalized 8 point method 
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3) Result using the invariant linear fitting: 
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4) Result using the nonlinear unconstrained minimization: 
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From all the results obtained above we can see that the results obtained using both the 
invariant linear fitting and the results obtained using the normalized 8 point method are 
good because the first two diagonal values in matrix D are very near each other. It is very 
difficult to describe the effectiveness of the matrices this manner, the methods can be 
evaluated better after their performance using the self calibration method is observed. 

 
3. Camera self-calibration using the singular value decomposition 
of the fundamental matrix 
 
Intrinsic parameters of cameras are very important for 3D reconstruction. Traditionally, 
we can use calibration board to calibrate a camera and obtain its intrinsic parameters. 
This method is suitable for off-line calibration only. In practice, it often happens that we 
have no calibration data, but only a sequence of images. These images can be easily 
obtained by a hand-hold video camera. Can we get the intrinsic parameters using only a 



sequence of images? The answer is ‘YES’. This can be done by camera self-calibration, 
which refers to determining the interior camera parameters of a camera by using only 
image data obtained from different view points.  
 
Many methods have been proposed to do camera self-calibration. Maybank and Faugeras 
[12] have demonstrated that the calibration problem can be solved by tracking a set of 
points among images of a rigid scene, captured while the camera is pursuing unknown, 
unrestricted motion, the calibration parameters can be computed by determining the 
image of the absolute conic. The absolute conic is a special conic lying at the plane at 
infinity, having the property that its projection depends on the intrinsic parameters only. 
This fact is expressed mathematically by the so-called Kruppa equations. Several 
researchers have investigated the application of the Kruppa equations to the self-
calibration problem. We have implemented the method presented in [13] and finished 
some experiments. 

3.1 Introduction of the theory 

In order to keep correspondence with the paper, the notations here are different what we 
used in class. In the perspective projection, a 3D point M = [x,y,z]t is projected to a 2D 
image point m=[u,v]t through a 3×4 projection matrix P, as ,where s is a scale 
factor and the notation  and 

MPms ˆˆ =
m̂ M̂  are the coordinates in homogeneous system.  

tt zyxMvum ]1,,,[ˆ,]1,,[ˆ ==      (3.1) 
In the case of a stereo system, every 3D point M yields a pair of 2D projections m1 and m2 
on the two images. Those projections are defined by the following relations: 

MPmsMPms ˆˆ,ˆˆ 222111 ==      (3.2) 
Assuming that the two cameras are identical and that the world coordinate system is 
associated with the first camera, the two projection matrices are given by: 

]|[],0|[ 21 AtARPAP ==      (3.3) 
where R and t represent respectively the rotation matrix and the translation vector 
defining the rigid displacement between the two cameras. The intrinsic matrix has the 
following form 
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The parameters uα  and vα  correspond to the focal length in pixels along the axes of the 
image, θ is the angle between the two image axes and (u0, v0) are the coordinates of the 
image principal point. In practice, θ is very close to 90o for real camera. 
 
Let K denote the symmetric matrix AAt. By eliminating the scalars s1 and s2 in equation 
(3.2), we get the relationship between the pair of projections of the same 3D point M. 

0ˆˆ 12 =mFmt        (3.5) 
where F is the fundamental matrix, given by 
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[x]× denotes the antisymmetric matrix of vector x that is associated with the cross product. 
The matrix has the property [ ] yxyx ×=×  for each vector y and has the following 
analytic form: 
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The fundamental matrix F describes the epipolar geometry between the pair of views. It 
is the equivalent of the essential matrix [ ] RtE ×= . The relationship between fundamental 
matrix and essential matrix is as follows: 

FAAE t=        (3.8) 
As pointed out by Trivedi [14], the symmetric matrix EEt is independent of the rotation R 
since 
                          [ ] [ ] [ ] [ ] tttt tttRRtEE )()( ×××× ==       (3.9) 

Substitution of Eq.(3.8) into the above equation yields 
                   [ ] [ ] 11 )()( −

××
−= AttAFKF ttt      (3.10) 

This equation will be employed to derive the simplified Kruppa equations. 
We shall not introduce the derivation of the classical Kruppa equations here. We will 
only introduce the result of the simplified Kruppa equations presented in [13]. Let e` 
denote the epipole in the second image. Using the singular value decomposition (SVD), 
the fundamental matrix F can be expressed: 

tUDVF =            (3.11) 
The fundamental matrix F has a rank of 2, the diagonal matrix D has the following form: 
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where r and s are the eigenvalues of the matrix FFt, U and V are two orthogonal matrices. 
By making use of this relation, the epipole in the second image e' can be deduced simply. 

0'' == eUVDeF ttt      (3.13) 
Since D is a diagonal matrix with a last element equal to zero, the following direction 
solution for e' is obtained: 

0,' ≠= γγUme      (3.14) 
with m=[0,0,1]t. Therefore, the matrix [e']× is equal to 

tUQUe μ=×][ '      (3.15) 
where μ is a nonzero scale factor and Q=[m]× is given by: 
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By substituting Eq.(3.16) into Eq.(3.10), a new expression for the Kruppa equations is 
obtained: 

tttt UKUQUQUFKF μ=      (3.17) 



Since U is an orthogonal matrix, left and right multiplication by Ut and U respectively, 
yields the following notably simple expression for the Kruppa equations: 

tttt KUQQUKVDDV μ=      (3.18) 
Because of the simple forms of the matrices D and M, relation (3.18) corresponds to three 
linearly dependent equations. Indeed, denoting by  the column vectors of U and 
by  the column vectors of V, the matrix equation (3.18) is equivalent to 
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The above expressions finally yield the following three linearly dependent equations for 
the matrix K: 
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Only two of these three equations are linearly independent. They are the simplified 
Kruppa equations.  
 
3.2 Self-calibration using the simplified Kruppa Equations 
 
The simplified Kruppa equations can be applied to the problem of self-calibration. These 
equations are embedded a non-linear optimization framework to iteratively solve the 
problem of self-calibration. 
 
Let  be the vector formed by the parameters of the SVD of 

F. Let also 
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images defines a fundamental matrix, which in turn yields the following two equations 
regarding the elements of K: 
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The above system of equations is of degree two in five unknowns defining the K matrix. 
Let ),( KSFijπ  denote the difference ),(),(),(),( KSKSKSKS FjFiFjFi ρρ Φ−Φ  and let 

 be its variance. This variance can be computed as ),(2 KSFijπσ

F

t
Fij

S
F

Fij
F S

KS
S

KS
KS

Fij ∂

∂
Λ

∂

∂
=

),(),(
),(2 ππ

σπ    (3.22) 



where  is the 20×20 covariance matrix associated with S
FSΛ F. The variances  

can be used to automatically weight the residuals 
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),( KSFijπ  according to their 
uncertainty. 
 
Matrix K is computed as the solution of a non-linear least squares problem, namely 
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Recalling that each fundamental matrix yields two independent equations and K consists 
of five unknowns, the minimum number of required displacements (i.e. N) is in general 
case equal to three. Additional constraints provided by more than three fundamental 
matrices can improve the accuracy of the solution. The reason for including the third 
simplified Kruppa equation, although it is dependent on the other two, is that it further 
constrains the solution and provides slightly better results. The minimization of Eq.(3.23) 
can be done using a classical Levenberg-Marquardt algorithm. The intrinsic matrix A can 
be extracted from K in three steps. First, A-t is computed by employing the Cholesky 
decomposition of K-1, then it is transposed and inverted to yield A. 

3.3 Experiments and discussion 

In practice, we implement the algorithm a little different from the above theory. The 
MATLAB has optimization toolbox that can iteratively solve the non-linear least square 
problem. We can directly use the unknown variables in intrinsic matrix A as the input 
parameters in iterative process. Besides, the Eq.(3.23) requires calculation of Jacobian 
and covariance matrix in order to get the weight . If we assume the weights 
are uniform, the implementation difficulty will decrease very much. The simplified 
optimization problem becomes 
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Since the key idea of solving the self-calibration problem using non-linear optimization is 
to satisfy the constraints described in Eq.(3.21), the kind of implementation is also 
reasonable. 
 
We use eight images of a image sequence taken by a video camera to do our experiments. 
Figure (3.1) shows two of the images (the first one and the eighth one). We find some 
matching points between each pair of images and use these points to calculate the 
fundamental matrix F. Based on the fundamental matrices between pairs of images, we 
implement a MATLAB code to solve the optimization problem in Eq.(3.24). We got 
some interesting results. 



  
Figure 3.1 The first and the eighth images in image sequence 1 

 
In order to solve the non-linear optimization problem, we need some initialization. For 
real camera, the θ in intrinsic matrix A is normally 90o. Hence we only take four 
variables in intrinsic matrix, i.e., 00 ,,, vuvu αα . Generally speaking, we use the image 
center as the initialization of principal points. We must guess the initial value for vu αα , . 
We noticed that if the initialization is far away from the real values, the result by non-
linear optimization is not correct. For example, if we use [500 800 360 240]t as the 
initialization for 00 ,,, vuvu αα , the optimization converges to wrong solution 
 [52.484 77.012 148.51 -193.48]t. This is a general problem for non-linear optimization. 
The result depends on the initialization. If the initialization is too far away, the 
optimization will converge to another unreasonable local minima. Table 3.1 shows some 
of our experimental results. We also calculate a relative deviation to qualify the 
converging results, which is the ratio of standard deviation to the mean of the results. Let 
ri denote the optimization result of a variable, μi denote the mean of its results, we 
calculate the quality number as 
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We notice that even the initialization changes in a relatively large range, the results of the 
non-linear optimization process do not change significantly, which means the robustness 
of the non-linear optimization. 

Table 3.1 initialization and results of our experiments 
Initializations Result 

uα  vα  0u  0v  uα  vα  0u  0v  
650 750 360 240 700.3 683.1 377.9 228 
500 800 360 240 703.21 698.96 410.93 253.1 
800 800 360 240 710.18 698.7 406.87 247.5 
400 900 360 240 52.484 77.012 148.51 -193.48 

 
Table 3.2  relative deviation of our experimental results 

 uα  vα  0u  0v  
μ 704.5633333 693.5866667 398.5666667 242.8666667 

0.006051029 0.015119476 0.051852471 0.061213286 
0.001920811 0.007747169 0.031019486 0.042135603 λ 
0.007971841 0.007372306 0.020832985 0.019077683 



We also found a problem with our non-linear optimization process. For some special data 
set, the convergence range for different initializations is small. For the image sequence 
like figure 3.3, it’s difficult to find a good initialization that can produce a stable result. 
We think this is due to the special structure of the image pattern, i.e., most feature points 
are coplanar. Besides, we know that this image sequence was taken by a auto-zoom 
camera. Since the focus length always changed, it’s more difficult to estimate the 
intrinsic matrix. Even though, we can get some estimation with our implemented 
algorithms, which are shown in table 3.3. 
 

 
Figure 3.2 the first and eighth image in the second image sequence 

 
Initializations Result 

uα  vα  0u  0v  uα  vα  0u  0v  
1326.5 1382.5 345.69 225.67 1400 1400 320 240 
1035.9 1259.2 311.19 350.18 1500 1400 320 240 

 
Table 3.3 results on the second image sequence 

Conclusion 
 
We use SSD for establishing correspondences and use RANSAC method to robustly 
calculate fundamental matrix. Since fundamental matrix is the key data for self-
calibration implemented in this project, we also implement other two methods presented 
in [5][11] to calculate the fundamental matrix more accurately and robustly. After we got 
the fundamental matrix between each pair of images in the image sequence, we can use 
the simplified Kruppa equations to solve for intrinsic matrix using a non-linear 
optimization process. The results by non-linear optimization process can converge to a 
stable solution even if the initialization varies in a relatively large range.  
 
Contribution of each team member 
 
Bhavani Shankar Yanamadala, Fundamental Matrix Estimation (Section 2) 
Lei Zhang, Camera self-calibration Using the SVD of the F Matrix (Section 3) 
Xiaoli Zhang,  Computation of the Fundamental Matrix using RANSAC (Section 1) 
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