
Feature Extraction

Image features represent dominant and distinctive image regions.

They can be used to characterize the shape or appearances of the

image or the objects in the images. Features include photometric

and geometric features. Features are widely used by many

different computer vision tasks including camera calibration,

stereo, object detection, tracking, recognition, and 3D

reconstruction.
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Feature Extraction (cont’d)

Image features can be divided into geometric features and

appearance features. They include

• Geometric features: linear features like edges, point features,

including the Scale Invariant Feature Transform (SIFT),

corners, and junctions , and complex shape features like lines

and curves. They characterize object shape information.

• Appearance features: Local Binary Pattern (LBP),

Histogram of Gradients (HOG) features, and Gabor features.

They capture object reflectance, materials, illumination, etc..

properties.

These features are collectively called hand-crafted

features. The latest developments are to learn feature

representations using a deep learning model. The learnt
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features are better than hand-crafted features.

3



Edge Detection

An edge is defined to be a sequence of pixels that border two

homogeneous regions of different intensities. It can concisely

represent an object’s shape. An edge indicates discontinuity in

image intensity function. Edge detection amounts to locating

each edge pixel (also referred to as edgel) and determining its

orientation and strength.
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Example

Edges may be generated from different physical sources. But the

resultant edges all exhibit various degrees of discontinuities in

image intensity.
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Physical Edge Sources

• different surface properties

color, reflective properties, texture

• discontinuity in distance and surface orientation

• shadows
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Edge Detection Is Difficult

• Different types of edges: step, ridge, ramp, roof edge

• Subject to image noise (intensity noise and spatial

quantization errors)
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Edge Detection Is Difficult (cont’d)

ideal step edge

perturbed step edge
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see figure 4.2
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Edge Detection Paradigm
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Edge Enhancement

Edge enhancement is often formulated a filtering processing by

enhancing the high frequency components in the image. Design a

filter and convolve it with the image. The result of convolution

should be large at edge pixels and low elsewhere.
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Non-Maximal Suppression

Remove edge candidates that are not locally maximal.
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Edge Thresholding

Based on the response of each pixel from edge enhancement,

decide which pixel is edge pixel and which is non-edge pixel,

yielding a binary edge map.
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Edge Enhancement

• First order edge enhancer

• Second order edge enhancer
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First Order Edge Filter

Let I(c,r) be the image intensity at pixel (c,r), then the first order

image gradient can be approximated by

▽I(c, r) =





∂I(c,r)
∂c

∂I(c,r)
∂r





where the partial derivatives are numerically approximated via

(see Appendix 2)

∂I

∂c
= I(c+ 1, r)− I(c, r)

∂I

∂r
= I(c, r + 1)− I(c, r)

Gradient magnitude and direction are defined as
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g(c, r) =

√

(
∂I(c, r)

∂c
)2 + (

∂I(c, r)

∂r
)2

θ = arctan
∂I(c,r)

∂r
∂I(c,r)

∂c

where θ represents the steepest slope direction.
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This leads to two first order image derivatives filters

hx = [−1 1] hy =





−1

1





where hx computes the first order horizontal image derivative and

hy computes the first order vertical image derivative.

If we take first order derivatives in 45 and 135 degrees, we obtain

the Roberts edge operator:





1 0

0 −1









0 1

−1 0





Note the image gradients computed using Roberts operator differ

from those using hx and hy in gradient direction (by 45 degree).
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Classical First Order Edge Filters

In order to be more robust to noise, differentiation must be

performed on a smoothed version of the image. Therefore, edge

detection is often preceded by a smoothing operation, i.e.,

(I ∗ s) ∗ h If an image is smoothed with the impulse response

(averaging smoothing)

s =









1 1

1 1

1 1









and the resulting image is then convolved with a first order

horizontal derivative hx, we have the classical vertical Prewitt

operator, because of the associative property of convolution,
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i.e., (I ∗ s) ∗ h = I ∗ (s ∗ h)
Prewitt

s ∗ hx =









1 0 −1

1 0 −1

1 0 −1









The horizontal Prewitt operator









1 1 1

0 0 0

−1 −1 −1









can be generated in a similar fashion .
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If the image is smoothed with the impulse response (weighted

averaging)

s =









1 1

2 2

1 1









is then convolved with hy, we have the horizontal Sobel operator

s ∗ hx =









1 0 −1

2 0 −2

1 0 −1








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The vertical Sobel operator can be generated in a similar fashion









1 2 1

0 0 0

−1 −2 −1








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If the image is smoothed with the Gaussian response (Gaussian

averaging) and the smoothed image is then convolved with

difference operators (hx and hy), this produces the well-known

Canny edge detector (named after John Canny). Also called

Difference of Gaussian or DoG filter, it is created by taking the

first order derivative of the Gaussian filter.
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An Example of Edge Detection
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Edgel Descriptors

• Edge direction (perpendicular to gradient direction see figure

4.3)

• Edge position (specified by the pixel position (c,r))

• Edge strength (gradient magnitude)
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Gradient-based Facet Edge Detector

The gray levels in a small neighborhood centered at pixel (c, r) on

the image is approximated by a sloped facet model

αc+ βr + γ = 0, where α̂ and β̂ are estimates of α and β based

on a least-squares fitting, i.e.,

α̂ =

∑

r

∑

c cI(c, r)
∑

r

∑

c c
2

β̂ =

∑

r

∑

c rI(c, r)
∑

r

∑

r r
2

Then, the gradient at this point is

g(c, r) =

√

α̂2 + β̂2

θ = arctan
β̂

α̂
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Design a First Order Edge Filter

A good edge kernel should yield accurate edge gradient (both

magnitude and direction) estimation. Assume the gray level in a

3 x 3 neighborhood can be described by a simple linear

relationship I(c, r) = αc+ βr + γ. Design a 3× 3 edge detector

that maximizes the accuracy of the estimated image gradient, i.e.

find the kernel coefficients a and b by minimizing the variance of

convolution output.
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Design a First Order Edge Filter (cont’d)

Let a filter be parameterized by








−a −b −a

0 0 0

a b a









Noise model

I(c, r) = αc+ βr + γ + ǫ(c, r)

where ǫ(r, c) is independent noise having mean 0 and variance

σ2(c, r)

Given the above parameterized filter, the noise model, and the

linear facet model, find a and b that minimizes the variance of the

estimated gradient. Using different noise models, the
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minimization leads to the Sobel or Prewitt filter (see Haralick’s

book pages 341 and 342, Vol. 1).
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The Optimal First Order Filter

• High SNR for noisy step edge (assume noise is white and

additive)

• Good location accuracy

• Single response

30



The Optimal First Order Filter (cont’d)

We model the ideal 1-D step edge as

f(x) =







0 x < 0

A x ≥ 0

The ideal step edge is perturbed by a white noise n(x), generating

the observed step edge f̂(x)

f̂(x) = f(x) + n(x)

The response of a linear filter h to the observed step edge f is
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∫ −W

W

f̂(x− t)h(t)dt = A

∫ 0

−W

h(t)dt+

∫ W

−W

n(x− t)h(t)dt

The first two criteria can be defined as

SNR =
A||

∫ 0

−W
h(t)dt||

σ0

√

∫W

−W
h2(t)dt

LOC =
A||h′(0)||

σ0

√

∫W

−W
h′2(t)dt

where LOC measures the location accuracy.
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The product of SNR and LOC is a measure of how well the filter

h satisfies both criteria simultaneously. So we look for h that

maximizes the product of SNR and LOC. A simple difference

operator (e.g., hx) maximizes the product.
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The Optimal First Order Filter (cont’d)

The difference operator obtained by maximizing the product of

SNR and LOC does not satisfy the third criterion, i.e., it may

yield multiple local maxima for noise step edge as shown in

Figure 4.4. We can obtain the optimal step edge filter by

maximizing the product of SNR and LOC subject to the single

response constraint.
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Canny Edge Enhancer

The optimal filter obtained by optimizing the above three criteria

for a step edge can be approximated by the first order Derivative

of a Gaussian (DoG). This is the Canny edge enhancer (see figure

4.4 and algorithm Canny Enhancer).

h = ▽G(c, r)

where G = is a 2D Gaussian as
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Canny Edge Enhancer (cont’d)

Taking derivatives with respect to x and y, we obtain the

horizontal and vertical DoG filters as follows
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Canny Edge Enhancer (cont’d)

Let σ = 0.6 (W=5σ), we can create 3x3 DoG filters as follows
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Summary of First Order Edge Enhancer

The first order image intensity derivative can be used to enhance

the edges in an image. Different versions of first order edge

enhancer (high pass filter) have been developed:

• Roberts edge enhancer, a 2x2 filter resulted from rotating the

horizonal and vertical difference operators by 45 degree.

• Prewitt edge enhancer, a 3x3 filter resulted from convolving

the horizonal and vertical difference operators by an

averaging smoothing

• Soble edge enhancer, a 3x3 filter resulted from convolving the

horizonal and vertical difference operators by a weighted

averaging smoothing

• Canny edge enhancer or Difference of Gaussian (DoG), a 3x3
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filter resulted from convolving the horizonal and vertical

difference operators by a Gaussian smoothing
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Edge Thresholding

Edge thresholding identifies edge pixels from non-edge pixels

based image gradients. Edge thresholding consists of two steps:

non-maximum suppression and thresholding. Non-maximum

suppression selects the potential candidates of edgles by

identifying pixels that are local maxima in gradient magnitude.

The final edge pixels are selected from the local maxima via a

thresholding operation.
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Non-maximum Suppression

To decide whether a pixel A is a local maximum, we need to do

• define local by selecting a neighborhood size

• search in the gradient direction of A within the defined

neighborhood. If the magnitude of A is strictly larger than

gradient magnitudes of other pixels located within the

neighborhood and in the gradient direction of A, then A is

marked as edgel candidate. Repeat for every pixel.
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Non-maximum Suppression
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The result of non-maximum supression should be a binary image

with edge pixel candidates marked as white and the non-edge

pixels marked as black (see Figure 4.5).
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Edge Thresholding

• Simple gradient magnitude thresholding

• Thresholding using both gradient magnitude and direction (

e.g. orientation consistency and Canny’s hysteresis

thresholding)

• A statistical approach
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Edge Thresholding (cont’d)

Edge detection with enforced orientation consistency is to

examine every pixel labeled as edge pixel. Check each one of its

eight neighbors to see if it has at least one edge-labeled neighbor

whose direction is consistent with its own orientation. If so, the

pixel in the output image is labeled as edge pixel. This may

iterate.
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Canny’s Hysteresis Thresholding

The hysteresis thresholding method consists in eliminating the

local maxima which are not significant. Given a high and a low

thresholds Th and Tl, we eliminate the local maxima whose

gradient norm are either:

1) less than Tl; or 2) less than Th and not connected

(8-connectivity) to a local maximum whose gradient norm is

greater than the high threshold.

This thresholding technique gives better results than a one level

threshold because it takes into account that some contours can be

“hidden” in the noise and it preserves the connectivity.
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Edge Thresholding: a Statistical Approach

Based on the facet model, the gray levels in a small neighborhood

centered at pixel (c, r) on the image is approximated by by a

sloped facet model αc+ βr + γ = 0, the gradient at this point is

g(c, r) =

√

α̂2 + β̂2

θ = arctan
β̂

α̂

where α̂ and β̂ are estimates of α and β based on a least-squares

fitting, i.e.,

α̂ =

∑

r

∑

c cI(c, r)
∑

r

∑

c c
2

β̂ =

∑

r

∑

c rI(c, r)
∑

r

∑

r r
2
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A Statistical Approach (cont’d)

Assume the following perturbation model

I(c, r) = αc+ βr + γ + ǫ(c, r)

where ǫ(r, c) is independent noise having mean 0 and variance

σ2(c, r)

We have variances of α̂ and β̂ as follows

σ2
α̂ =

σ2

∑

r

∑

r c
2

σ2
β̂

=
σ2

∑

r

∑

r r
2
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A Statistical Approach (cont’d)

Since α̂ ∼ N(α, σ2
α̂), we have

(α̂− α)2

σ2
α̂

∼ χ2
1

Similarly, we have

(β̂ − β)2

σ2
β̂

∼ χ2
1
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(α̂− α)2

σ2
α̂

+
(β̂ − β)2

σ2
β̂

∼ χ2
2

For a symmetric window, we have σ2
α̂ = σ2

β̂
= σ2

p. Thus,

(α̂− α)2 + (β̂ − β)2

σ2
p

∼ χ2
2

We can therefore formulate the edge detection problem as a

hypothesis testing problem, i.e.,

H0: (c,r) is not an edgel (α = β = 0) v.s. H1: (c,r) is an edgel

Let t = (α̂)2+(β̂)2

σ2
p

and select a significant level of 0.05. If

P (χ2
2 > t) > 0.05, then the null hypothesis is accepted, i.e., (c,r)

is not an edgel or (c,r) is an edgel. We can control the false alarm

rate of the edge detector by adjusting the significant level(larger

significant level, larger false alarm).
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A Statistical Approach (cont’d)

To use this technique, we must know noise variance σ2. We can

obtain an estimate of σ2 via

σ̂2 =
E2

∑

r

∑

c 1− 3

where E2 =
∑

r

∑

c{I(c, r)− α̂c− β̂r − γ}2. It is assumed that

E2 ∼ χ2∑
r

∑
c
1−3. Assume each pixel is perturbed identically and

independently, we can obtain a more stable estimate of σ2,

σ̂2
avg =

∑N
n=1

σ̂2
n

N
, where N represents the N neighborhoods.

52



Canny Edge Detection Examples
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Second Order Edge Filter

The place where the first order image derivative of an step edge is

maximum is exactly the place where the second derivative of the

step has a zero-crossing. The isotropic generalization of the

second derivative in 2D is the Laplacian. Laplacian of image

intensity I(c, r) is

▽2I = (
∂2

∂c2
+

∂2

∂r2
)I =

∂2I

∂c2
+

∂2I

∂r2

Note Laplacian operation does not provide strength and

orientation of the edge point.
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Second Order Edge Filter

Numerical approximations of ∂2I
∂c2

and ∂2I
∂r2

can be found in

appendix A. 2. A 3× 3 Laplacian mask is









0 1 0

1 −4 1

0 1 0









Alternatively, ∂2I
∂c2

and ∂2I
∂r2

can be obtained analytically with facet

fitting.
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Second Order Edge Filter (cont’d)

Laplacian of a Gaussian (LoG) edge detector. The Gaussian

serves the purpose of smoothing for noise reduction. Let G be a

2D Gaussian function, I be an image, and because of the

associative property of the Laplacian operator

▽2(I ∗G) = I ∗ ▽2G

where
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▽2G = (
∂2

∂c2
+

∂2

∂r2
)G

= (
∂2

∂c2
+

∂2

∂r2
)

1√
2πσ

e−
1
2
( c2+r2

σ2 )

=
1√
2πσ3

e−
1
2
( c2+r2

σ2 )(
c2 + r2

σ2
− 2)

To avoid the negative area of the kernel, the radius of LOG kernel

must be larger than
√
2σ. In practice, to avoid truncation, the

width of the kernel is usually larger than W = 3
√
2σ.

Let σ = 1, W=5, a LOG kernel can then be constructed using

above equation with c and r range from -2 to 2.
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LoG X Derivative
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LoG Y Derivative
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Second Order Edge Filter (cont’d)

Once an image is convolved with a LOG kernel, the zero crossings

can be detected as follows: A pixel is declared to have a zero

crossing if it is less than -t and one of its neighbors is greater than

t or vice verse, where t is a threshold. This process is equivalent

to the non-maximum supression process for gradient operator.

Finally, a threshold is performed such that zero-crossings pixels

with gradient magnitude larger than a threshold are retained.
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Integrated Gradient Edge Detector

Let I(c, r) be image intensity at (c, r) location, the image gradient

at (c, r) is

▽I(c, r) =





∂I
∂c

∂I
∂r





For a given direction (sin θ, cos θ), the first order directional

derivative projected in θ direction

I ′θ = (cos θ, sin θ)▽ I(c, r)

=
∂I

∂c
cos θ +

∂I

∂r
sin θ
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Integrated Gradient Edge Detector (cont’d)

For a given 2N × 2N neighborhood, the integrated directinal

derivative Iθ for all pixels in the neighborhood is

Iθ =
1

4N2

∫ N

−N

∫ N

−N

I ′θdcdr

The optimal edge direction is

θ∗ = argmax
θ

Iθ
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Edge Detector Evaluation

• Good localization

• Accurate orientation estimation

• The number of spurious edges (false alarm) and the number

of true edges missed (misdetection).
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2D Image Features

Two dimensional image features are interesting local structures.

They include junctions of different types like ’Y’, ’T’, ’X’, and ’L’.

Much of the work on 2D features focuses on junction ’L’, aks,

corners.
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Corner

Corners are the intersections of two edges of sufficiently different

orientations.
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Corner Detection

• Corners are important two dimensional features.

• They can concisely represent object shapes, therefore playing

an important role in matching, pattern recognition, robotics,

and mensuration.
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Previous Research

• Corner detection from the underlying gray scale images.

• Corner detection from binary edge images (digital arcs).
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The Harris Corner Detector

The Harris corner detector detects corners directly from gray

scale images. Corners are located in the region with large

intensity variations in certain directions.

Let Ic and Ir be image gradients in horizontal and vertical

directions, we can defined a matrix C (moment matrix or

structure tensor) that summarizes Ic and Ir distribution in a local

neighborhood

C =





∑

I2c
∑

IcIr
∑

IcIr
∑

I2r





where the sums are taken over a small neighborhood

Compute the eigenvalue of C, λ1 and λ2. If the minimum of the

two eigen values is larger than a threshold, the the point is
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declared as a corner. It is good for detecting corners with

orthogonal edges.
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Corner Detection from Gray Scale Image II

Assume corners are formed by two edges of sufficiently different

orientations, in a N ×N neighborhood, compute the direction of

each point and then construct a histogram of edgel orientations.

A pixel point is declared as a corner if two distinctive peaks are

observed in the histogram.

71



Corner Detection from Gray Scale Image II

Fit the image intensities of a small neighborhood with a local

quadratic or cubic facet surface. Look for saddle points by

calculating image Gaussian curvature (the product of two

principle curvatures, see appendix A 5).
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Corner Detection from Gray Scale Image II

Saddle points are points with zero gradient, and a max in one direction

but a min in the other. Different methods are used to detect saddle

points.
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Corner Detection from Digital Arcs

• Objective

Given a list of connected edge points (a digital arc)

resulted from an edge detection, identify arc points that

partition the digital arc into maximum arc subsequences.
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Corner Detection from Digital Arcs

• Criteria

maximum curvature.

deflection angle.

maximum deviation.

total fitting errors.
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A Statistical Approach

• Problem Statement

Given an arc sequence S = {





x̂n

ŷn



 |n = 1, . . .N},

statistically determine the arc points along S that are most

likely corner points.

77



Approach Overview

θ1 2θand

Statistically test the 

difference between 

θ1 2θand

Least-squares estimate

σ 2
1 σ

2
2

Estimate and

P-value > α ?

Slide a window along S

Input arc sequence S

A corner

No

Not a corner
Yes
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Approach Overview (cont’d)

• Slide a window along the input arc sequence S.

• Estimate θ̂1 and θ̂2, the orientations of the two arc

subsequences located to the right and left of the window

center, via least-squares line fitting.

• Analytically compute σ2
1 and σ2

2 , the variances of θ̂1 and θ̂2.

• Perform a hypothesis test to statistically test the difference

between θ̂1 and θ̂2.
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Details of the Proposed Approach

• Noise and Corner Models

• Covariance Propagation

• Hypothesis Testing
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Noise Model

Given an observed arc sequence S = {(x̂n ŷn)
t|n = 1, . . .N}, it is

assumed that (x̂n, ŷn) result from random perturbations to the

ideal points (xn, yn), lying on a line xn cos θ + yn sin θ − ρ = 0,

through the following noise model:




x̂n

ŷn



 =





xn

yn



+ ξn





cos θ

sinθ



 ;n = 1, . . . , N

where ξn are iid as N(0, σ2).
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Corner Model

θ2Xcos θ2Ysin ρ2
+ =

θ1 θ1Ysin ρ1Xcos + =

θ1
^ ρ

1
^

,
Σ

θ2
^ ρ

2
^

,
Σ

Moving window

m th point
^ ^ ^

^ ^ ^

digital arc segment

H0 : θ12 < θ0 H1 : θ12 ≥ θ0

where θ̂12 = |θ̂1 − θ̂2|, θ12 is the population mean of θ̂12, and θ0 a

threshold.

82



Covariance Propagation

• Problem statement

Analytically estimate Σ∆Θ, the covariance matrix of

least-squares estimate Θ̂ = (θ̂ ρ̂)t, in terms of the input

covariance matrix Σ∆X .
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Covariance Propagation (cont.)

From Haralick’s covariance propagation theory, define

F (Θ̂, X̂) =
N
∑

n=1

(x̂ncosθ̂ + ŷn sin θ̂ − ρ̂)2

and

g2×1(Θ, X) =
∂F

∂Θ

then
∑

∆Θ
= (

∂g(X,Θ)

∂Θ
)−1(

∂g(X,Θ)

∂X
)t
∑

∆X

(
∂g(X,Θ)

∂X
)[(

∂g(X,Θ)

∂Θ
)−1]t
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Covariance Propagation (cont.)

Define

k =







+
√

x2 + y2 − ρ2 if y cos θ ≥ x sin θ

−
√

x2 + y2 − ρ2 otherwise

and

µk =
1

N

N
∑

n=1

kn

σ2
k =

N
∑

n=1

(kn − µk)
2

85



Geometric Interpretation of k

(x,y)

k

X

Y
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Covariance Propagation (cont.)

∑

∆Θ
= σ2





1
σ2
k

µk

σ2
k

µk

σ2
k

1
N

+
µ2
k

σ2
k




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Hypothesis Testing

H0 : θ12 < θ0 H1 : θ12 ≥ θ0

where θ0 is an angular threshold and θ12 is the population mean

of RV θ̂12 = |θ̂1 − θ̂2|.
Let

T =
θ̂212

σ̂2
θ1

+ σ̂2
θ2

Under null hypothesis

T ∼ χ2
2

if P (T ) < α, then a corner else not a corner.
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Corner Detection Example
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Performance Evaluation

• Evaluation criteria

Misdetection rate.

False alarm rate.

• Images: Eighty RADIUS Images
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Evaluation Results

• Average Misdetection Rate: 2.3%

• Average False Alarm Rate: 2.1%
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Performance Comparison

• Lowe’s Algorithm

• SUSAN Corner Detector
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Results from Radius Images

• figure 1

• figure 2

• figure 3

• figure 9
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Results from Comparative Study

• Low’s algorithm.

figure 4

figure 5

figure 6

figure 7

figure 8

• SUSAN corner detector.

figure 10
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Conclusions

• Present a statistical approach for detecting corners on digital

arc sequences.

• Performance evaluation shows the robustness of the proposed

algorithm and its superiority over the existing algorithms.
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Conclusions (cont.)

• Contributions include

– Explicitly introduce a noise model and a corner model to

account for the image noise.

– Develop an analytical method for estimating the

covariance matrix of the fitted line parameters.
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Corner Detection Example
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Scale Invariant Feature Transform (SIFT) Features

See attached
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Line and Curves Detection

Given an edge image, find line or curve segments present in the

image.
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Issues with Curve Detection

• Grouping (e.g., the Canny hysteresis thresholding procedure)

• Model fitting

They can be performed sequentially or simultaneously.
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The Hough Transform

• The Hough Transform (HT) is a popular technique for

detecting straight lines and parameterizable curves on

gray-scale images.

• It was invented by Richard Duda and Peter Hart (RPI

alumnus) in 1972

• It maps image data from image space to a parameter space,

where curve detection becomes peak detection problem, i.e.,

searching the parameter space for peaks.

• Check the Wikipedia on HT for more information. It includes

a citation of my prior work [3, 1].
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The HT for Line detection

1. Parameterize the line

y = ax+ b

In the parameter spaces determined by a and b, each

parameter pair (a, b) represents a line. For example (0,4)

represents a horizontal line. This line representation can not

represent a vertical line.
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Alternatively, we can also parameterize a line in polar

coordinates as

x cos θ + y sin θ − ρ = 0
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X

Y

y=ax+b
ρ

θ

xcos   + ysin   = θ θ ρ
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θ

ρ (θ, ρ)

In parameter space determined by θ and ρ, each pair of (θ, ρ)

represents a line. For example, a vertical line my be

represented as (0, 4).
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An image point (x0, y0) represents the intersection of all lines

that satisfy x0 cos θ + y0 sin θ − ρ = 0, each of which can be

represent by a pair of (θ, ρ). In the parameter space, the

image point is represented by a sinusoid curve

0 50 100 150 200 250 300 350 400
−15

−10

−5

0

5

10

15

theta

rh
o
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The intersection of two sinusoid curves representing the line

going through two image points (e.g., (10,10) and (20,20))

uniquely determines a line.

X

Y

(10,10)

(20, 20)

0 20 40 60 80 100 120 140 160 180
−20

−15

−10

−5

0

5

10

15

20

25

30

rh
o

theta

x1=(10,10)
x2=(20,20)

If lines are parameterized using a and b, then an image point

is represented by as a line in the parameter space (fig. 5.1).
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2. Quantize parameters ρ and θ

To keep the parameter space finite, it is often necessary to

quantize the parameter space. By quantization, the

parameter space is divided into finite grid of cells, the

dimensions of each cell are determined by the quantization

intervals. Each cell is indexed by a pair of quantized (θ, ρ).
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3. Build an accumulator array A(θ, ρ)

The accumulator array is used to accrue the contribution of

each image point to a quantized (θ, ρ). The standard HT

scheme for updating the accumulator array A(θ, ρ) is

A(θ, ρ) = #{(x, y) ∈ X × Y |x cos θ + y sin θ + ρ = 0}

where X × Y are the image domain.

For example, if we have N image points lying on a line with

parameter pair (θ0, ρ0), then we have A(θ0, ρ0) = N and the

accumulator array values for all other parameter pairs are 1

or zero.

For each quantized θ, we use the line equation to compute the

corresponding ρ. The computed ρ is then quantized. The

accumulator corresponding to the quantized θ and ρ are then

incremented by 1.
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4. Search A(θ, ρ) for peaks

The image lines are therefore detected by the peaks of A(ρ, θ).

To detect multiple lines, look for all local maxima of A(θ, ρ).
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HT Algorithm Outline

For an input gray scale image I of M ×N .

1. Locate the HT coordinate system

2. Identify the ranges for θ and ρ. Let the range for for θ be

between θl and θh, and the range for ρ between ρl and ρh.

3. Choose quantization intervals δθ and δρ for θ and ρ

respectively.

4. Discretize the parameter space of ρ and θ using sampling

steps δρ and δθ. Let θd and ρd be 1D arrays containing the

discretized θ and ρ.

5. Let A(T, R) be an array of integer counter; initialize all

elements of A to zero, where R = ρh−ρl

δρ
and T = θh−θl

δθ
.

6. Let L(T,R) be an array of a list of 2D coordinates.
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7. For each image pixel (c, r), if its gradient magnitude

g(c, r) > τ , where τ is a gradient magnitude threshold.

for i=1 to T

•
ρ = c ∗ cos(θd(i)) + r ∗ sin(θd(i))

• find the index k, for the element of ρd closest to ρ

• increment A(i,k) by one.

• Add point (c,r) to L(i,k)

8. Find all local A(ip, kp) such that A(ip, kp) > t, where t is a

threshold.

9. The output is a set of pairs (θd(ip), ρd(kp)) and lists of points

in L(ip, kp), describing the lines detected in the image, along

with points located on these lines
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HT Coordinate Systems

• The HT coordinate system coincides with the row-column

coordinate system.

Ranges of ρ and θ

0 < ρ <
√
M2 +N2

−90 < θ < 180

or

-M < ρ <
√
M2 +N2

0 < θ < 180

• The HT coordinate system locates at the center of the image

Ranges of ρ and θ

0 < ρ <
√
M2+N2

2

0 < θ < 360
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or

−
√
M2+N2

2 < ρ <
√
M2+N2

2

0 < θ < 180
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An Example

Top: An image with lines, Bottom: the display of the

accumulator array.
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Incorporating Gradient Direction

If gradient direction at each image point is available, it can be

used to restrict the range of values of θ that the image point may

vote for. Instead of checking for all possible θ s as in the standard

HT, we only increase the accumulators for those lines whose

orientations are close to the direction that is orthogonal to the

gradient direction of the image point, therefore significantly

reducing the required computations.
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Incorporating Gradient Magnitude

Instead of updating the accumulator array by an unit uniformly,

the contribution of each point to the accumulator array can be

determined based on the gradient magnitude of the point.
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HT for Curves

The HT can be generalized to detect any parameterizable curves

such as circles and ellipse. For example for circle detection, a

circle can be parameterized as

(x− x0)
2 + (y − y0)

2 = R2

where the parameters are (x0, y0), and R. We can therefore

construct a 3D accumulator A(x0, y0, R). For each edge point

vary (x0, y0), compute the corresponding R using the circle

equation, and then update A. In the end, search A for peaks.
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If we know the gradient direction of each point, we may use a

different parameterizable representation for circle to take

advantage of the gradient direction

x = R cos θ + x0

y = R sin θ + y0

where θ represents the gradient direction of point (x, y). We can

then reduce search from 2D to 1D. We can vary R and then use

the above equation to compute x0 and y0, then updating the

corresponding accumulator accordingly.
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Another HT Technique for Circle Detection

• Detect circle center first

• Determine circle radius

cos

sin 

θ

θ

X
θ

Y

For the parametric circle equation, we have the tangent of the
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circle at (x, y) is
dx

dy
= − tan θ

From circle equation (x− x0)
2 + (y − y0)

2 = R2, we have

dx

dy
= − y − y0

x− x0

Equating the above two equations yields

y − y0

x− x0
= tan θ

where θ represents the gradient direction at (x, y).

This equation does not contain circle radius R, therefore allowing

to find circle centers first.
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Another HT Technique for Circle Detection

Given (x0, y0), we can then use equation

(x− x0)
2 + (y − y0)

2 = R2 to determine Rs for each (x0, y0).

Note different Rs may be identified for each (x0, y0), indicating

concentric circles.

My prior work on circle detection can be found in [2].
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HT for Ellipse Detection

For a nominal ellipse (i.e., major and minor axes align with X and

Y axes), it can be represented as

(x− x0)
2

a2
+

(y − y0)
2

b2
= 1
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HT for Ellipse Detection (cont’d)

0
(x ,y )0

τ θ
X

Y

a

b

(x,y)

x = x0+ a cos τ

y = y0+ b sin τ
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HT for Ellipse Detection (cont’d)

From the tangent definition,

dx

dy
= − tan θ

From the parametric ellipse equation, we have

dx

dy
= −a

b
tan τ

As a result, we have

tan τ =
b

a
tan θ

Substituting the above equation to the parametric ellipse

equation yields the parametric representation of an ellipse using θ
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x = x0 ±
a

√

1 + b2

a2 tan
2 θ

y = y0 ±
b

√

1 + a2

b2 tan2 θ

This still, however, involves 4 parameters.
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HT for Ellipse Detection (cont’d)

From the previous equations, we have

y − y0

x− x0
=

b

a
tan τ

We also know tan τ = b
a
tan θ As a result, we have

y − y0

x− x0
=

b2

a2
tan θ

In the above equation, we can treat b2

a2 as a single unknown,

effectively reducing to three dimensions. We can therefore

construct an accumulator array involving x0, y0, and
b2

a2 .
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Detection of Ellipse with an Unknown Orientation

For a general ellipse, its orientation is unknown. This introduces

another parameter. Let X ′ − Y ′ represent the coordinate system

where the major and minor axes align with X ′ and Y ′

respectively as shown in the figure.

X’
Y’

X

Y
(x,y)

α

τ
θ

β
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



x

y



 =





x0

y0



+





cosα sinα

− sinα cosα









a cos τ

b sin τ





From the previous discussion, we have

tan τ =
b

a
tan θ

Since θ = β − α, we therefore have

tan τ =
b

a
tan(β − α)

where β is the gradient direction of point (x, y) in X-Y coordinate

frame.
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Detection of Ellipse with an Unknown Orientation

From the above equation, we have

(x− x0) sinα+ (y − y0) cosα

(x− x0) cosα− (y − y0) sinα
=

b2

a2
tan(β − α)

When α = 0, the above equation reduces to the equation for a

nominal ellipse, with θ = β. Again, we reduce the dimension of

parameter array from 5 to 4.
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Other Efficient Ellipse Detection using HT

One method is to scan the image horizontally and identify any

possible edge points on each row. For each row, identify the

centroid of any two selected edge points. The idea is that if the

two points happen to be on an ellipse, then their centroid must be

on the vertical center line of the ellipse. So, by voting, we may

detect the vertical center line. Similarly, if scan vertically, the

horizontal centerline can be detected. The ellipse center is the

intersection of the vertical and horizontal center lines. Given the

center of the ellipse, other parameters are then determined.

One of my prior work on ellipse detection [3] was cited over 250

times and was incorporated into OpenCV.
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Generalized HT

HT transform can be generalized to detect any shapes, even for

those without analytic (parametric) representation.
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HT Summary

• Advantages:

Robust to image noise and occlusion

Can detect multiple curves

• Disadvantages

computational intense

noise and quantization errors may introduce spurious

peaks

standard HT only detects line not line segments
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Model Fitting

Given a model and some data, model fitting is concerned with

estimating model parameters that could best explain the observed

data. best may be interpreted as smallest sum of distances of all

image points to the model curve.
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Model Fitting

Mathematically, model fitting may be stated as follows:

Given a vector of points X = (X1, X2, . . . , XN ) and model f , find

model parameters Θ by minimizing

N
∑

n=1

D2(Xn,Θ)

where D is the distance of a point Xn to the model curve f and

D is a function of f .
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Distance Measures

• Algebraic distance

• Geometric (Euclidean) distance
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Distance Measures (cont’d)

The algebraic distance refers to the vertical distance between

point (xn, yn) and a point (xn, y
′
n) on the curve, where

f(xn, y
′
n) = 0. On the other hand, the Euclidean distances refers

to the distance between point (xn, yn) and a point on the curve

closest to (xn, yn).
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Distance Measures (cont’d)

While the geometric distance improves the stability of fitting, it

necessitates an iterative procedure, substantially increasing the

computational requirements. The algebraic distance, on the other

hand, may suffer from lack of fitting stability, it however can be

solved non-iteratively, with a direct solution.
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Distance Measures (cont’d)

The geometric distance measure and the algebraic distance is

related via

d(Xn) =
|f(Xn,Θ)|

|| ▽ f(Xn,Θ)||
where d(Xn) is the geometric distance and f(Xn) is the algebraic

distance.
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Model Fitting Methods

The model fitting problem can be formulated as a least-squares

problem. Solution to a least-squares problem can be linear or

non-linear. A linear least-squares problem can be solved as a

generalized eigenvector problem. Non-linear least-squares

problems are usually solved iteratively.
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Least-squares Curve Fitting

Least-squares curve fitting determines the free parameters Θ of an

analytical curve f(x, y,Θ) = 0 such that the curve is the best fit

to a set of observed points (x̂n, ŷn), where n = 1, . . . , N , in the

least-squares sense.
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Least-squares Curve Fitting (cont’d)

A “best” fit is defined as a fit that minimizes the total residual

error E

E =
N
∑

n=1

(xn − x̂n)
2 + (yn − ŷn)

2 − 2λf(xn, yn,Θ) (1)

where (xn, yn) is the point on the curve f(x,y) that is closest to

point (x̂n, ŷn).
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Least-squares Ellipse Fitting

Given a conic function expressed as

f(x, y) = ax2 + bxy + cy2 + dx+ ey + f

to ensure the resulting fit curve be ellipse instead of hyperbolic or

parabolic, the inequality constraint b2 − 4ac < 0 must be

imposed. This constraint This inequality constraint, however,

renders the ellipse-fitting a non-linear problem.
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An Analytic Ellipse Fitting Method

Here we introduce an analytic technique for ellipse-fitting using

the approximate constraint b2 − 4ac = −1.

Given the conic equation

f(x, y) = ax2 + bxy + cy2 + dx+ ey + f

and a set of points (xn, yn), where n = 1, 2, . . . , N , we want to

find parameter vector Θ = (a b c d e f) by minimizing

N
∑

n=1

f2(xn, yn,Θ) subject to b2 − 4ac = −1
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An Analytic Ellipse Fitting Method (cont’d

Let Xn = (x2
n xnyn y2n xn yn 1), we then have

f(xn, yn,Θ) = Xt
nΘ

Let D be a matrix as

D =











X1

X2

...

Xn











This leads to
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N
∑

n=1

f2 = (xn, yn,Θ) = ||DΘ||2

In matrix format, the problem can be restated as:

determine Θ be minimizing

||DΘ||2 subject to ΘtCΘ = −1

where
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

























0 0 −2 0 0 0

0 1 0 0 0 0

−2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


























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Line and Curves Detection

Given an edge image, find line or curve segments present in the

image.
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Issues with Curve Detection

• Grouping (e.g., the Canny hysteresis thresholding procedure)

• Model fitting

They can be performed sequentially or simultaneously.
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Model Fitting

Given a model and some data, model fitting is concerned with

estimating model parameters that could best explain the observed

data. best may be interpreted as smallest sum of distances of all

image points to the model curve.

150



Model Fitting

Mathematically, model fitting may be stated as follows:

Given a vector of points X = (X1, X2, . . . , XN ) and model f , find

model parameters Θ by minimizing

N
∑

n=1

D2(Xn,Θ)

where D is the distance of a point Xn to the model curve f and

D is a function of f .
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Distance Measures

• Algebraic distance

• Geometric (Euclidean) distance
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Distance Measures (cont’d)

The algebraic distance refers to the vertical distance between

point (x̂n, ŷn) and a point (x̂n, ŷ
′
n) on the curve, where

f(x̂n, ŷ
′
n) = 0. On the other hand, the Euclidean distances refers

to the distance between point (x̂n, ŷn) and a point on the curve

that is closest to (x̂n, ŷn).
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Distance Measures (cont’d)

While the geometric distance improves the stability of fitting, it

necessitates an iterative procedure, substantially increasing the

computational requirements. The algebraic distance, on the other

hand, may suffer from lack of fitting stability, it however can be

solved non-iteratively, with a direct solution.
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Distance Measures (cont’d)

The geometric distance measure and the algebraic distance is

related via

d(Xi) =
|f(Xi,Θ)|

|| ▽ f(Xi,Θ)||
where d(Xi) is the geometric distance and f(Xi) is the algebraic

distance.
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Model Fitting Methods

The model fitting problem can be formulated as a least-squares

problem. Solution to a least-squares problem can be linear or

non-linear. A linear least-squares problem can be solved as a

generalized eigenvector problem. Non-linear least-squares

problems are usually solved iteratively.
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Least-squares Curve Fitting

Least-squares curve fitting determines the free parameters Θ of an

analytical curve f(x, y,Θ) = 0 such that the curve is the best fit

to a set of points (x̂n, ŷn), where n = 1, . . . , N , in the

least-squares sense. A ”best” fit is defined as a fit that minimizes

the total residual error E

E =

N
∑

n=1

(xn − x̂n)
2 + (yn − ŷn)

2 − 2λf(xn, yn,Θ) (2)

where (xn, yn) is the point on the curve f(x,y) that is closest to

corresponding observed point (x̂n, ŷn).
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Least-squares Ellipse Fitting

When representing the ellipse using a conic equation as shown

above, to avoid the trivial solution of Θ=0, the vector Θ is

constrained in some way. Many of the published algorithms differ

only in the form constraint applied to the parameters: Many

suggest ‖|Θ||2=1. Rosin [13, Fit] impose a+c=1 or f=1. Rosin

[PA letter, 1993, vol. 14, p799] has a paper investigating the

merits of using a+c=1 or f=1. Bookstein proposes quadratic

constraint a2 + 0.5b2 + c2 = 1. This constraint allows the fit

ellipse parameters invariant to affine transformation. While the

more accurate ellipse fitting requires an iterative procedure, which

is computationally expensive and requires an good initial

estimate, a less accurate method is the direct method by solving a

general eigensystem. It gains speed at the expense of accuracy. t

may be used as an initial estimate of the iterative procedure.
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While fitting ellipses using the conic equation, to ensure the

resulting fit curve be ellipse, the inequality constraint

b2 − 4ac < 0 must be imposed. Haralick proposed a method to

effectively incorporating the inequality constraint into the error

function by working with different set of parameters

Imposing the inequality constraint to the conic equation renders

the ellipse-fitting a non-linear problem. Thus, most researchers

use the general conic equation for ellipse fitting. However, this

often leads to hyperbolic and parabolic arcs being fitted in place

of elliptic arcs. Even for approximately elliptical data a

hyperbolic or parabolic may give a lower fitting error than an

elliptic arc. In particular, sections of low curvature data tend to

be fitted best by hyperbolic arcs. Since we are interested in only

ellipse and circle features, we need to ignore no-elliptic fit like

hyperbolic or or parabolic features. Different options have been
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studied to perform ellipse-fitting using the general conic equation:

1) Imposing the b2 − 4ac < 0 constraint [Haralick, Fitzgibbon]

2) Impose some constraints for each iteration to ensure

it converges to an ellipse.[Rosin,Int. Con. CV, 1990] [Porrill,

Image and Vision Computing, 8(1), Feb. 1990] 3) Adding a few

artificial data points at appropriate locations to force the best

fitting conic be ellipse [Cooper, TR, 1975 Brown]. 4) Selecting

five data points ...[Bolles, IJCAI, 1981, p637]
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