
Image Acquisition and Representation

• how digital images are produced

• how digital images are represented

• photometric models-basic radiometry

• image noises and noise suppression methods
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Image Acquisition Hardware

.

Note a signal amplifier through an automatic gain

control (AGC) is often added before the A/D converter

to boost the analog image
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Camera

• First photograph was due to Niepce of France in

1827.

• Employ either the photochemical (film) or

photoelectric principles (analog/digitial)

• Basic abstraction is the pinhole camera

lenses required to ensure image is not too dark

, to focus the light, and to increase image size

various other abstractions can be applied
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CCD Camera

CCD (Charged Couple Device) camera consists of a lens

and an image plane (chip array) containing tiny

photoelectric cells that convert light energy into
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electrical charge (electrons) when a cell receives enough

photons. The output is analog image. The key camera

parameters include

• cell size (e.g., 16.6× 12.4µm, aspect ratio=4:3, not

square)

• number of cells (e.g. 512× 512, also referred to as

camera resolution, i.e., the number of cells

horizontally and vertically).

• image plane geometries: rectangle, circular, or

linear.

• Spectral response (28%(450nm), 45%(550nm),
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62%(650nm) )

visible light: 390-750 nm, IR light 750 nm and

higher

• Aperture- control the amount of light entering into

the camera
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Spectrum Response

IR ranges: Near infrared (NIR) from 780 nm to 1400 nm, shortwave infrared (SWIR)

from 1400 nm to 3000 nm, middlewave infrared (MWIR) from 3000 nm to 5000 nm, and

longwave infrared (LWIR) from 8000 nm to 14000 nm. They have different applications.
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CCD array geometries

H

V

W

L

Figure 1: CCD camera image plane layout
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Other CCD array geometries

Usually, H ×W/V × L=4:3. This aspect ratio is more

suitable for human viewing. For machine vision, aspect

ratio of 1:1 is preferred.
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CMOS Camera

A CMOS (Complementary Metal Oxide Silicon) camera

is an alternative image sensor.

It follows the same principle as CCD by converting

photons into electrical changes. But it uses different

technologies in converting and transporting the

electrical charges. Compared to CCD, it is
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faster,smaller, cheaper, consumes less power but its

light sensitivity is lower and its image is more noisy.

Mainly for low-end consumer applications.
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Single Photon Camera

The latest development is the single photon camera, a

new camera that is sensitive enough to detect a single

photon. It has single-photon sensitivity in the visible

and near infrared (400 nm - 850 nm) wavelength range.

https://spectrum.ieee.org/single-photon-camera
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Analog Image

An analog image is a 2D image F (x, y) which has

infinite precision in spatial parameters x and y and

infinite precision in intensity at each point (x,y).
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Frame Grabber

An A/D converter that spatially samples the camera

image plane and quantizes the voltage of into a

numerical intensity value.

• Sample frequency (sampling interval) v. image

resolution through spatial sampling

• Range of intensity value through amplitude

quantization

• On-board memory and processing capabilities
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Spatial sampling process

Let (x,y) and (c,r) be the image coordinates before and

after sampling. Spatial sampling converts (x,y) to (c,r)
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where sx and sy are sampling frequency (pixels/mm)

due to spatial quantization. They are referred to as

Pixels Per Inch (PPI)or scale factors. A high quality

image with good details usually involves 300 PPI. The

sampling frequency determines the image resolution.

The higher sampling frequency, the higher image
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resolution. But the image resolution is limited by

camera resolution. Oversampling by the frame grabber

requires interpolation and does not necessarily improve

image perception.
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Amplitude Quantization

Amplitude quantization converts the magnitude of the

signal F(x,y) to produce pixel intensity I(c,r). The I(c,r)

is obtained by dividing the range of F(x,y) into intervals

and representing each interval with an integer number.
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The number of intervals to represent I(c,r) is

determined by the number of bits allocated to represent

F(x,y). For example, if 8-bit is used, then F(x,y) can be
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divided into 256 intervals with the first interval

represented by 0 and the last interval represented by

255. I(c,r) therefore ranges from 0 to 255.
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Digital Camera

Combines analog camera and digitizer into one system.

It directly outputs digital images.
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Computer

Computer (including CPU and monitor): used to access

images stored in the frame grabber, process them, and

display the results on a monitor
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Digital Image

The result of digitization of an analog image F(x,y) is a

digital image I(c,r). I(c, r) represented by a discrete 2D

array of intensity samples, each of which is represented

using a limited precision determined by the number of

bits for each pixel.
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Digital Image (cont’d)

• Image resolution (H ×W )

• Intensity range [0, 2N -1]

• Color image (RGB)
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Digital Representation
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Different coordinate systems used for images

(a) Row-column coordinate system with (0,0) at the upper-left

corner, (b) Cartesian coordinate system with (0,0) at the lower

left corner, and (c)Cartesian coordinate system with (0,0) at the

center.

25



Basic Optics: Pinhole model

optical axis

aperture

optical lens

CCD array

Reducing the camera’s aperture to a point so that one ray

from any given 3D point can enter the camera and create a

one-to-one correspondence between visible 3D points and

image points.
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Pinhole model (cont’d)

Distant objects are smaller due to perspective

projection. Larger objects appear larger in the image.
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Pinhole model (cont’d)

Parallel lines meet at horizon, where line H is formed by

the intersection of the plane parallel to the lines and

passing through V, which is referred as vanishing point.
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Camera Lens

Lens may be used to focus light so that objects may be

viewed brighter. Lens can also increase the size of the

objects so that objects in the distance can appear larger.

Without lens in the top figure and with lens in the

bottom figure
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Basic Optics: Lens Parameters

Lens parameters: focal length (f) and effective diameter

(d), angle of view, light refraction
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Fundamental equation of thin Lens

1
Z
+ 1

U
= 1

f

It is clear that increasing the object distance, while

keeping the same focus length, reduces image size.

Keeping the object distance, while increasing the focus

length, increases the image size.

U is the image plane focusing distance, i.e., where image

is focused. As the object distance increases to infinity,

i.e., Z− > ∞, the image focusing distance U=f, i.e.,

objects at infinity stay focused when image plane is

32



located at focus point. U is close to f for object farther

away.
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Angle (Field) of View (AOV)

Angular measure of the portion of 3D space actually

seen by the camera. It is defined as

ω = 2arctan
d

2f

AOV is inversely proportional to focal length and

proportional to lens size. Larger lens or smaller focal

length give larger AOV.
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f

d
is called F-number. AOV is inversely proportional to

F-number.
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Similar to AOV, Field of View (FOV) determines the

portion of an object that is observable in the image.

But different from AOV,which is a camera intrinsic

parameter and is a function of only lens of parameters,

FOV is a camera extrinsic parameter that depend both

on lens parameters and object parameters. In fact, FOV

is determined by focus length, lens size, object size, and

object distance to the camera.
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Depth of Field

The allowable distance range such that all points within

the range are acceptably in focus in the image, which is

inversely proportional to the circle of confusion radius c.
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Depth of field is invereely proportional to focus length,

proportional to shooting distance, and inversely

proportional to the aperture (especially for close-up or

with zoom lens).

See more at
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http://www.azuswebworks.com/photography/dof.html

Since “acceptably in focus” is subjective, as the focus

length increases or shooting distance decreases (both

make the picture more clear and larger), the tolerance

in picture blurriness also decreases, hence a reduction in

depth of field.

39



Camera and Lens Parameter Summary

• Camera resolution

• Camera spectral response

• Aperture

• Image resolution

• Lens focus length (f)

• Lens diameter (d)

• Angle of view

• Field of view

• Depth of field
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Other Lens Parameters

• fixed focal length v. Zoom lens

• Motorized zoom Lenses–zoom lenses are typically

controlled by built-in, variable-speed electric

motors. These electric zooms are often referred to

as servo-controlled zooms

• Supplementary lens: positive and negative

(increase/decrease AOV)

• Digital zoom: a method to digitally change the

focus length to focus on certain region of the image

typically through interpolation.
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Lens distortion

ideal

position

distorted

position

distorted

position

principal

point

U

V

dr dt

dr: radial distortion

dt: tangential distortion

r

Tangential distortion is usually small and is often
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ignored.
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Effects of Lens Distortion
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Figure 2: Effect of radial distortion. Solid lines: no distor-

tion; dashed lines with distortion. More distortion far away

from the center
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Radial Lens Distortion

Radial lens distortion can be divided into: barrel

distortion ( magnification decreases with distance from

image center), pincushion distortion ( magnification

increases with distance from the optical axis), and

moustache distortion (mixture).
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Lens Distortion modeling and correction

Radial lens distortion causes image points to be displaced

from their proper locations along radial lines from the image

center. The distortion can be modeled by

u = ud(1 + k1 ∗ r
2 + k2 ∗ r

4)

v = vd(1 + k1 ∗ r
2 + k2 ∗ r

4)

where r =
√

(u− u0)2 + (v − v0)2, (u, v) is the ideal and

unobserved image coordinates relative to the (U,V) image

frame, (ud, vd) is the observed and distorted image

coordinates, (u0, v0) is the center of the image, k1 and k2
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are coefficients. k2 is often very small and can be ignored.

The geometric knowledge of 3D structure (e.g. collinear

or coplanar points, parallel lines, angles, and distances)

is often used

to solve for the distortion coefficients. Refer to Wikipedia

https://en.wikipedia.org/wiki/Distortion (optics)#Radial distortion

for lens calibration using parallel lines.
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(a) (b)

Figure 3: Radial lens distortion before (a) and after (b)

correction

Commercial graphics software such as Photoshop and

Corel include functions to correct the lens distortion.
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With the modern optics technology and for most

computer vision applications, both types of geometric

lens distortions are often negligible.
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Structure of Eye

• cornea-the front and the transparent part of the

coat of the eyeball that reflects and refracts the

incoming light

• pupil-the opening in the center of iris that controls
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the amount of light entering into the eyes

• iris-the colored tiny muscles that surround the

pupil. It controls the opening and closing of the

pupil

• lens-the crystalline lens located just behind the iris.

its purpose is to focus the light on retina.

• retina-the sensory photo-electric sensitive tissue at

the back of the eye. It captures light and converts it

to electrical impulses.

• optic nerve-the optic nerve transmits electrical

impulses from the retina to the visual cortex, where

image of the world is formed.
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Sparse Connections Between Retina and Visual Cortex

The latest study below shows that retina is only

sparsely connected the visual cortex. This suggests 1)

retina selectively passes only important signals to visual

cortex, and 2) the visual cortex reconstructs the image

of the world primarily from the prior knowledge it

already has, coupled with sparse observational signals

from the retina.
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See the article A Mathematical Model Unlocks the

Secrets of Vision at

https://www.quantamagazine.org/a-mathematical-

model-unlocks-the-secrets-of-vision-20190821/
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Bionic Eye

The question is if it is possible to produce (simulate)

the electrical impulses by other means (e.g. through

hearing or other sensing channels) and send the signals

to the brain as if they were from the eyes.

Yes, this is can be done!. Research about bionic eyes is

doing this. See the video at

http://www.youtube.com/watch?v=696dxY6BYBM

Moreover, Harvard researchers developed a tunable

metalens that can change the focus in bionic eye

real-time to automatically correct for common

aberrations in human vision.
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Under the Bionic Eye: Harvard Develops Metalens that

Can Autofix Common Vision Problems

https://interestingengineering.com/under-the-bionic-

eye-harvard-develops-metalens-that-can-autofix-

common-vision-problems
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Basic Radiometry

We introduce the basic photometric image model.

N
L

Light source

Lens

CCD array

image plane

R

E

I
Digitization

Surface

• Illumination vector L
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• Scene radiance R: is the power of the light, per unit

area, ideally emitted by a 3D point

• Image irradiance E: the power of the light per unit

area a CCD array element receives from the 3D

point

• Image intensity I: the intensity of the corresponding

image point
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Lambertian Surface Reflectance Model

R = ρL ·N

where L represents the incident light, N surface normal,

and ρ surface albedo. The object looks equally bright

from all view directions.

59



60



Surface Radiance and Image Irradiance

The fundamental radiometric equation:

E = R
π

4
(
d

f
)2 cos4 α

image plane
A

a

α

For small angular aperture (pin-hole) or object far from

camera, α is small, the cos4 α can be ignored. The

image irradiance is uniformly proportional to scene
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radiance. Large d or small F number produces more

image irradiance and hence brighter image.
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Image Irradiance and Image Intensity

I = βE

where β is a coefficient dependent on camera and frame

grabber settings.
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The Fundamental Image Radiometric Equation

I = βρ
π

4
(
d

f
)2 cos4 αL ·N
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Image Formats

Images are usually stored in computer in different

formats. There two image formats: Raster and Vector.
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Raster Format

A Raster image consists of a grid of colored dots called

pixels. The number of bits used to represent the gray

levels (or colors) denotes the depth of each pixel. Raster

files store the location and color of every pixel in the

image in a sequential format.
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Raster Formats

There are many different Raster image formats such as

TIFF, PGM , JPEG, GIF, and PNG. They all can be

organized as follows:

• image header (in ASCII, image size, depth, date,

creator, etc..)

• image data (in binary either compressed or

uncompressed) arranged in sequential order.
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PGM

PGM stands for Portable Greyscale Map. Its header

consists of

P5

number of columns number of rows

Max intensity (determine the no of bits)

Raw image data (in binary, pixels are arranged

sequentially)

P5

640 480

255
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PGM (cont’d)

Some software may add additional information to the

header. For example, the PGM header created by XV

looks like

P5

# CREATOR: XV Version 3.10a Rev: 12/29/94

320 240

255
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PPM

PPM (Portable PixMap) format is for color image. Use

the same format.

P6

640 480

255

raw image data (each pixel consists of 3 bytes data in

binary, respectively representing the R, G, and B

components of the color image). Besides RGB, color

image can also be represented in other color space such

as XYZ. Different color spaces are convertible.
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Vector Format

A Vector image is composed of lines, not pixels. Pixel

information is not stored; instead, formulas that

describe what the graphic looks like are stored. They’re

actual vectors of data stored in mathematical formats

rather than bits of colored dots. Vector format is good

for image cropping, scaling, shrinking, and enlarging

but is not good for displaying continuous-tone images

and for image processing. Common vector formats

include portable document format (pdf), postscript

(ps), and encapsulated postscript (eps).
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Image noise

• intensity noise

• positional error

Note image noise is the intrinsic property of the camera

or sensor, independent of the scene being observed. It

may be used to identify the imaging sensors/cameras.
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Intensity Noise Model

Let Î be the observed image intensity at an image point

and I be the ideal image intensity, then

Î(c, r) = I(c, r) + ǫ(c, r)

where ǫ is white image noise, following a distribution of

ǫ ∼ N (′, σ∈(⌋,∇)). Note we do not assume each pixel is

identically and independently perturbed.
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Estimate σ from Multiple Images

Given N images of the same scene Î0, Î1, ..., ÎN−1, for

each pixel (c, r),

Ī(c, r) =
1

N

N−1
∑

i=0

Îi(c, r)

σ2(c, r) =
1

N − 1

N−1
∑

i=0

[Îi(c, r)− Ī(c, r)]2

see figure 2.11 [1]. Note noise averaging can reduce the

noise of Ī(c, r) to σ2

N
.
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Estimate σ from a Single Image

Assume the noise for each pixel in a neighborhood R is

IID distributed, i.e.,

Î(c, r) = I(c, r) + ǫ

where (c, r) ∈ R. ǫ ∼ N (′, σ∈). σ2 can then be

estimated by sample variance of the pixels inside R

Î(c, r) =

∑

(c,r)∈R I(c, r)

N

σ̂2(c, r) =

∑

(c,r)∈R(I(c, r)− Î)2

N − 1
(2)
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where N is the number pixels in R.
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Estimate σ from a Single Image with Plane Fitting

Let Î(x, y) be the observed gray-tone value for pixel located

at (x, y). If we approximate the image gray-tone values in

pixel (x,y)’s neighborhood by a plane αx+ βy + γ, then the

image perturbation model can be described as

Î(x, y) = αx+ βy + γ + ξ

where ξ represents the image intensity error and follows an

iid distribution with ξ ∼ N (′, σ∈).

For a neighborhood of M ×N a , the sum of squared

aassume pixel noise in the neighborhood is IID distributed.
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residual fitting errors

ǫ2 =
N
∑

y=1

M
∑

x=1

(Î(x, y)− αx− βy − γ)2

follows ǫ2

σ2 ∼ χ2
M∗N−2.

As a result, we can obtain σ̂2 following the variance of

chi-square distribution as

σ̂2 =
ǫ2

M ×N − 2

We can compute σ̂2 for each pixel and hence can obtain a

distribution of σ̂2 over the entire image. The distribution

can be used to characterize the camera noise.

Moreover, let σ̂2
k be an estimate of σ2 from the k-th
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neighborhood. Given a total of K neighborhoods across the

image, we can obtain the average noise level over the image

σ̂2 =
1

K

K
∑

k=1

σ̂2
k
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Independence Assumption Test

We want to study the validity of the independence

assumption among pixel values . To do so, we compute

correlation between neighboring pixel intensities. Figure

2.12 of [1] plot the results. We can conclude that

neighboring pixel intensities correlate with each other

and the independence assumption basically holds for

pixels that are far away from each other.
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Consequences of Image Noise

• image degradation

• errors in the subsequent computations e.g.,

derivatives
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Types of Image Noise

Gaussian Noise and impulsive (salt and pepper) noise.
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Noise Removal

In image processing, intensity noise is attenuated via

filtering. It is often true that image noise is contained in

the high frequency components of an image, a low-pass

filter can therefore reduce noise. The disadvantage of

using a low-pass filter is that image is blurred in the

regions with sharp intensity variations, e.g., near edges.
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Noise Filtering

If (x, y) = I ∗ F =

m

2
∑

h=−
m

2

m

2
∑

k=−
m

2

F (h, k)I(x− h, y − k)

where m is the window size of filter F and ∗ indicates

discrete convolution. The filtering process replaces the

intensity of a pixel with a linear combination of

neighborhood pixel intensities.
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Noise Filtering (cont’d)

• Filtering by averaging

F =
1

9













1 1 1

1 1 1

1 1 1













• Gaussian filtering

g(x, y) =
1

2π
e−

1
2
(x

2+y
2

σ2 )

window size w = 5σ.

An example of 5 × 5 Gaussian filter
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2.2795779e-05 0.00106058409 0.00381453967 0.00106058409 2.2795779e-05

0.00106058409 0.0493441855 0.177473253 0.0493441855 0.00106058409

0.00381453967 0.177473253 0.638307333 0.177473253 0.00381453967

0.00106058409 0.0493441855 0.177473253 0.0493441855 0.00106058409

2.2795779e-05 0.00106058409 0.00381453967 0.00106058409 2.2795779e-05
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Noise Filtering (cont’d)

Gaussian filtering has two advantages over the average

filtering:

• no secondary lobes in the frequency domain ( see

figure 3.3 of [?].

• can be implemented efficiently by using two 1D

Gaussian filters.
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Non-linear Filtering

Median filtering is a filter that replaces each pixel value

by the median values found in a local neighborhood. It

performs better than the low pass filter in that it does

not smear the edges as much and is especially effective

for salt and pepper noise.
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Signal to Noise Ratio

SNR = 10 log10
Sp

Np

dB

For image, SNR can be estimated from

SNR = 10 log10
I

σ

where I is the unperturbed image intensity
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Quantization Error

Let (c, r) be the pixel position of an image point resulted

from spatial quantization of (x, y), the actual position of the

image point. Assume the width and length of each pixel

(pixel/mm), i.e., the scale factors, are sx and sy

respectively, then (x, y) and (r, c) are related via

c = sxx+ ξx

r = syy + ξy

where ξx and ξy represent the spatial quantization errors in

x and y directions respectively.
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Quantization Error
xs

sy

(c,r)
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Quantization Error (cont’d)

Assume ξx and ξy are uniformly distributed over the

range determined by [−0.5sx, 0.5sx] and [−0.5sy, 0.5sy],

i.e.,

f(ξx) =











1
sx

−0.5sx ≤ ξx ≤ 0.5sx

0 otherwise

f(ξy) =











1
sy

−0.5sy ≤ ξy ≤ 0.5sy

0 otherwise
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Quantization Error (cont’d)

Now let’s estimate variance of row and column

coordinates c and r.

V ar(c) = V ar(ξx) =
s2x
12

V ar(r) = V ar(ξy) =
s2y
12
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