
Motion Analysis

We are interested in the visual information that can be extracted

from the content changes occurring in an image sequence. An

image sequence consists of a series of images (frames) acquired at

consecutive discrete time instants. They are acquired at the same

or different view points.

Motion is important since it represents spatial changes over time,

which is crucial for understanding the dynamic world.
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Motion Analysis (cont’d)

• Image motion characterizes image content change at

different frames because of the relative 3D motion between

the camera and the scene.

• We are either dealing with a static scene yet a moving camera

or a stationary camera but dynamic scene or both.

• The goal of motion analysis is to compute the image motion

and use it as a visual cue to perform 3D dynamics analysis

tasks, including 3D motion estimation, 3D structure

reconstruction, object detection, scene segmentation, etc...
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Motion Analysis (cont’d)

Motion analysis can answer the following questions

• How many moving objects are there ?

• Which directions are they moving ?

• How fast are they moving

• What are the structures of the moving objects?
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A Graphical Model for Motion Modeling and Analysis

A graphical model shows the causal relationships between 3D

structure, 3D motion, camera parameters, and the image motion.

• Top-down projection: produce image motion from 3D

structure, motion, and camera parameters via a projection

model
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• Image motion estimation

• Bottom-up inference: estimate the 3D motion and structure

from the estimated image motion measurements.
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Tasks in Motion Analysis

• Image motion estimation

• 3D motion and 3D structure estimation from the estimated

image motion

• motion based segmentation-divide a scene into different

regions (motion analysis), each of which may be characterized

by different motion characteristics.

See fig. 8.3, where the foreground and the background move in

different directions. The foreground moves toward the camera

while the background (the teddy bear) moves away from the

camera.
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Motion Analysis v.s. Stereo

The task of 3D motion and 3D structure estimation from an

image sequence is similar to the stereo problem. They are

different however:

• much smaller disparities for motion between consecutive

frames due to small spatial differences between consecutive

frames.

• the relative 3D movement between camera and the scene may

be caused by multiple 3D rigid transformations since the

scene cannot be modeled as a single rigid entity. It may

contain multiple rigid objects with different motion

characteristics.
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Motion Analysis v.s. Stereo (cont’d)

• Motion analysis can take advantage of small temporal and

spatial changes between two consecutive frames. Specifically,

the past history of the target motion and appearance

(intensity distribution pattern) may be used to predict

current motion. This is referred to as tracking.

• The reconstruction is often not accurate due to small baseline

distance between two consecutive frames. Like the stereo, the

main bottleneck for motion analysis is to determine

correspondences.
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Image Motion Analysis

There are two methods: differential methods based on time

derivatives (image flow) and matching methods based on

tracking. The former leads to dense correspondences at each pixel

while the latter leads to sparse correspondences.
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Basics in Motion Analysis

For subsequent discussion, we assume there is only one rigid

relative motion between camera and the object.

Image motion field is defined as the 2D vector field of velocities of

the image points, induced by relative 3D motion between the view

camera and the observed scene. It can also be interpreted as the

projection of 3D velocity field on the image plane.
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Let P = (X, Y, Z)T be a 3D point relative to the camera frame

and p = (c, r)T be the projection of P in the image frame. Hence,

λ




p

1



 = WP

c =
W1

Z
P =

fsxX

Z
+ c0

r =
W1

Z
P =

fsyY

Z
+ r0

where W1 and W2 be the first and second rows of W . They can

be alternatively written as
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c− c0 =
fsxX

Z

r − r0 =
fsyY

Z

The 3D motion can be computed as

V =
dP

dt

Assume V is composed of translational movement
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T = (tX , tY , tZ) and a rotational movement ω = (ωx, ωy, ωz), then

V =







Vx

Vy

Vz







= −T − ω × P (1)

=







−tX + ωzY − ωyZ

−tY + ωxZ − ωzX

−tZ + ωyX − ωxY







(2)

where Vx = dX
dt

, Vy = dY
dt

, and Vz = dZ
dt
. The motion field in the

image is resulted from projecting V onto the image plane.
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The motion of image point p is characterized as v = (vc, vr)
T :
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vc =
dc

dt
=

dW1P
Z

dt
= W1[

dP
dt

Z
−

P dZ
dt

Z2
] = W1[

V

Z
−

PVz

Z2
]

=
W1V

Z
−

cVz

Z

=
(−tX + ωzY − ωyZ)fsx + c0(−tZ + ωyX − ωxY )

Z

−
c(−tZ + ωyX − ωxY )

Z

=
−tXfsx − c0tZ + ctZ

Z

+
ωzY fsx − ωyZfsx + c0ωyX − c0ωxY − cωyX + cωxY

Z

=
−tXfsx + (c− c0)tZ

Z
− ωyfsx

+
ωzY fsx + (c− c0)(ωxY − ωyX)

Z
(3)
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=
−tXfsx + (c− c0)tZ

Z
− ωyfsx

+ (r − r0)ωz

sx
sy

+
(c− c0)(r − r0)ωx

fsy
−

(c− c0)
2ωy

fsx

= (c− c0 −
fsxtX
tZ

)
tZ
Z

︸ ︷︷ ︸

translational motion

− ωyfsx + (r − r0)ωz

sx
sy

+
(c− c0)(r − r0)ωx

fsy
−

(c− c0)
2ωy

fsx
︸ ︷︷ ︸

rotational motion

(4)
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Similarly, we have

vr =
dr

dt
=

−tY fsy + (r − r0)tZ
Z

+ ωxfsy

− (c− c0)ωz

sy
sx

−
(c− c0)(r − r0)ωy

fsx
+

(r − r0)
2ωx

fsy

= (r − r0 −
fsytY
tZ

)
tZ
Z

+ ωxfsy

− (c− c0)ωz

sy
sx

−
(c− c0)(r − r0)ωy

fsx
+

(r − r0)
2ωx

fsy
(5)

Note the motion field is the sum of two components, one for

translation and the other for rotation only, i.e.,
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vtc =
−tXfsx + (c− c0)tZ

Z
(6)

vtr =
−tY fsy + (r − r0)tZ

Z
(7)

the translational motion component is inversely proportional to

the depth Z.

The angular motion component does not carry information of

object depth (no Z in the equations). Structures are recovered

based on translational motion.

vωc = −ωyfsx + (r − r0)ωz

sx
sy

+
(c− c0)(r − r0)ωx

fsy
−

(c− c0)
2ωy

fsx

vωr = ωxfsy − (c− c0)ωz

sy
sx

−
(c− c0)(r − r0)ωy

fsx
+

(r − r0)
2ωx

fsy
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Alternative Derivations of the Motion Projection Equation

From the projection equation,

λ







c

r

1







= W







X

Y

Z







(8)

We have




c

r



 =
1

λ
W2







X

Y

Z







=
1

Z
W2







X

Y

Z







(9)

where W2 are the first two rows of W .







X

Y

Z







= λW−1







c

r

1







= ZW−1







c

r

1







(10)
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dp

dt
=

d




c

r





dt
=

d(

Eq.9
︷ ︸︸ ︷

W2

Z







X

Y

Z






)

dt

=
W2

Z

d







X

Y

Z







dt
−

W2







X

Y

Z







Z2

dZ

dt

=
W2

Z
V −




c

r




Vz

Z
(11)

Eq. 11 is the motion projection equation. Introducing the rotational and
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translational motion, Eq. 11 can be written as

dp

dt
=

W2

Z
(−T − ω ×







X

Y

Z






)−




c

r




−tz + ωyX − ωxY

Z
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=

−W2T +




c

r



 tz

Z
+

−W2ω ×







X

Y

Z







−




c

r








ωy

−ωx





T 


X

Y





Z

=

−W2T +




c

r



 tz

Z
︸ ︷︷ ︸

translational motion that contains Z

− W2ω ×

Eq.10
︷ ︸︸ ︷

W−1







c

r

1







−




c

r











ωy

−ωx

0







T

Eq.10
︷ ︸︸ ︷

W−1







c

r

1







︸ ︷︷ ︸

rotational motion that contains no Z

(12)
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Motion Field Illustration (from wikipedia)
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Motion Field: pure translation

Under pure relative translation movement between the camera

and the scene, i.e., ω = 0, we have

vtc =
−tXfsx + (c− c0)tZ

Z

vtr =
−tY fsy + (r − r0)tZ

Z
(13)

Assume tZ 6= 0 and pe = (ce, re)
T such that

ce =
fsxtX
tZ

+ c0 (14)

re =
fsytY
tZ

+ r0 (15)

Equation 13 can be rewritten as
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vtc = (c− ce)
tZ
Z

vtr = (r − re)
tZ
Z

(16)

From equation 16, we can conclude

• the motion field vectors for all pixels under pure 3D

translation is radial, all going through point pe as pe is

independent of each pixel.

• the motion field magnitude is inversely proportional to depth

but proportional to the distance to pe

• the motion field radiates from a common origin pe, and if

tz > 0 (move away from the camera), it radiates towards pe
since as object moves away from the camera, its size shrinks

and the image point moves towards the pe. On the other
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hand, as the object moves towards the camera, i.e., tz < 0, the

object size increases and each image point, therefore, moves

away from pe. The motion field radiates outward from pe.

• when tz = 0, i.e., movement is limited to x and y directions,

then motion field is

parallel to each other other since vc = − fsxtX
Z

and vr = − fsytY
Z

The above conclusions allow us to infer 3D motion from their 2D

motion field, given some knowledge about the 3D motion (such as

translational motion).

28



Motion Field: Planar Motion

The relative planar motion between the camera and scene induces

a motion field of quadratic polynomial of the image coordinates.

The same motion field can be produced by two different planar

surfaces undergoing different 3D motions due to special symmetry

with the polynomial coefficients. Therefore, 3D motion and

structure recovery can not be based on planar motion (same as

camera calibration).
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Motion Field Estimation

Given a sequence of images, estimate v = (vc, vr) for every pixel

at (c,r).

The image brightness constancy equation. The intensity of

each pixel at a point (c,r) is a function of c, r, and t, and the

coordinates (c,r) also vary with time t. We can hence write the

intensity at pixel (c,r) as I(c(t), r(t), t).

The image brightness constancy assumes that I(c(t), r(t), t) at

two consecutive times remains the same, i.e.,

I(c(t), r(t), t) = I(c(t+ 1), r(t+ 1), t+ 1), which means the

intensity change between t and t+1 is 0, i.e.,

dI

dt
= 0

this constraint is completely satisfied only under 1) the motion is
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translational motion; or 2) illumination direction is parallel to the

angular velocity for lambertian surface. This can be verified by

assuming the lambertian surface model

I = ρnTL

Hence,

dI

dt
= ρ(

dn

dt
)TL

= ρ(ω × n)TL

Hence, dI
dt

= 0 only when either ω = 0 or ω and n are parallel to

each other.
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Via rule of differentiation, we have

dI

dt
=

∂I

∂c

dc

dt
+

∂I

∂r

dr

dt
+

∂I

∂t
= 0 (17)

∂I
∂c

and ∂I
∂r

represent spatial image gradient while ∂I
∂t

represents

temporal image gradient. Let Ic =
∂I
∂c
, Ir = ∂I

∂r
, and It =

∂I
∂t
, we

have the image brightness constancy equation as

Icvc + Irvr + It = 0 (18)

it can be alternatively written as

(▽I)T v + It = 0 (19)

▽I = (Ic, Ir)
T is image intensity gradient. This equation may be

used to estimate the motion field v = (vc, vr). Note this equation
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has no constraint on v when it is orthogonal to ▽I . So equation

18 can only determine motion flow component in the direction of

the intensity gradient, i.e., the projection of motion field v in the

gradient direction (due to the dot product). This special motion

field is called optical flow. So, optical flow is always parallel to

image gradient.
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Optical Flow

Optical flow is a vector field in the image that represents a

projection of the image motion field, along the direction of image

gradient.

Follow the same derivation, derive the optical flow equation for

1D signal I(x, t) using dI(x, t)/dt = 0, Can it be uniquely solved?
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Aperture Problem

The component of motion field in the direction orthogonal to the

spatial image gradient is not constrained by the image brightness

constancy equation. Different 3D motions may produce the same

2D optical flows but different motion fields in the direction

orthogonal to the image gradient.
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Time to Contact Estimation

The time to contact is usually expressed in terms of the speed

and the distance of the considered obstacle, i.e.,

τ = −
Z
dZ
dt

where Z is the distance to the object and dZ/dt is the speed to

the object. Optical flow can be used to estimate dZ/dt. However,

with a monocular camera the distance Z is generally unknown.

Its possible to derive (1) by using a characteristic size of the

obstacle in the image and by assuming that the obstacle is planar

and parallel to the image plane (i.e. affine image conditions)

τ = −
ρ
dρ
dt
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where ρ is the size (or the scale) of the object in the image and

dρ/dt the time derivative of this scale. This equation is more

appropriate as the size can be obtained directly in the image

space. This reformulates the problem as a problem of estimating

the size obstacle size, as well as the rate of change of size. Note

that the TTC does not rely on the absolute size of the object in

the image sequence, but on the relative change in scale from one

frame to another. As a consequence, the TTC computation is not

dependent on camera optics or the object size, only is dependent

on the depth distance and the camera velocity. More from the

paper A Comparison of Three Methods for Measure of Time to

Contact at

http://digital.csic.es/bitstream/10261/30110/1/comparisonThe

paper is also available in the motion folder.
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Aperture Problem Example

In this example, the motion is horizontal while the gradients are

vertical except for the vertical edges at ends. Optical flows are

not detected except for the vertical edges. This may be used to

do motion-based edge detection.
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OF Estimation

Given the image constancy equation, OF estimation can be

carried our using a local approach or a global approach. Local

approach estimates the optical flow for each pixel individually

and it can be further divided into first order and second order

methods. The global approach estimates the optical flows for all

pixels simultaneously. We first introduce two local methods. We

can then discuss Horn and Schuck method as a global approach.
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Local OF Estimation: Lucas-Kanade Method

To estimate optical flow, we need an additional constraint since

equation 18 only provides one equation for 2 unknowns.

For each image point p = (c, r) and a K ×K neighborhood

R(c, r), where (c, r) is the center of R, assume every point in the

neighborhood, including (c,r), has the same optical flow

v = (vc, vr) (note this is a smoothness constraint and may not

hold near the edges of the moving objects).

Ic(ci, ri)vc + Ir(ci, ri)vr + It(ci, ri) = 0 (ci, ri) ∈ R(c, r)

44



(vc, vr) can be estimated via minimizing

ǫ2 =
∑

(ci,ri)∈R(c,r)

[Ic(ci, ri)vc + Ir(ci, ri)vr + It(ci, ri)]
2

=
∑

(ci,ri)∈R(c,r)

[(Ic(ci, ri), Ir(ci, ri))




vc

vr



+ It(ci, ri)]
2

= ||Av + b||22 (20)

where

A =











Ic(c1, r1) Ir(c1, r1)

Ic(c2, r2) Ir(c2, r2)
...

...

Ic(cN , rN ) Ir(cN , rN )











b = [It(c1, r1), It(c2, r2), . . . , It(cN , rN)]T
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The least-squares solution to v(x, y) is

v(x, y) = −(ATA)−1AT b (21)

see the CONSTANT FLOW algorithm in Trucoo’s book. Note

this technique often called the Lucas-Kanade method. Its

advantages include simplicity in implementation and only need

first order image derivatives. The spatial and temporal image

derivatives can be computed using a gradient operator (e.g.,

Sobel) and are often preceded with a Gaussian smoothing

operation. Note the algorithm only applies to rigid motion. For

non-rigid motion, there is a paper [3], that extends the method to

non-rigid motion estimation.

Note the algorithm can be improved by incorporating a weight

with each point in the region R such that points closer to the
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center receive more weight than points far away from the center.
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Image Brightness Change Constancy

Besides assuming brightness constancy while objects are in

motion, we can assume both spatial and temporal image

brightness change to be constant, i.e., image brightness change

rates in c, r, and t are constant. This represents a relaxation of

the image brightness constancy assumption.

Mathematically, these constraints can be formulated as follows:
dI
dt

= C, d2I
dtdc

= 0, d2I
dtdr

= 0, d2I
dtdt

= 0. Applying them to equation

17 yields the four optical flow equations are
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vcIc + vrIr + It = C

vcIcc + vrIrc + Itc = 0

vcIcr + vrIrr + Itr = 0

vcIct + vrIrt + Itt = 0 (22)

Assuming C is known (or a hyper-parameter to tune), this yields

four equations (in fact, we can use the last three equations) for

two unknowns v = (vc, vr). They can therefore be solved using a

linear least squares method by minimizing

‖Av − b‖22 (23)

49



where

A =










Ic Ir

Icc Icr

Irc Irr

Itc Itr










b = −










It − C

Ict

Irt

Itt










.

v = (ATA)−1AT b (24)
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Image Brightness Change Constancy (cont’d)

If C is unknown, we can solve for the vector v = (vc, vr, C) via a

system of linear equations

A =










Ic Ir −1

Icc Icr 0

Irc Irr 0

Itc Itr 0










b = −










It

Ict

Irt

Itt










.

v = (ATA)−1AT b (25)

As a project, compare this approach with the original approach

where C = 0 and see if it improves over the original approach.
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First order method v.s. second order method

Comparing the two methods, we have the following observations:

• the first order method is built on the image brightness

constancy assumption and further assumes the optical flow

vectors are the same in a local neighborhood. The second

order method assumes image brightness change constancy. It

does not need assume the optical flow vectors are the same in

a local neighborhood.

• The first order method involves first order image derivatives,

while the second order method requires both first and second

order image derivatives. Second order image derivatives are

sensitive to image noise.
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Computing Image Derivatives

Traditional approach to compute intensity derivatives involves

numerical approximation of continuous differentiations.

First order image derivatives:

Ic(c, r, t) = I(c, r, t)− I(c− 1, r, t)

Ir(c, r, t) = I(c, r, t)− I(c, r − 1, t)

It(c, r, t) = I(c, r, t)− I(c, r, t− 1)

Second order image derivatives:

Icc(c, r, t) =
I(c+ 1, r, t)− 2I(c, r, t) + I(c− 1, r, t)

4

See appendix A.2 of Trucco’s book for details.
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Image derivatives via Surface Fitting

Use a surface fit with a cubic facet model to the image intensity

in a small neighborhood, producing an analytical and continuous

image intensity function that approximates image surface at time

(c,r,t). Image derivatives can be analytically computed from the

coefficients of the cubic facet model.
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This yields more robust and accurate image derivatives

estimation due to noise suppression via smoothing by function

approximation.
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Surface Fitting with Cubic Facet Model

Assume the gray level pattern of each small block of K ×K ×K

in an image sequence is ideally a canonical 3D cubic polynomial

of x, y, t:

I(c, r, t) = a1 + a2c+ a3r + a4t+ a5c
2 + a6cr

+a7r
2 + a8rt+ a9t

2 + a10ct+ a11c
3 + a12c

2r

+a13cr
2 + a14r

3 + a15r
2t+ a16rt

2 + a17t
3

+a18c
2t+ a19ct

2 + a20crt, c, r, t ∈ R, (26)

Each point provides one linear equation w.r.t the cubic

coefficients a = (a1, a2, . . . , a20)
T . Given a neighborhood of

K ×K ×K, we can setup up a system of linear equations for the

coefficients and solve the coefficients by minimizing ‖Da− J‖2
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and is expressed by

a = (DTD)−1DTJ (27)

57



where

D =







































1 c1 r1 t1 . . . c1r1t1

1 c2 r1 t1 . . . c2r1t1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1 cK r1 t1 . . . cKr1t1

1 c1 r2 t1 . . . c1r2t1

1 c2 r2 t1 . . . c2r2t1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1 cK r2 t1 . . . cKr2t1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1 c1 rK tK . . . c1rK tK

1 c2 rK tK . . . c2rK tK

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1 cK rK tK . . . cKrK tK







































J =











I(c1, r1, t1)

I(c2, r1, t1)

.

.

.

I(cK , rK , tK)
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I(ci, rj , tk) is the intensity value at (ci, rj, tk) ∈ R3×3 and R is

the neighborhood volume.

Note while performing surface fitting, the volume should be

centered at the current pixel (voxel) being considered and use a

local coordinate system, with the center as its origin (0,0). So, for

a 3x3x3, neighborhood, the coordinates for x,y and t are

respectively: -1 0 1, -1 0 1, and -1 0 1. Do not use the actual

coordinates . Hence, D is the same for every pixel, while J varies

from pixel to pixel.
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Cubic Facet Model (cont’d)

Image derivatives at (0,0,0) are readily available from the cubic

facet model. Substituting ai’s into Eq. (23) yields the OFCE’s we

actually use:

A =










a2 a3

2a5 a6

a6 2a7

a10 a8










b = −










a4 − C

a10

a8

2a9










(28)

Note when estimating the first order image derivatives through

cubic fitting for the first order method (LK method), since first

order image derivatives are computed not just for the central

pixel but also for its neighboring pixels. This means cubic surface

fitting needs be performed not only for the center pixel but also
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for the pixels in the neighborhood using the same local coordinate

system. Based on the surface fitting, we can easily show that

Ic(c, r, t) = a2, Ir(c, r, t) = a3, It(c, r, t) = a4 (29)

They can then be substituted to the A matrix in Eq. 21.
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Optical Flow Estimation Algorithm

The input is a sequence of N frames (N=5 typical). Let Q be a

square region of L× L (typically L=5). The steps for estimating

optical flow using facet method can be summarized as follows.

• Select an image as central frame (normally the 3rd frame if 5

frames are used)

• For each pixel (excluding the boundary pixels) in the central

frame

– Perform a cubic facet model fit using equation 26 and

obtain the 20 coefficients using equation 27.

– Derive image derivatives using the coefficients and the A

matrix and b vector using equation 28 for the second order

method or using Eq. 29 for the first order method.

– Compute image flow using equation 25 or Eq. 21.
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– Mark each point with an arrow indicate its flow if its flow

magnitude is larger than a threshold.

Set the optical flow vectors to zero for locations where matrix

ATA is singular (or small determinant).
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The global approach: Honn and Schuck Method

v∗c (c, r), v
∗
r (c, r) = arg min

vc(c,r),vr(c,r)

∑

c

∑

r

[Ic(c, r)vc(c, r) + Ir(c, r)vr(c, r) + It(c, r)]
2

+ λ[vcc(c, r) + vcr(c, r) + vrr(c, r) + vrc(c, r)]

The first term is the image intensity constancy equation and the

second term the uniform image motion constraint. The uniform

image motion constraints can be approximated by the motion

differences between two consecutive frames. The global approach

can use the results of the local method as the initializations. The

global approach tends to perform better than the local approach,

especially near the motion boundaries. Note the formulation is

similar to that of the shape from shading.
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Optical Flow Estimation Examples

An example of translational movement
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An example of rotational movement
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Motion Analysis from Two Frames

If we are limited to two frames for motion analysis, we can

perform motion analysis via a method that combines optical flow

estimation with the point matching techniques. The procedure

consists of the following steps:

For each small region R in the first image

• Estimate image derivatives numerically (cannot do cubic facet

fitting temporally but still can do spatially)

• Estimate optical flow using equation Lucas-Kanade method

or the above method

• Produce a new region R’ at the next image by warping R

based on the estimated optical flow. Note warping involves

performing a 2D translation and rotation of current point to
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a new position based on the estimated optical flow. The

orientation of the optical flow determines the rotation while

the magnitude of the optical flow determines the translation.

• Compute the correlation between R′ and the R in the original

image. If the coefficient is large enough, the estimated optical

flow is correct. We move on to next location in the image.

The result is the optical flow vector for each feature point.

Refer to feature point matching algorithm on page 199.
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Optical flow methods evaluation and datasets

A good evaluation of different optical flow estimation methods

can be found in [6]. Datasets for optical flow estimation and

evaluation include the Middlebuary dataset [1], the MPI Sintel

dataset [2], and the KITTI dataset [4].
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Deep learning methods for OF estimation

For a review of the recent deep learning methods for optical flow

estimation, see Chapter 11 of [5].
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Sparse Motion Analysis Via Tracking

Tracking is a process that matches a sparse set of feature points

from frame to frame.
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Kalman Filtering

A popular technique for target tracking is called Kalman filtering.

“Filtering” means to obtain the best estimate over time by

“filtering out the noise” through estimation fusion. By combining

measurements over time, it is a recursive procedure that estimates

the next state of a dynamic system, based on the system’s current

state and it’s measurement.

Kalman filtering assumes: 1) linear state model; 2) uncertainty is

Gaussian.

74



Kalman Filtering (cont’d)

Let’s look at tracking a point p = (ct, rt), where t represents time

instant t. Let’s the velocity be vt = (vc,t, vr,t)
T . Let the state at t

be represented by its location and velocity, i.e,

st = [ct, rt, vc,t, vr,t]
T . The goal here is to compute the state

vector from frame to frame. More specifically, given st, estimate

st+1.
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Kalman Filtering (cont’d)

According to the theory of Kalman filtering, st, the state vector

at the current time frame t, linearly relates to previous state st−1

by the system model as follows

st = Φst−1 +wt (30)

where Φ is the state transition matrix and wt represents system

perturbation, normally distributed as wt ∼ N(0, Q). State model

describes the temporal part of the system and it can be

probabilistically defined as

p(st|st−1) = N (Φst−1, Q)

If we assume the target movement between two consecutive
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frames is small enough to consider the motion of target positions

from frame to frame uniform, that is,

ct = ct−1 + vc,t−1

rt = rt−1 + vr,t−1

vc,t = vc,t−1

vr,t = vr,t−1

Hence, the state transition matrix can be parameterized as

Φ =










1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1










The measurement model in the form needed by the Kalman

77



filter is

zt = Hst + ǫt (31)

where zt = (zct , zrt) represents the measured target position,

measurement matrix H relates current state to current

measurement and vt represents measurement uncertainty,

normally distributed as ǫt ∼ N(0, R). Measurement model

describes the spatial properties of the system and it can be

probabilistically defined as

p(zt|st) = N (Hst, R)

For tracking, measurement is obtained via a target detection

process.
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For simplicity and since zt only involves position a and assume zt

is the same as st plus some noise, H can be represented as

H =




1 0 0 0

0 1 0 0





awe can also use OF estimation to obtain measurement for the velocity
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Kalman Filtering (cont’d)

Kalman filtering consists of recursive state prediction and state

updating, i.e., given p(st−1|z1:t−1) = N (µt−1,Σt−1), state

prediction is performed using the state model, whereas state

updating is performed using the measurement model.
S(t-1) S(t) S(t+1)

Z(t-1)
Z(t) Z(t+1)

Bayesian network: casual relationships between current state and 
previous state, and between current state and current observation.

Markov process: given S(t), S(t+1) is independent of S(t-1), i.e.,

S(t+1) is only related to S(t).

Bayesian network and Markov chain Interpretation for Kalman filtering

Mathematically, it is formulated as given

p(st−1|z1:t−1) = N (µt−1,Σt−1), estimate p(st|z1:t) = N (µt,Σt),

i.e., estimating the mean µt and the covariance matrix Σt of st,
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the system state at time t.

p(st|z1:t) = p(st|z1:t−1, zt)

∝ p(st|z1:t−1)p(zt|st) (32)

where p(st|z1:t−1) is the state prediction by dynamic model and

p(zt|st) is state updating by the measurement model.
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Kalman Filtering (cont’d)

• Prediction- estimate p(st|z1:t−1), given

p(st−1|z1:t−1) = N (µt−1,Σt−1),

p(st|z1:t−1) =

∫

p(st|st−1)p(st−1|z1:t−1)dst−1

=

∫

N (Φst−1, Q)N (µt−1,Σt−1)dst−1

= N (µ−
t ,Σ

−
t ) (33)

where we can show after some derivations using Eq. 33 that

µ−
t = Φµt−1 and Σ−1

t = ΦΣt−1Φ
T +Q

Σ−
t represents the confidence of the prediction.
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• Updating

Updating uses p(zt|st) = N (Hst, R) to compute p(st|z1:t)

using Eq. 32. It consists of two steps:

– The first step is the measuring process to obtain
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zt = (zc,t, zr,t). The target detector (e.g., thresholding or

correlation) searches for the region determined by the

covariance matrix Σ−
t to find the target point at time t.

During implementation, the search region, centered at the

predicted location, may be a square region of 3σc × 3σr,

where σc and σr are the two eigen values of the first 2× 2

submatrix of Σ−
t . Correlation method can be used to

search the region to identify a location in the region that

best matches the detected target in the previous time

frame. Search region automatically changes based on Σ−
t .

– Given zt, the second step is to combine the prediction

(prior) p(st|z1:t−1) with (likelihood) p(zt|st) using Eq. 32,

i.e.,
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p(st|z1:t) ∝ p(st|z1:t−1)p(zt|st)

= N (µ−
t ,Σ

−
t )N (Hst, R)

= N (µt,Σt) (34)

By computing the gradient of log p(st|z1:t) with respect to

st and setting it zero, i.e., d log p(st|z1:t)
dst

= 0, we can find

the mode of p(st|z1:t), which equals to its mean,

µt = Ktzt + (I −KtH)µ−
t

= µ−
t +Kt(zt −Hµ−

t ) (35)

where Kt = Σ−
t H

T (HΣ−
t H

T +R)−1. It is the weight

(gain) matrix at time t. It weighs the relative contribution

of zt and µ−
t to st. (zt −Hµ−

t ) is called the innovation.

85



i.e., the difference between the observed value and the

optimal forecast of that value.

Given ut, Σ
t can be computed as follows

Σt = E[(st − µt)(st − µt)
T ] = (I −KtH)Σ−

t (36)

Details about the derivations may be found in
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https://sites.ecse.rpi.edu/~qji/CV/KF_derivations.pdf

After each time and measurement update pair, the Kalman filter

recursively conditions current estimate on all of the past

measurements and the process is repeated with the previous

posterior estimates used to project or predict a new a priori

estimate. The trace of the state covariance matrix is often used to

indicate the uncertainty of the estimated position.
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Kalman Filtering Initialization

In order for the Kalman filter to work, the Kalman filter needs be

initialized. The Kalman filter is activated after the target is

detected in two consecutive frames i and i+ 1

The initial state vector s0 can be specified as

c0 = ci+1

r0 = ri+1

vc,0 = ci+1 − ci

vr,0 = ri+1 − ri

The initial covariance matrix Σ0 can be given as:
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Σ0 =










100 0 0 0

0 100 0 0

0 0 25 0

0 0 0 25










Σ0 is usually initialized to very large values. It should decrease

and reach a stable state after a few iterations.

We also need initialize the system and measurement error

covariance matrices Q and R. The standard deviation from

positional system error to be 4 pixels for both c and r directions.

We further assume that the standard deviation for velocity error

to be 2 pixels/frame. Therefore, the state covariance matrix can
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be quantified as

Q =










16 0 0 0

0 16 0 0

0 0 4 0

0 0 0 4










Similarly, we can also assume the error for measurement model as

2 pixels for both c and r direction. Thus,

R =




4 0

0 4





Both Q and R are assumed be stationary (constant).
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Limitations with Kalman Filtering

• assume linear state dynamics (state transition)

• assume the state vector is uni-modal and follows Gaussian

distribution, hence cannot track non-Gaussian distributed

targets and for Gaussian-distributed targets, it can only track

one target at a time.

To overcome these limitations, the conventional Kalman filtering

has been extended to Extended Kalman Filtering to overcome the

linearity assumption, and Unscented Kalman Filtering to

overcome the Gaussian assumption. For details, see the links to

Kalman filtering on course website.
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Particle Filtering

A new method based on sampling is called Particle Filtering

(a.k.a. the condensation algorithm )was introduced to successfully

track multi-modal and non-Gaussian distributed objects. The

system and observation models are probabilistically generalized to

P (st|st−1) system model

P (zt|st) observation model

Note that there are no assumption for P (st|st−1) and P (zt|st).

For Kalman filter, P (st|st−1) ∼ N (Φst−1, Q) and

P (zt|st) ∼ N (Hst, R)
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Particle Filtering for Tracking

Let st represent the state vector and zt represent the

measurement (resulted from a target detector) at time t

respectively. Let z1:t = (z1, z2, . . . , tt)
T be the measurement

history and s1:t = (s1, s2, . . . , st)
T be the state history. The goal

is to determine the posterior probability distribution P (st|z1:t),

from which we will be able to determine a particular (or a set of)

st, where p(st|z1:t) are locally maximum.
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Particle Filtering for Tracking (cont’d)

P (st|z1:t) = P (st|zt, zt−1, . . . , z1) (37)

kP (zt|st)P (st|z1:t−1) (38)

where k is a normalizing constant to ensure the distribution

integrates to one. P (zt|st) represents the likelihood of the state st

and P (st|z1:t−1) is referred to as temporal prior.
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P (st|z1:t−1) =

∫

P (st|st−1, z1:t−1)p(st−1|z1:t−1)dst−1

=

∫

P (st|st−1)P (st−1|z1:t−1)dst−1

≈
1

N

N∑

i=1

P (st|s
′
t−1,i) (39)

where s′t−1,i, i=1,2...,N are the samples acquired from sampling

p(st−1|z1:t−1). We further assume z1:t−1 is independent of st

given st−1. So P (st|z1:t−1) consists of two components:

P (st|st−1) the temporal dynamics or state transition and

p(st−1|z1:t−1) the posterior state distribution at the previous time

instant. It shows how the temporal dynamics and the posterior

state distribution at the previous time are combined to prodce the

state distribution for current time.
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The posterior probability of p(st|z1:t) can be written as

P (st|z1:t) ≈ kP (zt|st)
1

N

N∑

i=1

P (st|s
′
t−1,i)

=
k

N

N∑

i=1

P (zt|st)P (st|s
′
t−1,i)

=
k

N

N∑

i=1

P (zt|st,i)P (st,i|st−1)

= {st,i, wt,i}
N
i=1 (40)

where wi,t = (zt|st,i). In summary, P (st|z1:t) is approximated

numerically by weighted N samples (particles).
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Particle Filtering Pseudo-code

1. At time t, we have p(st−1|z1:t−1) = {st−1,i, wt−1,i}, i=1,2,..,N,

where N is the number particles, t− 1, i is the ith particle at

time t− 1 and wt−1,i is the weight for the ith particle at time

t. At t=0, s0,i is uniformly selected and w0,i =
1
N
.

2. Sample p(st−1|z1:t−1) to acquire samples s′t−1,i, i=1,2,...,N. a

3. Compute p(st|z1:t−1) using s′t−1,i according to Eq. 39.

4. Sample p(st|z1:t−1) to acquire samples st,i, i=1,2,...,N,

according to Eq. 39. b

ap(st−1|z1:t−1) is a mixture of particle distributions; its sampling is per-

formed by first sampling the mixture component index i according to the weight

wt−1,i, and then obtaining a sample s′t−1
from p(s|st−1,i)

bSampling p(st|z1:t−1) consists of two steps: 1)uniformly sample the mix-

ture index i; 2) obtain a sample st,i from p(st|s′t−1,i)
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5. Perform target detection near each particle st,i to yield

measurement zt,i

6. Use the measurement model p(z|s) to compute the initial

weight αt,i = p(zt,i|st,i) c

cNote steps 6 and 7 can be combined to directly compute the weight at

particle by αt,i = p(It,i|st,i), where It,i is the image features extracted from

the patch centered at particle i. p(It,i|st,i) can be computed by comparing It,i

to the target template features.
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7. Normalize the initial weights to obtain final weight for each

sample wt,i =
αt,i

∑

N
i=1

αt,i

8. Obtain particle distribution at time t, p(st|z1:t) = {st,i, wt,i}

9. Repeat steps 1-8 until t=T, output target

distribution{st,i}Ni=1
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Particle Filtering Pseudo-code

• Given p(st−1|z1:t−1) = {st−1,i, wt−1,i}
N
i=1, first, index each

particle as j, j=1,2,.., N, and let p(j = k) = wt−1,k. Sample

the distribution a {p(j = 1), p(j = 2), ..., p(j = N)} to obtain

a particle index j. Second, given j, sample system model

p(s|st−1,j) to obtain st,i, where p(s|st−1,j) ∼ N(st,j , Q) and Q

is system covariance matrix.

• Perform a detection around each st,i to produce

measurements zt,i, i=1,2...,N.

• Compute initial weight αt,i

Assume p(zt|st) ∼ N(st, R), where R is the covariance matrix

for measurement perturbation, and then αt,i = p(zt,i|st,i)
aredistribute the N particles proportionally among the N indexes based on

their probabilities, i.e., allocate N ∗ p(j = k) to st−1,k
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• Q and R can be manually specified as for Kalman filter.
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Particle Filtering

See following videos for further information on particle filtering

Particle filtering lectures

https://www.youtube.com/watch?v=OM5iXrvUr_o

https://www.youtube.com/watch?v=O1FZyWz_yj4
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3D Motion and Structure Reconstruction

Given the motion field (optical flow) estimated from an image

sequence, the goal is to recover the 3D motion and 3D shape of

the object. This can be done on the sparse motion fields resulted

from Kalman filter or from the dense motion field resulted from

optical estimation.
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3D Motion and Structure from a Sparse Motion Field 1

We want to reconstruct the 3D structure and motion from the

motion field generated by a sparse of target points. Among many

methods, we discuss the subspace factorization method, i.e.,

Tomasi-Kanade Factorization.
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Factorization Method

Assumptions: 1) the camera is orthographic; 2) M non-coplanar

3D points and N images (N ≥ 3), 3) rigid motion (note later work

has extended the original factorization to non-rigid factorization.)
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Factorization Method

Assume the relative rigid motion between the camera and object

results from moving the camera while holding the object

stationary. Let pij = (cij , rij) denote the jth image point on the

ith image frame. Let c̄i and r̄i be the centroid of the image points

on the ith image frame. Let Pj = (xj , yj , zj) be the jth 3D points

relative to the object frame and let P̄ be the centroid of the 3D

points.

The relative coordinates can be computed as

c′ij = cij − c̄i

r′ij = rij − r̄i

P ′
j = Pj − P̄

Due to orthographic projection assumption, for the jth point on
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the ith image, we have




c′ij

r′ij



 = MiP
′
j

=




ri,1

ri,2



P ′
j

where ri,1 and ri,2 are the first two rows of the rotation matrix

between camera frame i and the object frame.

By stacking rows and columns, the equations can be written

compactly in the form:

W = RS
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where R is 2N × 3 matrix and S is 3×M , and

R =













r1,1

r1,2
...

rN,1

rN,2













S = [P ′
1 P ′

2 . . . , P
′
M ]

Note ri,1 and ri,2 are both row vectors. R gives the relative

orientation of each frame to the object frame while S contains the

3D coordinates of the feature points.
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W 2N×M =



















c11 c12 . . . c1M

r11 r12 . . . r1M

c21 c22 . . . c2M

r21 r22 . . . r2M
...

...
...

...

cN1 cN2 . . . cNM

rN1 rN2 . . . rNM



















According to the rank theorem,

Rank(AB) ≤ min(Rank(A), Rank(B)), i.e., the matrix W (often

called registered measurement matrix ) has a maximum rank of 3

(note the rank is not 3 if the motion is non-rigid) . This is evident

since the columns of W are linearly dependent on each other due

to orthographic projection assumption and the same rotation
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matrix for all image points in the same frame. Since W = RS,

then rank(W ) ≤ min(rank(R), rank(S)). Hence, the maximum

rank for W is 3.
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Factorization Method (cont’d)

In reality, due to image noise, W may have a rank more than 3.

To impose the rank theorem, we can perform a SVD on W

W = UDV T

• Change the diagonal elements of D to zeros except for the 3

largest ones.

• Remove the rows and columns of D that do not contain the

three largest eigen values, yielding D’ of size 3× 3. D′ is

usually the first 3× 3 submatrix of D.

• Keep the three columns U that correspond to the three

largest singular values of D (they are usually the first three

columns) and remove the remaining columns, yielding U’,

which has a dimension of 2N × 3.
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• Keep the the three columns V that correspond to the three

largest singular values of D (they are usually the first three

columns) and remove the remaining columns, yielding V’,

which has a dimension of M × 3.

W ′ = U ′D′V ′T

W ′ is closest to W , yet still satisfies the rank theorem.
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Factorization Method (cont’d)

Given W ′, we can perform decomposition to obtain estimates for

S and R. Based on the SVD of W ′ = U ′D′V ′T , we have

R′ = U ′D′ 1
2 S′ = D′ 1

2V ′T

it is apparent W ′ = R′S′

This solution is, however, only up to an affine transformation

since for any invertible 3× 3 matrix Q, R = R′Q and S = Q−1S′

also satisfy the equation. We can find matrix Q using the

constraint that from the first row, every successive two rows of R
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are orthonormal (see eq. 8.39 of Trucoo’s book), i.e.,

ri,1r
T
i,1 = 1

ri,2r
T
i,2 = 1

ri,1r
T
i,2 = 0

where ri,1 and ri,2 are the first and second rows of matrix R and

they are row vectors. Since R = R′Q, we have ri,1 = r′i,1Q and

ri,2 = r′i,2Q, hence

f

r′i,1QQT r′
T
i,1 = 1

r′i,2QQT r′
T
i,2 = 1

r′i,1QQT r′
T
i,2 = 0

where r′i,1 and r′i,2 are the first and second rows of matrix R′.
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Given i = 1, 2, . . . , N frames and using the equations above , we

can linearly solve for A = QQT subject to the constraint that A is

symmetric (i.e., only 6 unknowns). Given A, Q can be obtained

via Choleski factorization. Alternatively, we can perform SVD on

A, yielding A = UDUT . Hence, Q = UD
1

2 .

Given Q, the final motion estimate is R = R′Q and the final

structure estimate is S = Q−1Ŝ′.

Recent work by Kanade and Morris has extended this to other

camera models such as affine and weak perspective projection

model.

The work by Oliensis (Dec. 2002, PAMI) introduced a new

approach for SFM from only two images.
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Factorization Method (cont’d)

The steps for structure from motion (SFM) using factorization

method can be summarized

• Given the image coordinates of the feature points at different

frames, construct the W matrix.

• Compute W’ from W using SVD

• Compute R′ and S′ from W’ using SVD

• Solve for the matrix Q linearly.

• R = R′Q and S = Q−1S′

see the algorithm on page 208 of Trucco’s book.
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Factorization Method (cont’d)

Due to the assumption of orthographic assumption, the

translation motion is determined as follows. The component of

the translation parallel to the image plane is proportional to the

frame-to-frame motion of the centroid of the data points on the

image plane. The translation component that is parallel to the

camera optical axis can not be determined.
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Factorization Method for Recovery Non-rigid Motion

see the paper by Christoph Bregler, Araon Hertzmann, and

Henning Biermann titled Recovery non-rigid 3d shape from image

streams, CVPR00. Implement the algorithm.

also read the paper by Lorenzo Torresani, Aaron

Hertzmann,Chris Bregler,

Learning Non-Rigid 3D Shape from 2D Motion, NIPS, 2003.

The algorithm can be downloaded from

http://movement.stanford.edu/learning-nr-shape/

119



3D Motion Estimation from Sparse Motion Field 2

Let P = (X, Y, Z) be a 3D point relative to the camera frame and

p = (c, r) be the corresponding image point in the row column

frame. Let W be the camera intrinsic matrix and V = (Vx, Vy, Vz)

be the 3D motion for P and v = (vc, vr) be the corresponding 2D

motion for p. Following equation 11, we have




vc

vr



 =
W2V

Z
−




c

r



Vz

Z
(41)

Eq. 41 provides 2 equations for 4 unknowns-3 for V and 1 for Z.

To produce additional equation, we can assume 1) the 3D motion
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and the 3D structure is locally constant; 2) the 3D motion is

uniform.
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Constant Local Motion and Structure

Let (c, r) be the location of a target and (c′, r′) be a neighbor of

(c, r), i.e., (c′, r′) ∈ N(c, r) a, we have




vc′

vr′



 =
W2V

Z
−




c′

r′



Vz

Z
, ∀(c′, r′) ∈ N(c, r)

Z




vc′

vr′



 = W2V −




c′

r′



Vz

aThis method requires tracking two nearby points.
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Z




vc′

vr′



 = W2V −




0 0 c′

0 0 r′



V = W ′
2V

where W ′
2 = W2 −




0 0 c′

0 0 r′








vc′

v′r



Z −W ′
2V = 0




vc′ −W ′

21

v′r −W ′
22














Z

Vx

Vy

Vz










= 0 (42)
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where W ′
21 and W ′

22 are the first and second rows of W ′
2. Z and V

for pixel (c,r) can be computed by minimizing the following loss

function
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(


















vc′ (1) −W ′

21

vr′ (1) −W ′

22

vc′ (2) −W ′

21

vr′ (2) −W ′

22

. . .

vc′ (N) −W ′

21

vr′ (N) −W ′

22



























Z

Vx

Vy

Vz










)T

(


















vc′ (1) −W ′

21

vr′ (1) −W ′

22

vc′ (2) −W ′

21

vr′ (2) −W ′

22

. . .

vc′ (N) −W ′

21

vr′ (N) −W ′

22


















︸ ︷︷ ︸

A










Z

Vx

Vy

Vz










) = 0 (43)
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where (c′(n), r′(n)) ∈ N(c, r), i.e., the nth neighbor of (c,r).

The solution to










Z

Vx

Vy

Vz










is the null vector of the A matrix up to a scale

factor.

126



Uniform 3D motion

For uniform 3D motion, we have dV
dt

= 0

dv

dt
=

d(W2V
Z

)

dt
−

d(







c

r






Vz

Z
)

dt

=
W2

Z

dV

dt
−

W2V

Z2

dZ

dt
−




c

r





Z

dVz

dt

−

d




c

r





dt

Vz

Z
+




c

r



Vz

Z2

dZ

dt

= −
W2V

Z2
Vz − v

Vz

Z
+




c

r



V 2
z

Z2
= −2v

Vz

Z
(44)
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dv

dt
= −2v

Vz

Z

Z
dv

dt
= −2vVz

Zv′ + 2vVz = 0

Zv′ + 2
(

0 0 v

)

V = 0 (45)

Combining Eq. 42 with Eq. 45 yields







vc′ −W ′

21

v′r −W ′

22

v′ 2
(

0 0 v

)







︸ ︷︷ ︸

A










Z

Vx

Vy

Vz










= 0 (46)
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From Eq. 46, the solution to










Z

Vx

Vy

Vz










is the null vector of A matrix up to a

scale factor.

129



3D Motion and Structure from Dense Motion Field

Given an optical flow field and intrinsic parameters of the viewing

camera, recover the 3D motion and structure of the observed

scene with respect to the camera reference frame.
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3D Motion Parallax

Motion parallax occurs when the images of two 3D moving points

coincide momentarily due to projection. The relative motion field

of the two instantaneously coincident image points does not

depend on the rotational component of motion.

Let two 3D points P = [X, Y, Z]T and P ′ = [X ′, Y ′, Z ′]T be

projected into the image points p = (c, r) and p′ = (c′, r′). The

corresponding motion vector for point p = (c, r) may be expressed

as
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vc = (c− ce)
tz
Z

− ωyfsx

+ (r − r0)ωz

sx
sy

+
(c− c0)(r − r0)ωx

fsy
−

(c− c0)
2ωy

fsx

= vTc + vωc

vr = (r − re)
tz
Z

+ ωxfsy

− (c− c0)ωz

sy
sx

−
(c− c0)(r − r0)ωy

fsx
+

(r − r0)
2ωx

fsy

= vTr + vωr (47)

Similarly, for p′ = (c′, r′), its motion vector is:

v′c = v′Tc + v′ωc

v′y = v′Tr + v′ωr
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if at some time instant, p and p′ are coincident, i.e,

p = p′ = (c, r), then the relative motion between them can be

expressed as the difference of the only translational components

as their rotational components are the same (vω = v′ω)

∆vc = vTc − v′Tc = (c− ce)(
tz
Z

−
tz
Z ′

)

∆vr = vTr − v′Tr = (r − re)(
tz
Z

−
tz
Z ′

)

where (ce, re) defines the motion pole and, ce =
fsxtX
tZ

+ c0 and

re =
fsytY
tZ

+ r0. It is clear that 1) the relative motion vector

(∆vc,∆vr) does not depend on the rotational component of the

motion; 2) the relative motion vector points in the direction of

pe = (ce, re) (fig. 8.5) ; 3)
∆vc

∆vr
= c−ce

r−re
(for recovery of the

translational motion); 4)
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v⊥ = (vc, vr)
T · ((r − re),−(c− ce))

T = vωc (r − re)− vωr (c− ce)

(for recovery of the rotational motion) , where (r − re,−(c− ce))

is orthogonal to (∆vc,∆vr). Note vc =
tz
Z
(c− ce) + vωc and

vr = tz
Z
(r − re) + vωr
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Translation Direction Determination

Given two nearby image points p and p′ as a result of motion

parallax or their spatial closeness, the relative motion field is

∆vc = vTc − v′Tc = (c− ce)(
tz
Z

−
tz
Z ′

)

∆vr = vTr − v′Tr = (r − re)(
tz
Z

−
tz
Z ′

)

The second terms on the right side in above equations are

negligible if the two points are very close, producing the motion

parallax.
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Translation Direction Determination (cont’d)

Given a point pi = (ci, ri) and all its close neighbors, pj = (cj , rj),

j ∈ Ni, we can compute relative point between p and each of its

neighbors. For each relative motion, we have

∆vc
∆vr

=
ci − ce
ri − re

where (ci, ri) is the ith neighbor of p. A least-square framework

can be setup to solve for pe = (ce, re), which, given (c0, r0), also

leads to the solution to translation motion (tx, ty, tz) up to a scale

factor, i,e., (αt′x, αt
′
y, αt

′
z)- only obtain translation motion

direction.
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Rotation and Depth Determination

According to Eq. 47, the pointwise dot product between the

optical flow (vci , vri) at point pi = (ci, ri) and the vector

(ri − re,−(ci − ce))
T yields

v⊥ = vωci(ri − re)− vωri(ci − ce) (48)

where v⊥ = (vci vri)
T · (ri − re − (ci − ce)

T and vωci and vωri are

the rotational component of the 3D motion. They are functions of

(ωx, ωy, ωz) as shown in equation 47. Given a set of points

i=1,2,..,N, we can have N Eq. 48, which allow to solve for

(ωx, ωy, ωz) in a linear least-square framework. Given (ωx, ωy, ωz)

and (tx, ty, tz), the depth Z can be recovered using equation 47.

From equation 47, we have,
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vc =
tz
Z
(c− ce) + vωc =

αt′z
Z

(c− ce) + vωc

vr =
tz
Z
(r − re) + vωr =

αt′z
Z

(r − re) + vωr

They can be used to solve for Z and the scale factor α linearly by

multiplying both sides by Z. This means in the end we can

exactly solve for (tX , tY , tZ), (ωx, ωy, ωz), and Z.
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3D Motion based Segmentation

Given a sequence of images taken by a fixed camera, find the

regions of the image corresponding to the different moving

objects.
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3D Motion based Segmentation (cont’d)

Techniques for motion based segmentation

• using optical flow

• image differencing

Optical flow allows to detect different moving objects as well as to

infer object moving directions. The optical flow estimates may

not be accurate near the boundaries between moving objects.

Image differencing is simple. It, however, can not infer 3D motion

of the objects.
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