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Abstract
Graphical models such as Bayesian Networks (BNs) are

being increasingly applied to various computer vision prob-
lems. One bottleneck in using BN is that learning the BN
model parameters often requires a large amount of reliable
and representative training data, which proves to be dif-
ficult to acquire for many computer vision tasks. On the
other hand, there is often available qualitative prior knowl-
edge about the model. Such knowledge comes either from
domain experts based on their experience or from various
physical or geometric constraints that govern the objects we
try to model. Unlike the quantitative prior, the qualitative
prior is often ignored due to the difficulty of incorporating
them into the model learning process.

In this paper, we introduce a closed-form solution to sys-
tematically combine the limited training data with some
generic qualitative knowledge for BN parameter learning.
To validate our method, we compare it with the Maximum
Likelihood (ML) estimation method under sparse data and
with the Expectation Maximization (EM) algorithm under
incomplete data respectively. To further demonstrate its ap-
plications for computer vision, we apply it to learn a BN
model for facial Action Unit (AU) recognition from real im-
age data. The experimental results show that with simple
and generic qualitative constraints and using only a small
amount of training data, our method can robustly and accu-
rately estimate the BN model parameters.

1. Introduction
Graphical models are becoming increasingly popular in

computer vision recently. Among these models, Bayesian

networks (BNs) have received significant attention. They

have been applied to various computer vision problems in-

cluding image segmentation [17], object detection [14], tar-

get tracking [19], and facial expression understanding [20].

Among all the issues of BNs, parameter learning is one

of the main challenges. Parameter learning is to estimate the

conditional probability distributions (CPDs) for each node,

given the structure of a BN. Many learning techniques rely

heavily on training data [13]. Ideally, with sufficient data,

it is possible to learn the parameters by standard statisti-

cal analysis like maximum likelihood (ML) estimation. In

many real-world cases, however, the training data are ei-

ther incomplete or sparse due to various difficulties with

data labeling. Data incompleteness is defined as missing of

data for some parameters, while data sparseness means the

amount of training data is limited. Both data incomplete-

ness and sparseness occur frequently in computer vision.

Cohen et al. [4] use a BN to recognize emotions through

facial expressions displayed in video sequences. Manually

labeling the emotion for each image is both time consuming

and error-prone, therefore producing the data lacking both

in quality and quantity. Mortensen et al. [17] introduce a

BN based semi-automatic technique for image segmenta-

tion. The parameters are manually constructed, as there are

no training data available.

When data are incomplete, Expectation-Maximization

(EM) algorithm is often used. Most EM-based methods

asume that data are missing at random (MAR), which

means the missing values can be estimated by the observed

ones in some way. However, when data are missing com-

pletely at random (MCAR), e.g. data of hidden nodes, the

learned parameters could be far from the ground truth.

When data are sparse but complete, ML estimation is

often used. To help improve the ML estimation accuracy

and to compensate the data sparseness, domain knowledge

is often incorporated. Currently, the most popular way is

to represent domain knowledge as the prior distribution of

the parameters. For discrete BNs, Geiger and Heckerman

[12] have proved that Dirichlet Priors are the only possi-

ble priors, under certain assumptions. However, it is often

difficult for domain experts to specify the full prior proba-

bility distribution for all the parameters precisely, especially

when the BN has a large number of parameters. Other more

general priors include smoothness, sparseness, and locality.

These constraints are either too general or primarily used

for constraining the model structure.

We propose a framework for parameter learning by com-

bining quantitative data with domain knowledge in the form

of qualitative constraints. We want to exploit some domain-

specific yet generic qualitative constraints to help regularize

the model learning. Two kinds of qualitative constraints are

defined: range constraints applied to individual parameters

and relationship constraints applied to pairs of parameters.

For sparse but complete data, we solve the learning task

by reformulating the problem as a constrained ML (CML)

problem. For incomplete data, we introduce the constrained

EM (CEM) by adding constraints to the M step. In addition,

we provide closed form solutions to both CML and CEM.
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2. Related Work
We have already discussed that one of the shortcomings

of EM algorithms is that it can easily be trapped in a local

maximum when data are MCAR. Till now, there are many

different methods to help EM to escape from the local maxi-

mum, such as the information-bottleneck EM algorithm [9],

data perturbing method [10], and the Markov chain Monte

Carlo (MCMC) [7] method. These methods focus on im-

proving the machine learning techniques, but ignoring the

useful domain knowledge. In addition, they cannot produce

closed form solution (e.g. MCMC method).

Qualitative constraints have been exploited in parameter

learning. Wittig et al. [21] present an iterative method to in-

tegrate qualitative constraints into two learning algorithms,

APN [3] and EM, by adding violation functions as a penalty

term to the log likelihood function. They show that domain

knowledge in the form of constraints can improve learning

accuracy. However, this penalty-based method cannot guar-

antee to find the global maximum. Besides, the weights

for the penalty functions often need be manually tuned, de-

pending on applications. Altendorf et al. [1] describe a

method to incorporate monotonicity constraints into learn-

ing algorithm. It assumes that the values of the variables

can be totally ordered. Additionally, it uses the penalty

functions, which suffers from the same problem as [21].

Feelders and Van der Gaag [11] incorporate some simple

inequality constraints in the learning process. They assume

that all the variables are binary. The constraints used in the

above methods [1, 21, 11] are restrictive, as each constraint

has to involve all parameters in a conditional probability ta-

ble (CPT).

Campos and Cozman [5] formulate the learning prob-

lem as a constrained optimization problem. However, they

do not provide a specific method to solve the optimization

problem. Niculescu et al. [18] also solve the learning prob-

lem by optimization techniques. They derive the closed

form solutions with ML estimation for two kinds of con-

straints: inequalities between sums of parameters and upper

bounds on sum of parameters within a CPT. There are two

main limitations of their method: First, they assume one

parameter can and only can have one constraint, and there

is no overlap between parameters of different constraints.

Second, their method cannot handle constraints from differ-

ent CPTs. We improve their method by deriving the closed

form solution for range constraints, which contain both up-

per bound and lower bound constraints for the same param-

eters. In addition, the relationship constraints defined in our

paper can either be within or between CPTs.

3. Problem Definition and Approach
3.1. Basic Parameter Learning Theory

We focus on parameter learning in a BN with all discrete

nodes, where the structure is known in advance. The nota-

tions are defined as follows. Assume a BN with n nodes, θ is

the entire vector of parameters, and θijk denotes one of the

parameters. θijk = p(xk
i |paj

i ), where i (i = 1, ..., n) ranges

over all the variables in the BN, j (j = 1, ..., qi) ranges over

all the possible parent configurations of node (variable) Xi,

and k (k = 1, ..., ri) ranges over all the possible states of Xi.

Therefore, xk
i represents the kth state of node Xi, and paj

i is

the jth parent configuration of node Xi.

Given a dataset D = {D1, ..., DN}, which consists of
samples of the BN nodes, the goal of parameter learning is
to find the most probable values θ̂ for θ that can best explain
the dataset D, which is usually quantified by the log like-
lihood function log(p(D|θ)), denoted as LD(θ). Assuming
that the examples are drawn independently from the under-
lying distribution, based on the conditional independence
assumptions in BNs, we have the log likelihood function in
Eq.(1), where nijk is the count for the case that node Xi

has the state k, with the state configuration j for its parent
nodes.

LD(θ) = log

n∏
i=1

qi∏
j=1

ri∏
k=1

θ
nijk

ijk (1)

If the dataset D is complete, ML estimation method can be
described as a constrained optimization problem, i.e. maxi-
mize (Eq.(2)), subject to n equality constrains (Eq.(3)).

Max LD(θ) (2)

S.T. gij(θ) =
∑ri

k=1 θijk − 1 = 0 (3)

where gij imposes the constraint that each parameter sums

to 1 over all its state, 1 ≤ i ≤ n and 1 ≤ j ≤ qi.

If the dataset D is incomplete, ML estimation cannot be

applied directly. A common method is standard EM algo-

rithm [6], which starts from some initial point, and then it-

eratively takes E step and M step to get a local maximum

of the likelihood function. Now data is separated into two

parts: the observed data Y and missing data Z. Assume

θ(0) is the initial point, and θ(t) denotes the successive esti-

mates after t iteration of E and M steps, t = 1, 2, ..., the EM

algorithm can be summarized as follows.

E Step: compute the expectation of the log likelihood

given the observed data Y and the current estimation of pa-

rameter θ(t): Q(θ|θ(t)) = Eθ(t) [log p(D|θ)|θ(t), Y ].

M Step: find new parameter θ(t+1) , which maximizes

the expected log likelihood computed in the E step: θ(t+1) =

arg max
θ

Q(θ|θ(t)).

Particularly for discrete nodes, E step computes the ex-

pected counts for all parameters, and M step estimates the

parameters by maximizing log likelihood function, given

the counts from E step. EM algorithm can guarantee to con-

verge to a local maximum. However, depending on differ-

ent initializations, it may converge to different local max-

ima. When there are a large number of missing data, which

means there are many local maxima, EM algorithm can get

stuck in a local maximum far away from the global one.
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3.2. Qualitative Constraints
In many real world applications, domain experts usually

have an approximated knowledge about the model parame-

ters. This simple and useful qualitative knowledge is often

ignored, despite its availability. We introduce two kinds of

qualitative constraints, which can be easily specified by do-

main experts. They are range and relationship constraints.
Range constraint defines the upper bound and lower

bound of some parameters. Assuming αijk and βijk are the
upper bound and lower bound for parameter θijk, then the
range constraints can be defined as follows:

βijk ≤ θijk ≤ αijk (4)

where 0 < αijk ≤ 1 and 0 ≤ βijk < 1

Relationship constraint defines the relative relationship
between a pair of parameters. If the two parameters in a re-
lationship constraint share the same node index i, and parent
configuration j, the constraint is called intra-relationship
constraint, which can be represented as follows:

θijk ≤ θijk′ where k �= k′
(5)

If the two parameters in a relative relationship constraint
do not satisfy the requirement of an intra-relationship con-
straint, the constraint is called inter-relationship constraint.
It can be described as follows:

θijk ≤ θi′j′k′ where i �= i′ or j �= j′ (6)

3.3. Overview of Our Approach
We aim to solve the learning problem by reformulat-

ing the problem as a constraint-based optimization problem.
Besides the equality constraints implied in BNs, as shown in
Eq.(3), we employ two types of qualitative domain knowl-
edge in the form of inequality constraints as discussed in
the previous section, denoted as hp(x) ≤ 0, where p is the
index of the inequality constraints. The parameter learning
can therefore be formulated as the optimization problem to
find the parameters by:

Max LD(θ) (7)

S.T. gij(θ) =
∑ri

k=1 θijk − 1 = 0, 1 ≤ i ≤ n, and 1 ≤ j ≤ qi

hp(θ) ≤ 0, 1 ≤ p ≤ S

where S is the total number of inequality constraints. Using
the Lagrange multipliers λij and µp, the objective function
to be maximized can be incorporated with the constraints,
producing the following augmented objective function

f(θ) = LD(θ) −
n∑

i=1

qi∑
j=1

λijgij(θ) −
S∑

k=1

µphp(θ) (8)

Given Eq.(8), for sparse but complete data, we can di-

rectly apply the CML method by maximizing Eq.(8) to es-

timate the parameters. For incomplete data, we can replace

the M step of EM algorithm by the solution to Eq.(8), and

iteratively obtain the estimation of the parameters. In the

section to follow, we introduce our solution to Eq.(8).

4. Parameter Learning With Qualitative Con-
straints

In this section, we derive the closed form solutions

for maximizing Eq.(8) under different types of constraints.

While the parameters in LD(θ) in Eq.(8) are assumed to be

independent on each other, the constraints make them de-

pendent of each other. In practice, we group the parame-

ters into independent sets based on the constraints. Because

of the decomposability of the log likelihood function, we

can deal with small independent optimization subproblems

on independent parameter sets separately instead of dealing

with all parameters simultaneously.

For this, we define two kinds of parameter sets: one is

the baseline set, which contains parameters with the same

node and the same parent configuration; the other is the

combined set, which contains several baseline sets. For ex-

ample, if two parameters satisfy an intra-relationship con-

straint as Eq. (5), they are in the same baseline set; while

two parameters in an inter-relationship constraint as Eq. (6)

are in a combined set. We first separate parameters into

baseline sets, and then if there is a constraint on parameters

from different baseline sets, we combine those baseline sets

into one new combined set. This process continues until

there is no constraint on parameters from different sets. Af-

ter decomposition of parameters, we solve the constrained

optimization subproblems set by set independently.

Specifically, let Q denote a parameter set. Since param-

eters from one baseline set share the same node i and the

same parent configuration j, we use 〈i, j〉 to denote the in-

dex of a baseline set. A baseline set can be denoted as

Q = {〈i, j〉}, while a combined set, which consists of sev-

eral baseline sets, can be denoted as Q = {〈i, j〉, 〈i′, j′〉, ...}.
The parameter learning problem can be decomposed into

subproblems, one for each set of parameters. A subproblem
can be formulated as follows:

Max lD(θ) = log
∏

〈i,j〉∈Q

∏ri
k=1 θ

nijk

ijk

S.T. gij(θ) =
∑ri

k=1 θijk − 1 = 0 for 〈i, j〉 ∈ Q

hp(θ) ≤ 0 for 1 ≤ p ≤ SQ (9)

where gij represents an equality constraint, hp represents

an inequality constraint, SQ is the number of inequality con-

straints in set Q.
Since the log likelihood function is concave, and

the qualitative constraints are linear, Karush-Kuhn-Tucker
(KKT) conditions [16] become sufficient to determine the
solution to Eq.(9). The KKT conditions for the problem
described in Eq.(9) are:

∇θ[lD(θ) −
∑

〈i,j〉∈Q

λijgij(θ) −
SQ∑
p=1

µphp(θ)] = 0,

gij(θ) = 0, for 〈i, j〉 ∈ Q
hp(θ) ≤ 0, for 1 ≤ p ≤ SQ

µp ≥ 0, for 1 ≤ p ≤ SQ

µp ∗ hp(θ) = 0, for 1 ≤ p ≤ SQ

(10)
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In optimization, an inequality constraint hp ≤ 0 is active if

hp = 0, or inactive if hp < 0. Based on this theory, we will

derive closed form solutions for each type of constraints.

4.1. Range Constraints
Since range constraints (Eq.(4)) are applied to every indi-

vidual parameters, we can solve the subproblems with range

constraints within baseline sets. There are two constraints

for each parameter θijk in a baseline set Q = {〈i, j〉}:

hα
k (θ) = θijk − αijk ≤ 0 (upper bound constraint), and

hβ
k(θ) = βijk − θijk ≤ 0 (lower bound constraint).

As the objective function is concave and the range con-
straints are linear, the maximum solution either lies inside
the feasible region defined by all constraints, when no con-
straint is active, or on the boundary defined by the active
constraints, when some of the constraints are active. As-
suming Kβ

Q and Kα
Q are the sets of active constraints for

lower bound and upper bound of parameters in Q respec-
tively, and KQ = Kβ

Q ∪ Kα
Q represents the set for all active

constraints of parameters in Q, then the closed form solu-
tion for θijk is as follows:

θijk =




βijk if k ∈ Kβ
Q

αijk if k ∈ Kα
Q

(1 −
∑

k∈K
β
Q

βijk −
∑

k∈Kα
Q

αijk)
nijk∑

k/∈KQ
nijk

otherwise

(11)

The derivation is as follows. From the first equation of

KKT conditions (Eq.(10)), we obtain θijk =
nijk

λij−µα
k

+µ
β
k

.

Because θijk cannot be greater than αijk and less than βijk

at the same time, at most one of the upper bound constraint

hα
k and lower bound constraint hβ

k for a parameter θijk can

be active at a time. Based on whether there is an active con-

straint for θijk, two cases are considered.

• Case 1: If one of the upper bound and lower bound

constraints is active, then θijk = αijk, when hα
k (θ) = 0;

and θijk = βijk, when hβ
k(θ) = 0.

• Case 2: If range constraints are not active, then

hα
k (θ) < 0, hβ

k(θ) < 0 and µα
k = µβ

k = 0. Hence

θijk =
nijk

λij
. Summing up over all parameters whose

constraints are not active, we get: (1 − ∑
k∈K

β
Q

βijk −∑
k∈Kα

Q
αijk) =

∑
k/∈KQ

θijk =

∑
k/∈KQ

nijk

λij
. Thus,

we can obtain λij =

∑
k/∈KQ

nijk

1−∑
k∈K

β
Q

βijk−∑
k∈Kα

Q
αijk

, and

θijk = (1−∑
k∈K

β
Q

βijk −
∑

k∈Kα
Q

αijk)
nijk∑

k/∈KQ
nijk

, as

shown in Eq.(11).

In this way, we derive the closed form solution for range
constraints. To obtain solution in Eq.(11), we need to iden-
tify active constraints. Table 1 summarizes the algorithm to
find active range constraints. The main idea of this algo-
rithm is to search for the active constraints using the criteria
in Eq.(12). Due to the page limit, we do not provide the
proof for this equation.

Table 1. Algorithm for finding active range constraints

Step 1: Check the consistency of the range constraints: 0 <
αijk ≤ 1, 0 ≤ βijk < 1, αijk > βijk,

∑ri
k=1 βijk ≤

1, and
∑ri

k=1 αijk ≥ 1 for 1 ≤ k ≤ ri. If satisfied,

continue; else change constraints.

Step 2: If
∑ri

k=1 αijk = 1, all the upper bound constraints should

be active; else if
∑ri

k=1 βijk = 1, all the lower bound

constraints should be active; else, continue.

Step 3: Perform the ML estimation of parameters without con-

straints. Check the constraints with the estimated pa-

rameters θ∗
ijk =

nijk

Nij
. If no constraint is violated, then

there is no active range constraint; else, continue.

Step 4: List all possible combinations of active constraints, and

rule out the combination if it contains more than ri − 1
active constraints or

∑
k∈K

β
Q

βijk +
∑

k∈Kα
Q

αijk ≥ 1.

Step 5: For each of the remaining combinations, compute λij , un-

til finding a λij satisfying the criteria in Eq.(12).


λij ≤ nijk

αijk
k ∈ Kα

Q

λij ≥ nijk

βijk
k ∈ Kβ

Q

λij ≥ nijk

αijk
, λij ≤ nijk

βijk
otherwise

(12)

4.2. Intra-Relationship Constraints
An Intra-relationship constraint defines the relationship

between two parameters within one baseline set. Assum-
ing parameters within one baseline set Q = {〈i, j〉} are

θij1, ...θijri , which can be partitioned into Q = A ∪ B ∪ C,
where A = {ap|p = 1, 2, ..., SQ}, B = {bp|p = 1, 2, ..., SQ},
such that hp(θ) = θijap −θijbp ≤ 0, for 1 ≤ p ≤ SQ, and C is
the set of parameters without intra-relationship constraints,
the closed form solution for parameter θijkis as follows:

θijk =

{ nijap+nijbp

2Nij
if k = ap or bp and nijap ≥ nijbp

nijk

Nij
Otherwise

(13)
where Nij =

∑ri
k=1 nijk. The derivation is similar to

Niculescu et al. [18].

4.3. Inter-Relationship Constraints
An Inter-relationship constraint defines the constraint ap-

plied on two parameters θi′j′a and θi′′j′′b from different
baseline sets QA and QB , thus the subproblem for param-
eters with an inter-relationship constraint is applied on a
combined parameter set Q = QA ∪ QB , where baseline
set QA = {〈i′, j′〉} and baseline set QB = {〈i′′, j′′〉}, such
that h(θ) = θi′j′a − θi′′j′′b ≤ 0. Let NA =

∑
〈i,j〉∈QA

nijk,

NB =
∑

〈i,j〉∈QB
nijk, na = ni′j′a, and nb = ni′j′b. The

closed form solution for parameters with inter-relationship
constraint is as follows. If naNB − NAnb ≥ 0

θijk =




na+nb
NA+NB

ijk = i′j′a or i′′j′′b
(1 − na+nb

NA+NB
)

nijk

NA−na
〈i, j〉 ∈ QA and k �= a

(1 − na+nb
NA+NB

)
nijk

NB−nb
〈i, j〉 ∈ QB and k �= b

(14)

Else
θijk =

{
nijk

NA
〈i, j〉 ∈ QA

nijk

NB
〈i, j〉 ∈ QB

The brief derivation of the solution is as follows. The
KKT conditions are:

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on October 12, 2008 at 11:57 from IEEE Xplore.  Restrictions apply.



∇θ[lD(θ) − λAgA(θ) − λBgB(θ) − µh(θ)] = 0

gA(θ) = 0 gB(θ) = 0
h(θ) ≤ 0 µ ≥ 0 µ ∗ h(θ) = 0

(15)

From the first equation of KKT conditions (Eq.(15)), we
can obtain:

θijk =




nijk

λA+µ
ijk = i′j′a

nijk

λB−µ
ijk = i′′j′′b

nijk

λA
〈i, j〉 ∈ QA and k �= a

nijk

λB
〈i, j〉 ∈ QB and k �= b

(16)

Two cases are considered, depending on whether the inter-

relationship constraint is active or not:

• Case 1:h(θ) = 0 and µ ≥ 0
We can solve λA, λB , and µ with the following equa-
tions: 


na

λA+µ
= nb

λB−µ
= na+nb

λA+λB
na

λA+µ
+ NA−na

λA
= 1

nb
λB−µ

+ NB−nb
λB

= 1

(17)

The first equation is h(θ) = 0, the second and the third

are from gA(θ) = 0, and gB(θ) = 0. Also, from µ ≥ 0,

we can get naNB − NAnb ≥ 0. In this way, we obtain

the first part of closed form solution (Eq.(15)).

• Case 2: h(θ) < 0 and µ = 0

It is equivalent to the case that no inequality con-

straints are applied. From gA(θ) = 0, we can get

λA =
∑

〈i,j〉∈QA
nijk = NA. Similarly, we can get

λB = NB . Plug them into Eq.(15), we can obtain the

second part of closed form solution(Eq.(15)). From

h(θ) < 0, we get naNB − NAnb < 0.

5. Evaluation with Synthetic Data
5.1. Experimental Design

In order to test the performance of our method against

ML estimation and the standard EM algorithm given sparse

data and incomplete data respectively, we design the exper-

iment as follows.

A. Models: We test the algorithms on multiple BNs with

the same number of nodes of 20, but with different ran-

domly generated initial parameters and structures. For one

specific BN structure, 11 BNs with different initializations

of parameters are generated. One of them is treated as the

ground truth, and 10 others as different initializations for

parameter learning. A sample BN is shown in Figure 1.

Figure 1. One BN example: the shaded nodes (node 13 to 20) are

hidden nodes, the others are observable nodes.

B. Training and Testing Data: For the case of sparse

data, 700 samples are generated from the ground truth BN,

200 for testing and the remaining 500 for training. The

training data are divided into 10 datasets for 10 different

initializations, each with 50 samples. For the case of in-

complete data, 400 samples are drawn from the ground truth

BN, half for training, half for testing, and all training data

associated with hidden nodes are removed.

C. Constraints: For the case of sparse data, we randomly

choose a subset of parameters from all parameters, and im-

pose constraints on the selected parameters. For the case

of incomplete data, we randomly choose parameters from

only those of the hidden nodes, and impose constraints on

them. The number of constraints in a CPT is no more than

2. To guarantee the correctness of the constraints, all the

constraints are defined based on the ground truth.

D. Performance Evaluation: Two criteria are used for

evaluation: Kullback-Leibler (K-L) divergence, which mea-

sures the distance between the learned parameters and the

ground truth, and negative log likelihood, which measures

how well a learned BN matches with the testing data.

5.2. Sparse Data
With complete but sparse data, we compare the learn-

ing performance of ML estimation with our method with

range constraints, intra-relationship constraints and inter-

relationship constraints respectively, as shown in Figure 2.

The first column of Figure 2 compares ML estimation with

CML w.r.t. K-L divergence. The x-coordinate and the y-

coordinate represent node index and K-L divergence re-

spectively. Since the learning results are from 10 datasets,

we plot the mean and standard deviation by the median of

each bar and the height of the bar respectively. We can see

that CML is better than ML estimation in both mean and

standard deviation of KL-divergence. More specifically, the

mean K-L divergence for ML estimation is 0.2087, which

decreases to 0.0786 for CML with range constraints, 0.1763

for CML with intra-relationship constraints, and 0.1546 for

CML with inter-relationship constraints.

The second column of Figure 2 shows the comparison

results w.r.t. negative log likelihood. The x-coordinate de-

notes the index of dataset, and the y-coordinate denotes the

negative log likelihood value. We can see that for each

dataset, CML has better negative log likelihood value than

ML estimation. The mean negative log likelihood value

is 2526 for ML, which decreases to 2394 for CML with

range constraints, 2490 for CML with intra-relationship

constraints, and 2492 for CML with inter-relationship con-

straints.

5.3. Incomplete Data
With incomplete data, we compare the learning perfor-

mance of our method with standard EM method as shown in

Figure 3. Since 10 initializations of parameters are used, we

plot the mean and standard deviation. As only the parame-

ters for hidden nodes (node 13 to 20) may have constraints,
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Figure 2. Sparse data learning results comparisons: ML estima-

tion vs. CML. (a) range constraints; (b) intra-relationship con-

straints; (c) inter-relationship constraints. The left column are the

comparisons w.r.t. K-L divergence, and the right with negative log

likelihood.

we can see clearly from the figures in the left column that

those nodes benefit most from the constraints. The aver-

age K-L divergence of hidden nodes decreases from 0.6437

for EM to 0.2361 for CEM with range constraints, 0.3830

for CEM with intra-relationship constraints, and 0.4864 for

CEM with inter-relationship constraints. The right column

of figures show that CEM is better than EM for each ini-

tialization of BN model. The average negative log likeli-

hood decreases from 3045 for EM to 2798 for CEM with

range constraints, 2978 for CEM with intra-relationship

constraints and 2830 for CEM with inter-relationship con-

straints.

6. Facial Action Unit Recognition
In this section, we apply our method to facial action unit

(AU) recognition [20]. The Facial Action Coding System

(FACS) [8] is the most commonly used system for facial

behavior analysis. Based on FACS, facial behaviors can be

decomposed to a set of AUs, each of which is related to the

contraction of a specific set of facial muscles. An automatic

AU recognition system has many applications. Developing

such a system requires manually labeling AUs in each train-

ing image, which is usually done by certified AU coders.
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Figure 3. Incomplete data learning results comparisons: EM vs.

CEM. (a) range constraints; (b) intra-relationship constraints; (c)

inter-relationship constraints. The left column are the comparisons

w.r.t. K-L divergence, and the right with negative log likelihood.

Node 13 to 20 are hidden nodes, which may have constraints.

However, constructing a large amount of reliably labeled

AU images, especially for spontaneous facial expressions,

is very difficult since training AU coder and manually scor-

ing the AUs are expensive and time consuming. The pro-

posed method can significantly reduce our dependence on

the manually labeled images.

As shown in [20], there are semantic relationships

among AUs. Instead of recognizing each AU individually,

a BN is employed to explicitly model the probabilistic rela-

tionships among AUs. Specifically, there are two types of

relationships among AUs. Type I is cooccurrence relation-
ship, which means some AUs appear simultaneously. For

example, AU6 (cheek raiser) tends to happen with AU12

(lip corner puller), when smiling. Type II is mutual exclu-
sive relationship, which means it is nearly impossible for

some AUs to appear together. For instance, AU25 (lips part)

can hardly happen with AU24 (lip presser) simultaneously.

Following the work in [20], we use a BN as shown in

Figure 4 to capture the semantic relationships among the

14 frequently occurring AUs. The larger circular nodes in

the model represent AUs while the smaller nodes represent

their image measurements. The measurement are acquired
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using an image-based technique [2]. Tong et al [20] have

demonstrated that the BN model is superior to the state of

the art AU recognition methods. But they use a very large

set of data to train their BN model. We will show that we

can achieve the comparable results using only a fraction of

their training data.

Every link between two AU nodes has a sign provided by

the domain expert. The “+” sign denotes positive influence,

which means two AU nodes have cooccurrence relationship,

and one of them plays the dominant role. For example, it is

difficult to do AU2 (outer brow raiser) without performing

AU1 (inner brow raiser), but we can do AU1 without AU2,

so AU2 has a positive influence on AU1. On the other hand,

“-” denotes negative influence, which means the two AU

nodes have mutual exclusive relationship.

As the manually labeled data is often limited, we want

to use sparse data to learn the parameters, with the help of

qualitative constraints. Although it is hard to obtain man-

ually labeled data for AU nodes, it is easier to obtain the

measurements of AUs by some computer vision techniques.

Therefore, we want to learn the parameters also using the

measurements of AUs. For this purpose, 14 image mea-

surement nodes are introduced to represent the AU mea-

surement results. Now, there are two kinds of links in the

BN: the links between AU nodes denote the relationship

between AUs; the links between AU nodes and the corre-

sponding measurement nodes represent the uncertainties in

AU measurement.

We extract constraints based on the following rules pro-

vided by domain experts:

1. Intra-Relationship Constraint: In spontaneous cases,

some AUs rarely occur. One example for this case is AU27,

and the rule is P (AU27 = 1) ≤ P (AU27 = 0), where 1

means presence and 0 means absence.

2. Inter-Relationship Constraint I: Considering an AU

node AUi has only one parent node AUj , if the sign of the

link is positive, we have P (AUi = 1|AUj = 0) ≤ P (AUi =

1|AUj = 1), e.g. P (AU1 = 1|AU2 = 0) ≤ P (AU1 =

1|AU2 = 1); if the sign of the link is negative, then we

can get P (AUi = 1|AUj = 1) ≤ P (AUi = 1|AUj = 0), e.g.

P (AU6 = 1|AU27 = 1) ≤ P (AU6 = 1|AU27 = 0).

3. Inter-Relationship Constraint II: Considering an AU

node AUi has more than one AU parent nodes, AUP denote

all the parent nodes with positive links, and AUN denote all

the parent nodes with negative links. Then we get P (AUi =

1|AUP = 0, AUN = 1) ≤ P (AUi = 1|AUP = 1, AUN = 0),

e.g. P (AU15 = 1|AU24 = 0, AU25 = 1) ≤ P (AU15 =

1|AU24 = 1, AU25 = 0).

4. Range Constraint I: If an AU node AUi has more

than one parent nodes AUP , and all of them with positive

influence, then P (AUi = 1|AUP = 1) ≥ 0.8.

5. Range Constraint II: If an AU node AUi has more

than one parent nodes AUN , and all of them with negative

influence, then P (AUi = 1|AUN = 1) ≤ 0.2.

6. Range Constraint III: For each measurement node,

a domain expert can provide the range of the performance

of the classifier, such as P (Oi = 1|AUi = 1) and P (Oi =

0|AUi = 0), which represent the accuracy of the correspond-

ing classifier.

Please note the above constraints are due to either facial

anatomy or due to certain facial patterns. They are generic

enough to be applied to different databases and to different

individuals.

The 8000 images used in experiments are collected from

Cohn and Kanade’s DFAT-504 database [15], 80% data for

training and 20% for testing. Training data are used for

learning the parameters in the BN (Figure 4 (a)), while test-

ing data are used to perform AU recognition through infer-

ence given learned BN. We consider 3 cases of training data:

1. 300 complete training data for both AU and measurement

nodes; 2. Full training data (80% × 8000) for measurement

nodes, but no data for AU nodes; 3. 300 data for AU nodes,

and full data for measurement nodes. In case 1, all nodes

are observable, i.e. data are complete, thus CML and ML

estimation methods are compared. In cases 2 and 3, nodes

are partially observable, i.e. data are incomplete, therefore,

EM and CEM are compared.

Figure 4 (b), (c), and (d) show the recognition results

for the three cases respectively. The x and y coordinates

represent the AU node index and the true skill score (the

difference between true positive rate and false positive) re-

spectively. We can see from Figure 4 (b) that ML estimation

with 300 data fails at AU15, but CEM makes significant im-

provement at AU15. The average true skill score for all AU

nodes increases from 0.6993 for ML estimation to 0.7182

for CML with sparse data. Figure 4 (c) shows when there

are no data for AU nodes, though with full training data

for measurement nodes, EM fails with the average true skill

score of 0.1067. In contrast, CEM is significantly better

than EM with average true skill score of 0.7439. From Fig-

ure 4 (d), we can see that the average true skill score for

EM is 0.4394, which is better than 0.1067 (no data for AU

nodes). However it is much less than 0.7182 (ML estima-

tion with 300 data), which means although EM has addi-

tional data from measurement nodes than ML estimation, it

cannot make full use of them. On the other hand, the av-

erage true skill score for CEM here is 0.7786, which is the

best of three cases (b,c,d). It means that with qualitative

constraints, CEM can make full use of data to improve the

learning accuracy. Additionally, for comparison, we also

evaluate ML estimation with full training data. Its average

true skill score is 0.7808, which is slightly better than CEM

in case 3. These results are extremely encouraging, as us-

ing our methods with domain-specific yet generic qualita-

tive constraints, and with a small number of manually la-

beled data (300), we can achieve similar learning accuracy
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Figure 4. Comparison of average AU recognition results using the BNs learned from MLE, EM, and CEM respectively (a) BN for AU

recognition; (b) 300 complete data; (c) full training data for measurement nodes, but no data for AU nodes; (d) 300 data for AU nodes, full

training data for measurement nodes.

to the ML estimation with full training data (6400).

7. Conclusion
Qualitative domain knowledge generally exists in com-

puter vision. We define two types of constraints to represent

the qualitative domain knowledge, and derive closed form

solution for the ML BN parameter estimation with the two

types of constraints respectively. For the case of sparse data,

we directly apply our constrained maximum likelihood es-

timator, while for incomplete data, we extend EM method

by replacing M step with our constrained maximum likeli-

hood estimator. We further apply our method to a BN for

AU recognition. The experimental results from both syn-

thetic data and real data demonstrate that our method can

fully exploit the domain knowledge to improve parameter

learning accuracy. The proposed methods can significantly

reduce our dependance on the labeled data and they can be

applied to many computer vision tasks including segmenta-

tion, tracking, image retrieval, and object recognition.
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