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Abstract—This paper presents methods of modeling and predicting face

recognition (FR) system performance based on analysis of similarity scores. We

define the performance of an FR system as its recognition accuracy, and consider

the intrinsic and extrinsic factors affecting its performance. The intrinsic factors of

an FR system include the gallery images, the FR algorithm, and the tuning

parameters. The extrinsic factors include mainly query image conditions. For

performance modeling, we propose the concept of “perfect recognition,” based on

which a performance metric is extracted from perfect recognition similarity scores

(PRSS) to relate the performance of an FR system to its intrinsic factors. The PRSS

performance metric allows tuning FR algorithm parameters offline for near optimal

performance. In addition, the performance metric extracted from query images is

used to adjust face alignment parameters online for improved performance. For

online prediction of the performance of an FR system on query images, features are

extracted from the actual recognition similarity scores and their corresponding

PRSS. Using such features, we can predict online if an individual query image can

be correctly matched by the FR system, based on which we can reduce the

incorrect match rates. Experimental results demonstrate that the performance of an

FR system can be significantly improved using the presented methods.

Index Terms—Face recognition, similarity scores, performance modeling,

performance prediction, image quality.
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1 INTRODUCTION

WITH current applications of computer vision systems to the
automatic recognition of humans from various forms of imagery,
algorithmic and system performance modeling and prediction is
receiving increasing attention because of the impact such systems
have on both collective security and personal privacy [14]. One
form of automated human recognition currently receiving great
research interest is face recognition (FR), which is the subject of
ongoing US government evaluation campaigns [1]. This paper
presents generic methods to model and predict the face recognition
system performance based on an analysis of similarity scores.
Here, the “performance” of a face recognition system is defined
only as its accuracy in correctly matching face images. Other
aspects of performance, such as speed, cost, availability, and
maintainability, are not considered in this paper.

Many methods have been developed to improve a single
recognition algorithm and to make the most use of each image
[15]. However, all of the current methods have their own limitations
in that they may show good accuracy under some environments, but
may also show deteriorated performance under other environments
due to many affecting factors. Some testing has shown that failures in

recognizing persons are strongly associated with both the conditions
of the collection environment and the properties of the subjects being
recognized [7]. All the factors affecting the face recognition system
performance can be categorized into two kinds: intrinsic and
extrinsic factors. The intrinsic factors of an FR system include its
gallery set, the algorithm, and its parameters.1 The extrinsic factors
are primarily image conditions of queries, including face rotation
angles, expressions, and illumination.

In this paper, instead of trying to improve a specific algorithm,

we present generic methods to model face recognition performance

and to predict if query images can be correctly recognized by an FR

system. By doing that, the performance of an FR system can be

improved in the following aspects: 1) the FR system parameters can

be automatically tuned only using gallery images for improved

performance based on performance modeling, 2) given query

images, their recognition results can be predicted to identify images

that may be mismatched, so that further actions, such as human

intervention, can be taken to improve recognition accuracy, and

3) the query image parameters (i.e., face alignment in this paper),

can be optimized to achieve better recognition accuracy.

Specifically, our methods are based on an analysis of similarity

scores output from face recognition systems. First, we present a

performance metric by analyzing similarity scores calculated from

intrinsic factors of an FR system. We show that the obtained

performance metric can guide offline system parameter tuning

without acquiring additional data. Second, we present a similarity

score-based method to predict online the recognition results of

query images into two cases: correct match and incorrect match. A

recognition result of a query image is a correct match if the top match

of the query image corresponds to a gallery image of the correct face.

Usually, the recognition failure caused by an incorrect match has

high cost in biometric systems, and our method, through perfor-

mance prediction, intends to identify the query images whose

recognitions are most likely failed. Humans can be alerted about

these images for further actions, therefore improving the system

performance. Third, we present a method, which is also based on

analysis of similarity scores, to adjust alignment of query images

(i.e., eye positions) online to achieve better recognition accuracy.

The rest of this paper is organized as follows: Related work is

reviewed in Section 2. In Section 3, performance modeling for face

recognition is introduced. The method of predicting face recogni-

tion results is presented in Section 4. Experimental results are

discussed in Section 5. The paper concludes in Section 6 with a

summary and discussion of future work.

2 RELATED WORK

Much work has been done already on performance modeling and

prediction of biometric systems such as fingerprint recognition

[11], iris recognition [10], [9], and face recognition [8], [7], [3].

Specifically, in the work by Tabassi et al. [11], the quality of a

fingerprint image is defined as the normalized distance between

matching and nonmatching similarity scores. An 11-dimensional

feature vector is extracted to identify the presence of feature points,

e.g., minutia, and outliers. Then, a Neural Network classifier is

trained using the extracted feature vector to predict query images

into five levels of quality. Their method shows that images of

higher quality usually have better accuracy in recognition, but

their method cannot predict individual recognition results. Schmid

et al. provide a probabilistic estimation of the lower performance

bound of iris recognition algorithms based on an analysis of the

Hamming distance between query and gallery iris images [9].

However, the lower bounds obtained from both the Chernoff

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 4, APRIL 2007 665

. P. Wang is with the Department of Radiology, Section of Biomedical Image
Analysis, University of Pennsylvania, 3600 Market Street, Suite 380,
Philadelphia, PA 19104. E-mail: wpeng@ieee.org.

. Q. Ji is with the Department of Electrical, Computer, and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180.
E-mail: qji@ecse.rpi.edu.

. J.L. Wayman is with the Office of Graduate Studies and Research, San Jose
State University, San Jose, CA 95192. E-mail: JLWayman@aol.com.

Manuscript received 31 Jan. 2006; revised 24 June 2006; accepted 22 Sept.
2006; published online 18 Jan. 2007.
Recommended for acceptance by S. Prabhakar, J. Kittler, D. Maltoni,
L. O’Gorman, and T. Tan.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org and reference IEEECSLog Number TPAMISI-0070-0106.
Digital Object Identifier no. 10.1109/TPAMI.2007.1015.

1. The definitions of terms used for face recognition, such as gallery, query,
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bound theory and the Large Deviation theory only provide

approximate error estimates. They cannot be used to predict either

the individual recognition results or the performance of systems

that do not use likelihood ratio methods for recognition.

In face recognition, some empirical evaluation methods design

specific training and testing sets, such as experimental settings in

FERET and FRGC [8], [7], to study the system performance.

Although such methods can directly assess the performance of an

FR system under general circumstances, they cannot perform online

performance prediction. To understand the factors affecting the FR

algorithms, Givens et al. use a generalized linear model to analyze

how some human characteristics, including age, race, gender, skin,

glasses, and expression, affect the face recognition accuracy [3].

Their model needs to explicitly identify each affecting factor, which

is an extremely difficult task in practical implementation. In

addition, the identified factors can never be exhaustive.

Some other work predicts system performance using similarity

scores. Li et al. propose to cluster the similarity scores into different

sets, and then use the distance among the sets as features. AdaBoost

is then used to select and combine these features to detect

misclassification of a face recognition system [5]. AdaBoost usually

needs a large number of features and many training samples. For

example, more than 10,000 samples are used in [5]. However, such a

large number of training samples are difficult to collect for practical

systems. The similarity scores are also used to predict closed-set

Cumulative Match Characteristic (CMC) curves with a small set of

gallery data [4], [13]. In these methods, the rank k recognition results

are modeled using parametric models whose parameters are

estimated from a small gallery set. These methods work well only

when gallery and query images are obtained under the same

conditions, and they cannot predict individual recognition results.

3 PERFORMANCE MODELING

3.1 Model of Face Recognition Systems

There is no shortage of algorithmic approaches to face recognition

[15]. Typically, the function of an FR system is to map a query image

to a label that represents its identity. In an FR system, the gallery set

is denoted as G ¼ fg1; g2; . . . ; gng, consisting of n gallery images

whose identity is known to the algorithm. The query set is denoted

as Q ¼ fx1; x2; . . . ; xmg, consisting of m query images whose

identity is unknown to the algorithm. A face recognition algorithm

measures the similarity between query images and each gallery

image. For rank k recognition, which is generally used in closed-set

searches, the system outputs labels of the gallery images corre-

sponding to the k top matches [8]. In this paper, unless otherwise

specified, we define recognition rate as the rate of correct matches at

rank 1. To quantitatively evaluate the performance of a closed-set FR

system, the Cumulative Matching Characteristic (CMC) curve is

used [8].

For most FR systems, the similarity score plays an important role

since it connects both intrinsic and extrinsic factors of an FR system.

The similarity score is denoted as Sðxi; gjÞ or Sði; jÞ, for the

comparison between the query xi and the gallery gj, and a larger

similarity score means a potentially closer match. In our method of

closed-set analysis, all the similarity scores of a query image xi are

sorted in a descending order, and are further normalized to the

range [0, 1], thus the similarity scores of using different gallery

images and different measurement methods can be compared. After

sorting and normalization, the set of similarity scores for data xi are

represented as Si ¼ fSði; j1Þ ¼ 1; Sði; j2Þ; . . . ; Sði; jnÞ ¼ 0g, where jk
is the index of the gallery image corresponding to the kth sorted

similarity score. Under the assumption that, for each query image,

there is one and only one gallery image from the same person, we

call the largest similarity score the “matching” score and the

remaining similarity scores “nonmatching” scores.

3.2 Perfect Recognition

Given all the intrinsic factors of an FR system, including gallery

images and algorithm parameters, its performance depends only

upon the extrinsic factors, i.e., characteristics of query images.

Empirical evaluation methods require a large set of query images

with ground truth to evaluate the performance, and the resulting

analysis cannot generalize to images taken under different

environments. In this work, we utilize statistical analysis of

similarity scores to characterize the relationship between the

intrinsic factors of an FR system and its performance under different

environments. To this end, the concept of “perfect recognition” is

introduced.

In “perfect recognition,” the gallery setG is duplicated to produce

the query setQ, i.e.,Q ¼ G ¼ fg1; . . . ; gng. The “perfect recognition”

uses the duplicated set for recognition, and obtains similarity scores

of the each query image xi: Si ¼ fSðgi; g1Þ; Sðgi; g2Þ; . . . ; Sðgi; gnÞg,
i ¼ 1; . . . ; n. Such similarity scores are called “Perfect Recognition

Similarity Scores” (PRSS). For simplicity, the normalized and sorted

PRSS are also denoted as fSði; j1Þ; . . . ; Sði; jnÞg, i ¼ 1; . . . ; n, where

Sði; jkÞ corresponds to the kth largest perfect recognition similarity

score in Si. Since PRSS encode information of all the intrinsic factors

affecting the FR system performance, including gallery images and

FR algorithms, they can be used to model the part of the FR’s

performance due to intrinsic factors.

3.3 Performance Metric from Similarity Scores

An example of PRSS is shown in Fig. 1, where the FR system uses

FERET gallery data and a PCA-based recognition algorithm. It

shows that the nonmatching scores (less than 1) are distinctively

separated from the matching score (equal to 1). To quantitatively

characterize the difference between matching and nonmatching

scores for data xi, a performance metric fi is defined as

fi ¼ exp
Sði; j1Þ � �nmi

�nmi

� �
; ð1Þ

where Sði; j1Þ is the matching score, and �nmi and �nmi are the mean

and standard deviation of nonmatching scores Sði; jkÞ, k ¼ 2; . . . ; n.

The mean of all fis,

f ¼
P

i fi
n

;

is used to summarize the entire set of PRSS. f can be used to model

the relationships between the performance of an FR system and its

intrinsic factors. To quantitatively demonstrate this, we design the

following experiments using PCA-based recognition systems. In a

PCA-based FR system, commonly used similarity measurement

methods include L1, L2, and Cosine. Also, each element of the
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Fig. 1. Normalized similarity scores of a single image: (a) The normalized similarity
scores sorted in a descending order. (b) Histogram of the normalized similarity
scores.



subspace feature vector can be normalized by its corresponding

standard deviation in the PCA subspace such that the similarity is

measured in the Mahalanobis space [2]. Therefore, the parameters

can be the dimension of subspace (dim), the measurement methods

(L1, L2, or Cosine measurements), and the measurement space

(“Euclidean” or “Mahalanobis”). In the following experiments,

parameters of the recognition algorithm are varied and f is

calculated for each set of parameters using only gallery data. The

actual recognition rates ð�Þ using each set of parameters are

computed using different query sets in FERET and FRGC, as shown

in Fig. 2.

Figs. 2a and 2b show the PRSS curves of all the gallery images

using two different parameter sets. Each curve represents PRSS of a

gallery image. It shows that the system with better recognition

accuracy has a larger difference between matching and non-

matching similarity scores; therefore, the corresponding f and �

are larger. More examples of the relationship between f and actual

recognition rates are shown in Figs. 2c and 2d, where each point at

the curves represents a recognition rate obtained from a specific

parameter set. It is observed that the recognition rate almost

monotonically increases with f . Such a relationship can be fitted

with a generalized linear model (GLM) [6]. We call the generalized

linear model characterizing the relationship between f and

� “performance characteristic curve.”
The monotonic relationship between the actual recognition rate �

and f can be used to tune system parameters offline by selecting the

parameter corresponding to the largest f , thus achieving improved

system performance. However, it is also observed that the slopes of

performance characteristic curves may vary, depending on the

measurement methods used. For example, the performance char-

acteristic curve obtained using the Cosine measurement method is

different from that obtained using L1 or L2 measurement methods

because the Cosine measurement method scales the similarity

scores in a different manner. To effectively compare performance

metrics of different measurement methods, we need to unify all the

performance characteristic curves into one unified performance

characteristic curve. To achieve this, an assumption is made that all

the performance characteristic curves achieve similar mean and

lower performance bound although their upper performance bound

could be different. Our empirical observations indicate that this

assumption is basically true for different measurement methods.

Given this assumption, we can then perform the unification. Let the

mean and the lowest recognition rates of ith performance

characteristic curve be denoted as �mðiÞ and �lðiÞ. Since all of the

curves are near-linear, the average slope of ith curve is approxi-

mated as

�mðiÞ � �lðiÞ
fmðiÞ � flðiÞ ;

where fmðiÞ and flðiÞ are the performance metrics corresponding

to �mðiÞ and �lðiÞ, respectively. Based on the assumption that

�mðiÞ � �mðjÞ and �lðiÞ � �lðjÞ for the ith and jth curves, we have:

fðjÞ � fmðiÞ � flðiÞ
fmðjÞ � flðjÞ ðfðiÞ � f

lðiÞÞ þ flðjÞ: ð2Þ

Equation (2) unifies a metric fðiÞ on the ith curve to its

corresponding metric fðjÞ on the jth curve. Fig. 3 shows unified

performance characteristic curves from different measurement

methods. Please note that (2) does not involve �mðiÞ and �lðiÞ since

they have been canceled out. Since only PRSS performance metrics

computed from intrinsic factors are needed in (2), it is possible to

compute the unified characteristic curve without additional data.

In Section 5, we demonstrate how f can be used to improve

recognition performance.

4 PERFORMANCE PREDICTION

As discussed, the closed-set recognition results can be simply

categorized into two cases: correct match (CM) and incorrect match

(IM). Given an individual query image, performance prediction

involves predicting whether the recognition result of the query

image is a correct match or an incorrect match. To perform such

prediction, training data in addition to gallery images is needed.

Given a query image xi, we define the Actual Recognition

Similarity Scores (ARSS) as the similarity scores Sði; jÞ between

the xi and the gallery gj. The performance metric of ARSS,

calculated in the same way as PRSS, is also denoted as fi for xi. In
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Fig. 2. Relationship between f and recognition performance. (a) and (b) Plots of PRSS using different parameter sets. The horizontal axis is the rank of PRSS, and the

vertical axis is the corresponding PRSS value: (a) dim ¼ 40, space ¼ Euclidean, method ¼ Cosine, � ¼ 0:372, and f ¼ 1:1417. (b) dim ¼ 100, space ¼ Euclidean,

method ¼ L2, � ¼ 0:732, and f ¼ 1:6785. (c) and (d) Plots of f versus �. Each point at curves represents a result obtained under a measurement parameter set. Curves

are fitting results using GLM models. (c) Results using FRGC V1.0 Experiment 1 data. (d) Results using FERET FC set.

Fig. 3. Relationship between unified f and actual recognition rates of different

systems: (a) Systems using FRGC V1.0 Experiment 1 data set. (b) Systems using

FERET FC data set.



fact, PRSS can be seen as a special case of ARSS since the query set

in perfect recognition is the duplication of the gallery set.

In our method, the differences between the ARSS and its

corresponding PRSS are used as features for individual recognition

result prediction. Mathematically, the similarity score difference

vector D1
xi

of the rank 1 recognition is defined as:

d1
kðxiÞ ¼ Sði; jkÞ � S0ðj1; jkÞ
D1
xi
¼ d1

1ðxiÞw1; . . . ; d1
nðxiÞwn

� �
;

ð3Þ

where Sði; jkÞ is the kth score of ARSS. To prevent confusion

between PRSS and ARSS, we use S0ðj1; jkÞ to denote the kth score

of PRSS corresponding to a rank 1 recognition result, where jk is

the index of the gallery image corresponding to the kth sorted

similarity score and n is the total number of gallery images. The

difference of kth similarity score d1
kðxiÞ is smoothed by a weight wk

to emphasize the scores of the first several ranks since they are

more important for recognition. In our work, wk is defined as

wk ¼ exp
�ðk� 1Þ2

2�2
r

( )
;

where �r is set as 20.
Besides D1

xi
, we also include the differences at more recognition

ranks to expand a feature vector for performance prediction. At the

rank m, the difference vector is Dm
xi
¼ fdm1 ðxiÞw1; . . . ; dmn ðxiÞwng,

where dmk ðxiÞ ¼ Sði; jkÞ � S0ðjm; jkÞ. S0ðjm; jkÞ is the corresponding

perfect recognition similarity score at the rank m. The extracted

feature vector V is then defined as in (4):

V ¼ ðd1
1ðxiÞw1; . . . ; d1

KðxiÞwK; d2
1ðxiÞw1; . . . ;

d2
KðxiÞwK; . . . ; dm1 ðxiÞw1; . . . ; dmKðxiÞwKÞ:

ð4Þ

In the feature vector V, the differences between ARSS and PRSS at

the firstM ranks are used, and within each rank, only the difference

of the firstK scores are used. So, totally, there areM �K elements in

the feature vector. Given such defined features, a Support Vector

Machine (SVM) is trained using collected training data to predict the

face recognition result of the individual query image as either a

correct match or an incorrect match.
The algorithm of performance prediction is summarized in

Table 1. It needs to be noted that when predicting incorrectly, the

performance predictor could commit two kinds of mistakes: false

positive and false negative. False positive is defined as an incorrect

prediction that classifies an incorrect match as a correct match. The

false negative, on the other hand, is defined as an incorrect

prediction that classifies a correct match as an incorrect match.

5 EXPERIMENTS

Two face databases, FERET [8] and FRGC V1.0 [7], are used in our

experiments. FERET uses a fixed gallery image set and different

query image sets to study recognition performance under changes

of facial expressions (FB), illumination (FC), and age (Dup1). In

FRGC Experiment 1, both gallery and query images are taken under

controlled environments while query images in Experiment 4 are

taken under much less controlled conditions of lighting, pose angle,

and facial expression. We apply a PCA-based recognition method,

in which each face is normalized to the size of 45� 30 pixels. The

pixel intensity is further normalized by histogram equalization. In

the following experiments, we show, respectively, the results of

offline parameter tuning using performance modeling, recognition

result prediction, and online face alignment refinement.

5.1 Offline Parameter Selection

For the first experiment, the performance characteristic curves for

different measurement methods are first unified into one curve by

the linear correction describ ed in Section 3.3, and the parameter set

corresponding to the largest unified f is selected as the optimal

parameter set. As a result, the selected parameter set for FERET is

[200, Cosine, Mahalanobis], which means that the system uses

200 PCA coefficients, the Cosine measurement method, and the

Mahalanobis space. The parameter set selected for FRGC V1.0

Experiments 1 and 4 is [120, Cosine, Mahalanobis]. To verify the

optimality of the selected parameters, we exhaustively test the

recognition rates of all possible parameters, and compare them with

the recognition rates of selected parameter sets, as summarized in

Table 2, which also shows the parameters corresponding to maximal

actual recognition rate. From the table, we can observe that different

query sets need different parameters to achieve the best recognition

rate. However, the offline selected parameters can achieve near-

optimal accuracy for different query sets acquired under different

environments. This is even true for the data sets with large accuracy

ranges, such as FERET FC. This experiment demonstrates the

optimality of the selected parameter set only using gallery images,

as well as its capability of generalization to different query sets.
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TABLE 1
Performance Prediction Algorithm

TABLE 2
Summary of Offline Parameter Selection



5.2 Recognition Result Prediction

The following experiments demonstrate how our method predicts

individual recognition results, and improves recognition perfor-

mance. The difference values between ARSS and PRSS are extracted

to train a performance predictor (e.g., SVM) to classify individual

recognition results as either a correct match or an incorrect match.

We validate the performance predictor through a cross-validation,

in which 50 percent data is used for training, and the remaining

50 percent is used for validation. To assess the generalization

capability of the performance predictor, two types of cross-

validation methods, i.e., intraset and interset validation methods,

are applied. In the intraset validation method, all the query sets are

merged into one query set. The training data is uniformly sampled

from the merged set, and then the predictor is validated on the

remaining data of the merged set. In the interset validation method,

the predictor is trained using data selected from only some of the

sets, and is validated on the other sets. For example, when using

FERET data sets, the predictor is trained with data from the FB (or

FC and Dup1) set, and validated on the FC and Dup1 (or FB) sets.

When using FRGC V1.0 data sets, the predictor is trained on the

Experiment 1 (or the Experiment 4 ) set, and validated on the

Experiment 4 (or the Experiment 1) set. The intraset validation

method assumes that the testing data is obtained from the same

environment as the training data while the interset validation

method simulates the situation where the training and testing data

are acquired from different environments.

The false positive rates and false negative rates of the

performance predictor are summarized in Table 3 for both intraset

and interset validation. The overall error rate of the performance

predictor is between 15 percent and 25 percent for FERET sets and

FRGC Experiment 1 while FRGC Experiment 4 shows worse

accuracy. Table 3 shows that the accuracy of the interset validation

is only slightly worse than the accuracy of the intraset validation,

which demonstrates that this prediction method is not constrained

in a specific environment, but can be applied in various environ-

ments after the predictor has been trained.
Since the performance predictor can identify the query images

that are most likely mismatched by an FR system, such actions can

be taken with respect to these images as reacquiring them or fusing

multiple recognition modalities. For this study, only the images

predicted to result in correct matches will be preserved for

recognition; therefore, improving the overall system performance.

Experimental recognition results with and without applying

performance prediction are compared in Fig. 4, where P is the

percentage of preserved “good” query images, i.e., the images that

are predicted to be correctly matched by the FR system. The

threshold corresponding to each P is obtained from training sets.

Fig. 4 shows the recognition results when preserving all images (i.e.,

the curves corresponding to “All”), and the results when only

preserving a certain percentage of “good” query images (i.e., the

curves corresponding to different P values in Fig. 4). It is shown that

the recognition accuracy is largely improved with the use of

performance prediction.

The experimental results are further summarized in Table 4. In

the table, �0 denotes the original recognition rate at rank 1 using all

the available data without performance prediction. �0 is the

recognition rate when using only the data predicted to result in

correct matches. The percentage of total data used for recognition,

P 0, can thus be calculated as P 0 ¼ �0�P
�0 . It shows that performance is

greatly improved by applying performance prediction. For example,

the recognition rate of FERET FB set is increased to 96.2 percent from

80 percent when about 90 percent of query images that can be

correctly matched are preserved (which also means that 74.8 percent

of total query images are used for recognition). For the query sets

that usually have low recognition rates, such as FERET FC, FERET

Dup1, and FRGC Experiment 4, the performance improvement is

also obvious. The error rate goes down to near zero when preserving

fewer query images. But, the price paid is that much query data that

can be correctly recognized is also discarded. However, the P value

can be adjusted to achieve the desired trade-off between the

recognition rate and the amount of data loss. Another strategy for

performance improvement is to fuse multiple FR systems based on

performance prediction. The images predicted to be incorrect

matches for one system can be picked up by another system that

might be able to recognize them correctly. The performance

prediction based on multiple system fusion represents a natural

extension of this work.

5.3 Online Adjusting Face Alignment

All of the above experiments use manually marked eyes for face

alignment. However, most real-world applications require auto-

matic eye localization. Although some accurate eye localization

methods have been developed, there still exist localization errors (or

at least inconsistencies), such that results using automatic eye

localizations are consistently lower than those using manually

marked eyes [8], [12]. Since the performance metric has a monotonic

relationship with the actual recognition rate, it can be used to guide
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TABLE 3
Performance Prediction Accuracy with Intraset and Interset

Cross-Validation on FERET and FRGC

Fig. 4. CMC curves of face recognition with and without performance prediction:

(a) FERET FB set. (b) FRGC V1.0 Experiment 4 set.

TABLE 4
Summary of Rank 1 Recognition Rates with and

without Performance Prediction



the adjustment of the initial eye positions, whether automatically or

manually marked, for better recognition. Assuming that there are

k-pairs of eye position candidates, the performance metric fi is

calculated for the query face image which is aligned using the

ith eye-pair candidate. The eye-pair candidate producing the

highest fi is selected for face alignment prior to providing

recognition results.

In the following experiments, for each eye, nine candidate eye

positions (the initial eye position plus its eight neighbors) are

searched. Table 5 compares the recognition rates of using the

original eye and adjusted eye positions, where the automatic eye
detection method described in [12] is used. It is observed that the

face recognitions of using adjusted eyes outperform those of using

initial eye position estimates. Also, the eye locations adjusted from

automatic eye locations provide better recognition rates than those

of manually marked eyes. These experiments demonstrate that the

manually marked eyes do not always provide the best face

alignment for recognition, and that face recognition performance

can be improved with the use of our presented face alignment

adjustment method.

6 SUMMARY

In this paper, we present our work on performance modeling and

prediction of face recognition systems based on the analysis of

similarity scores. We introduce the concept of “perfect recognition”

and derive a performance metric based on the perfect recognition

similarly scores to model the relationships between the intrinsic

factors of an FR system and its performance. The performance

metric is subsequently used to tune the FR system parameters
offline. The performance metric calculated from query images can

be used to adjust face alignment online for improved recognition

accuracy. By comparing the perfect recognition similarity scores

with the actual recognition similarity scores, we present a method to

predict the recognition results of individual query data. Experi-

mental results demonstrate that the methods provide various ways

to improve the performance of face recognition systems. While our

method is not specifically designed for the PCA method, its

applicability to other FR methods need be studied. One future

work will be further validation of our method with additional data

sets and with different recognition methodologies. Another future

work is to extend the proposed methods to databases that contain
multiple gallery and query images for each face. We also plan to

apply the methods to other biometric systems, such as fingerprint

and iris recognition.

ACKNOWLEDGMENTS

The research described in this paper is supported in part by a grant

(N41756-03-C-4028) to Rensselaer Polytechnic Institute from the

Task Support Working Group (TSWG) of the United States.

REFERENCES

[1] Anon, “Face Recognition Vendor Test,” 2006.
[2] R. Beveridge, D. Bolme, M. Teixeira, and B. Draper, “The CSU Face

Identification Evaluation System User’s Guide: Version 5.0,” Computer
Science Dept., Colorado State Univ., May 2003.

[3] G. Givens, J.R. Beveridge, B.A. Draper, P. Grother, and P.J. Phillips, “How
Features of the Human Face Affect Recognition: A Statistical Comparison of
Three Face Recognition Algorithms,” Proc. IEEE Int’l Conf. Computer Vision
and Pattern Recognition, vol. 2, 2004.

[4] A.Y. Johnson, J. Sun, and A.F. Bobick, “Using Similarity Scores from a Small
Gallery to Estimate Recognition Performance for Larger Galleries,” Proc.
IEEE Int’l Workshop Analysis and Modeling of Faces and Gestures, pp. 100-103,
2003.

[5] W. Li, X. Gao, and T.E. Boult, “Predicting Biometric System Failure,” Proc.
IEEE Int’l Conf. Computational Intelligence for Homeland Security and Personal
Safety, pp. 57-64, 2005.

[6] P. McCullagh and J.A. Nelder, Generalized Linear Models, second ed.
Chapman & Hall/CRC, 1989.

[7] P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, J. Chang, K. Hoffman, J.
Marques, J. Min, and W. Worek, “Overview of the Face Recognition Grand
Challenge,” Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition,
pp. 947-954, 2005.

[8] P.J. Phillips, H. Moon, S.A. Rizvi, and P.J. Rauss, “The FERET Evaluation
Methodology for Face-Recognition Algorithms,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1090-1104, Oct. 2000.

[9] N.A. Schmid, B. Cukic, M. Ketkar, and H. Singh, “Performance Analysis of
Iris Based Identification System at the Matching Score Level,” Proc. Int’l
Conf. Acoustics, Speech, and Signal Processing, vol. 2, pp. 93-96, 2005.

[10] N.A. Schmid and J.A. O’Sullivan, “Performance Prediction Methodology
for Biometric Systems Using a Large Deviations Approach,” IEEE Trans.
Signal Processing, vol. 52, no. 10, pp. 3036-3045, 2004.

[11] E. Tabassi, C.L. Wilson, and C.L. Watson, “Fingerprint Image Quality,”
Technical Report NISTIR 7151, Nat’l Inst. of Standards and Technology,
2004.

[12] P. Wang, M.B. Green, Q. Ji, and J. Wayman, “Automatic Eye Detection and
its Validation,” Proc. IEEE Workshop Face Recognition Grand Challenge
Experiments, 2005.

[13] R. Wang and B. Bhanu, “Learning Models for Predicting Recognition
Performance,” Proc. IEEE Int’l Conf. Computer Vision, 2005.

[14] Biometric Systems Technology, Design and Performance Evaluation, J. Wayman,
A. Jain, D. Maltoni, and D. Maio, eds. Springer, 2005.

[15] W. Zhao, R. Chellappa, P.J. Philips, and A. Rosenfeld, “Face Recognition: A
Literature Survery,” ACM Computing Survey, vol. 35, pp. 399-458, 2003.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

670 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 4, APRIL 2007

TABLE 5
Summary of Rank 1 Recognition Rate with Adjusted Eyes



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


