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Abstract 2 Eye Detection Error on Face
The accuracy of face alignment affects the performance of Recognmon

a face recognition system. Since face alignment is usually N )
conducted using eye positions, an accurate eye localization® OPserve how the recognition performance varies accord-

algorithm is therefore essential for accurate face recogni-ing t0 eye localization error, the eye positions of the ground
tion. In this paper, we first study the impact of eye loca- truth are ar_t|f|C|aIIy perturbed Wl_th random noise. Face
tions on face recognition accuracy, and then introduce anf€cognition is then performed using the perturbed eye po-
automatic technique for eye detection. The performance ofSitions. The impact of eye detection on recognition accu-
our automatic eye detection technique is subsequently vali-racy is illustrated in Figure 1, where face images are aligned
dated using FRGC 1.0 database. The validation shows thaP@sed on perturbed eye positions. The eye localization er-
our eye detector has an over@ll.5% eye detection rate, '0rin Figure 1 is the p|_xel error norm_allzed by the distance
with the detected eyes very close to the manually providedPetween two eyes. Given a normalized error, the random
eye positions. In addition, the face recognition performance N0ise is uniformly distributed at a circle in 2D space. The
based on the automatic eye detection is shown to be compadata from FRGC 1.0 and PCA baseline algorithm are used
rable to that of using manually given eye positions. for this experiment [16].
Figure 1 clearly shows that eye location errors signifi-
cantly affect the recognition accuracy. For example, about
1 Introduction 1% (about 3 pixels for FRGC image or 0.5 pixel if the inter-
ocular distance is 50 pixels) eye location error reduces the

Animportant issue in face recognition systems is face align- f2C€ récognition accuracy by ovéd’%. When the error is

ment. Face alignment involves spatially scaling and rotating 820Ut5%, the face recognition accuracy reducesdioye.
a face image to match with face images in the database. It/ €€ numbers, of course, vary, depending on the recogni-

is already shown that the face alignment has a large impaction methods. But still, they show the significant impact of
on recognition accuracy [17, 15]. Currently, face alignment &Y€ POSition error on face recognition.
is usually performed with the use of eye positions. For most

face recognition methods, eye positions are manually given. 100 : : : ., .
But for a real world application of face recognition, manu- o0 1 . { || -+ Experiment 1]
ally detecting eye positions is apparently not realistic. An R a—— jIEExperimentd

automatic eye detection algorithm is therefore needed for a
fully automatic face recognition system.
In this paper, we first propose a new real time automatic
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eye detection method. Our eye detection method is then [ — 3
validated using FRGC database [16]. The rest of this paper %1 T 1

is organized as follows: the impact of eye location on face 1 ' [ [ %]
recognition is discussed in Section 2. The related work on %1 ‘ [ [ ' '
automatic eye detection is reviewed in Section 3. We pro- B R e R A )
pose an accurate eye localization algorithm at Section 4. In Normalized Error

Section 5, we show the experiment results of validating our - o
eye localization for face recognition on the FRGC database.Figure 1. Face recognition accuracy vs. eye localization
The paper concludes in Section 6. error in FRGC 1.0 experiments



Similar conclusions have also been drawn by other re- and the similarity measurement based on Gabor wavelets is
searchers. In [17], the face recognition algorithms with sensitive to localization change so that they can be used to
automatic and manual alignment are evaluated. The facedetect fiducial points [23]. In [6], a two-layer Gabor wavelet
recognition algorithms with manual eye coordinates are re- network (GWN) is proposed to localize facial points from
ferred as “partially automatic algorithms” while “fully auto- coarse to fine. The first layer localizes face region while
matic algorithms” automatically align face images. Exper- the second layer further refines the facial points. The ex-
iment results show that the partially automatic algorithms periments on FERET show that about 95% eyes are located
always perform better than the fully automatic algorithms. with a distance error smaller than 3 pixels. However, no

There are two basic strategies to address the face alignface recognition accuracy is reported with this method.
ment problem. One strategy is to improve the robustness of Some passive methods consider eye detection as a typi-
face recognition algorithms to misalignment. The robust- cal two-class pattern recognition problem. In [14], eye de-
ness of a face recognition algorithm is evaluated by its per-tectors are trained with the rectangle Haar features and Ad-
formance under misalignment[19]. [17] shows that EBGM aBoost algorithm to detect eyes in images. In [5], the crit-
method, which is based on Gabor wavelets representationjcal features are selected from both rectangle and center-
is more robust for fully automatic face alignment than PCA surrounded Haar feature sets. GentleBoost is applied to
method. It is also claimed that the warping is a necessaryconstruct a final eye detector. The same algorithm to train
step in face recognition to improve the robustness to impre-a frontal face detector. After a frontal face is detected, eyes
cise alignment [15]. are located inside the face region.

In this paper, we focus on another strategy, which tries to
improve eye localization accuracy for better face alignment.

We propose a new eye detection method and validate the4  Qur Eye Localization A|gorithm
method using FRGC database.
Itis shown that applying Haar wavelet features in AdaBoost
. . . rovides excellent computational efficiency with compara-
3 Brief Review on Automatic Eye De- gle accuracy with otherpmethods for face getection [2%]. A
tection disadvantage of Haar features is their limited discriminant
capability. Although the Haar features vary with different

There are two purposes of eye detection. One is to detecfPatterns, sizes and positions, they can only represent the
the existence of eyes, and another is to accurately locatd€gular rectangular shapes. However, for eye detection, the
eye positions. Under most situations, the eye position is MOSt distinguishing feature is the pupil which has a round
measured with the pupil center. shape.

Current eye detection methods can be divided into two  TO better represent eyes, we propose to statistically learn
categories: active and passive eye detection [11]. The activediscriminate features to characterize eye patterns. Based
detection methods use special types of illumination. Under o the distribution of discriminant features, we propose to
IR illumination, pupils show physical properties which can learn probabilistic classifiers to separate eyes and non-eyes.
be utilized to localize eyes [9, 25]. The advantages of active Multiple classifiers are then combined in AdaBoost to form
eye detection methods are that they are very accurate an@ robust and accurate eye detector. Our algorithm is briefly
robust. The disadvantages are that they need special lightexplained at the following paragraphs.
ing sources and have more false detections with an outdoor
environment, where the outdoor illumination impacts the IR
illumination.

Passive methods directly detect eyes from images withinThe notations used in this paper are explained here. A train-
visual spectrum and normal illumination. Some early work jng sample is denoted s, g, ), wherez is image intensity
extracts distinct features from eyes localization. The fea- gata, and;, € {Q,,Q,} is the sample label. In this paper,
tures include image gradients [13], projection [24], andtem- (), — 1 represents the eye whife, = —1 represents the
plates [4, 12]. However, in these methods, heuristics andpon-eye. Each training sample, g, ) is associated with a
postprocessing are usually necessary to remove false detegyeightw,.
tions, and these features are sensitive to image noise. Be- one criteria to extract a “good” feature for pattern classi-
sides the above features, wavelets are shown to be able t§cation is that the featur&'(x) can minimize the estimated
localize facial features [10, 23]. Huang and Wechsler pro- Bayes errot/:
pose to select optimal Wavelet packets and classify the eye
and non-eye with Radial Basis Functions (RBFs) [10]. Ga-
bor wavelets are robust to moderate illumination change, Jr = /(1 - miax[p(Qi|F(w))])p(x)dx @)

4.1 Discriminant Features for Eye Detection



Itis shown that Fisher discriminant analysis (FDA) is equiv-
alent to Bayesian classifier if assuming Gaussian distribu- e Initialize sample weights.
tion and equivalent priors and covariance matrix for each

class. FDA extracts the feature= ATz by maximizing e Repeatfor =1,2,.., N:
the ratioJ(A) of between-class covariandg and within-

L T )
class covariancé,, (2). 1. Extract discriminant feature = o' x with sam

ple weightsw,. Learn the sample distribution

B ||AT S, Al| from z.
J(A4) = |ATS, Al @ 2. Fit the classifierh, (x) = log|[Higis] from
When the samples are associated with weights, the covari- sample weights.
ance matrices have the form 3. Updatew,, «— w, exp|—g.hi(z)]
and re-normalize the weight.
— T
Sw = zg we (@ — i) (x = i) e Output the combined classifiesgn[>" , A, ().
Sy o= > PO)(wi—mwmi—p" Q)
ie {1,2}

Figure 2: Applying discriminant features in Real AdaBoost
wherew, is the sample weigh}, is the mean of all samples,
andy; is the mean of-th class. P(Q;) = >, _q w, is
the weight of class. The FDA feature can be obtained by (RNDA) to speed up the NDA for object detection. For
solving the generalized eigenvalue and eigenvectors probmore detail, please refer to the work in [22].
lem.

One problem with FDA is that the single Gaussian as- . -
sumption is not valid due to significant appearance variance,“"2 Featu_re S_elect|on and Classifier Con-
especially for non-eyes. Another problem is that the rank of struction with AdaBoost
Sy in FDA is 1 for a two-class problem, which means that
only 1 effective feature can be extracted from FDA.

Nonparametric discriminant analysis (NDA) is proposed
to overcome these limitations [8]. In NDA, each sam-
ple has the extra-class nearest neighbors(NNS), =
{#|gs # gu, ||Z — z|| < cE} and intra-class nearest neigh-
borsziy = {Zlgz = s, |2 — z|| < cl} where the
thresholdsc? and ¢l define the extra and intra neighbor-
hoods respectively. In calculation, the NNs are usually rep-
resented by their weighted average, €. = E[z¥ ] and
! = E[zLy]. The nonparametric between-class scatter
matrix is defined as (4).

AdaBoost is very popular for object detection since its first
application in face detection [21]. Basically, AdaBoost se-
lects the critical features and train weak classifiers as well
as updates the sample weights [18]. As long as the weak
classifiers are slightly better than random guessing, the final
classifier will have much better accuracy after combining all
the weak classifiers together. The summary of AdaBoost al-
gorithm can be found in [18, 7].

The main task in the AdaBoost is the selection of features
to learn weak classifiers. We use more powerful discrim-
inant features instead of rectangular Haar features to im-

prove eye detection accuracy. Since the data weights in both
r_ E E\T discriminant analysis and AdaBoost represent the same dis-
S = Eolw(@ —2%)(@ =277 @) tribution, they can be associated together. The algorithm
applying discriminant features in AdaBoost is summarized
(5) in Figure 2.
|z —2®[|* + ||z — 21|~ To train a robust eye detector, we have collected training

The NDA weight~, is introduced to emphasize those data from various sources. 500 pairs of eyes were collected
samples near the class boundary, ard the control para-  from FERET images [17]. More eye images were collected
meter. The NDA weight is close 15 if the sample is near  from the web in order to include more variance from the
the class boundary, and tends to 0 if the sample is inside theeal world. The eyes were randomly rotated with small an-
class. gles. In total, thousands of eyes have been collected for

NDA obtains a full-rank between-class scatter matrix training. In application, only a left eye detector is trained
from local data so that it provides multiple features [8]. due to the symmetry of eyes. In detection, the images are
Also, the scatter matrix does not assume any distribution, flipped to find the right eyes. The non-eye images were ran-
but only depends on the data near class boundary. We furdomly collected from background images. More non-eyes
ther propose a recursive nonparametric discriminant featurewere collected from the false detections. Those false de-

min(|lz — 2#]|*, ||z — 2"[|%)

Yz =



5 Eye Detection Validation

To quantitatively validate the performance of our eye de-

o (@) o tection method, we performed two experiments. In the first
experiment, we compared the detected eye positions with
the manually labeled eye positions. The performance of our
eye detector is characterized by the eye detection rate and

b eye localization error. The localization error is measured
() as the Euclidean distance between the detected eye posi-
tions and manual eye positions. In the second experiment,
we quantify the performance of our eye detection based on
its influence on face recognition accuracy of two standard
baseline methods: PCA and PCA+LDA. For both experi-
ments, FRGC 1.0 database is used.

Figure 3: Some eye and non-eye images used in training
(a): some eye images. (b): typical non-eye training images

5.1 Eye Detection Accuracy

We apply our eye detection method to all of the 2D images
in the FRGC 1.0 database. The frontal face detection rate is
approximately 95.0%. Usually the missing faces are caused
by uncontrolled illumination. For eye detection alone, it
achieves a detection rate about 99.0% on the detected faces.
As a result, we have an overall 94.5% eye detection rate for
- FRGC 1.0. Table 1 shows the horizontal and vertical eye
(b) localization errors, as well as the total error. Additionally,
Table 1 shows both pixel and normalized errors, where the
normalized error is the pixel error normalized by the dis-
tance between two eyes. The average Euclidean distance
between automatic eyes and ground truth is about 6.4 pix-
els, which accounts for 2.67% normalized error. The distri-

tections were fed back for training. Some typical eye and bution of the Euclidgan distance 'of detected eyes compared
non-eye images are shown in Figure 3. to the ground truth is shown at Figure 5.

To improve the eye detection speed, a cascade structurg gror horizontal vertical Euclidean
is applied [20]. The first layer in the cascade only has two (mean)| (std) | (mean)| (std) | distance
features yet it can remove 80% of the non-eye samples. The (mean)

: o Pixel 49914 | 45808 | 3.1652 | 2.6927 | 6.4016
resulting eye detector classifier uses less than 100 features., Normalized | 2.04% | 1.96% | 1.31% | 1.35% | 2.67%

Figure 4. Localized eyes from face images. (a): face and
eye detection results. (b). enlarged eye localization results.

Table 1: Eye localization error on FRGC 1.0.

4.3 Eye Localization

600

Our eye localization method follows a hierarchical princi-
ple FII’Stly a face IS detected, then eyes are |Ocated Inslde 400_ ..............................................................
the detected face. The face detection method is also basec

Murnber

on AdaBOOSt, WhICh IS Introduced In [22]. GeometrlC Con' 200 ET N . e A R T R TR R TR SRR RN Y
straints are applied to localize eyes, which means eyes are

only_searched in the top half of a face.' Usually, there are 05 5 10 5 == =5 s e
multiple eyes detected around the pupil center. The final Fixel Error

eye localization is the average of the multiple detection re-

sults. The whole systems run at around 10 fps at a P4 2.6G  Figure 5: Distribution of eye localization pixel errors.

PC. Examples of eye detection results are shown in Figure

4. The comparison of eye localization using Haar features



and proposed discriminant features is shown in Figure 6. For this experiment, a baseline PCA method, and a base-
In this figure, the horizontal axis is the normalized local- line PCA+LDA method was used. Both methods are based
ization error, and the vertical axis is the accumulated dis- on Colorado State University’s Face Identification Evalu-
tribution, which means the percentage of eyes with smalleration System [3]. In both PCA and PCA+LDA, a simple
normalized error than the corresponding horizontal value. cutoff filter was used to retain 40% of the eigenvectors.
From Figure 6, it is observed that the eye localization based  Using these face recognition methods, the faces and eyes
on RNDA features has much smaller localization error than are automatically localized from the FRGC images. For
that based on Haar features. Some commercial productsthe purpose of validating our eye localization method, we
such as Facelt [1] and Viisage [2], also provide eye local- eliminated the effects of the missed face detections. When
izations. However, such products are unavailable to us forthe face detector failed to locate a face, a face region was
comparison . simulated with the given eye positions. In the FRGC ex-
periments, there are approximately 95.0% automatic face
detections and 5.0% simulating face detections. Based on
the face detection results, eye localization was successful
on over 99.0% of the FRGC images. If an eye was missed,
the manually marked eye position was used. In total, less
than 15 eyes out of all 4715 FRGC 1.0 samples were man-
ually marked.

Using the location of the eyes, the images were first
clipped, rotated, and scaled to a fixed image size. An ellip-
tical mask was then used to remove extraneous background
components. Finally, a standard histogram equalization was
performed on the faces, and then the recognition algorithms
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I were applied.
. ‘ : : : : The comparison of face recognition results with auto-
o o1 om0z 0® 03 0% matic and manual eye localizations are summarized in Fig-
Normalized error ure 7. The CMC curves for each experiment are shown in

Figure 8.(a)-(c). The ROC curve is given in Figure 8.(d).
Figure 6: Comparison of accumulated eye localization er-

rors with Haar feature and RNDA feature. )
5.2.1 Experiment 1

The recognition results of experiment 1 are shown in Figure
8.(a). In FRGC 1.0 experiment 1, the automatic recogni-
tion results are very similar to the manually marked recog-

Since the accuracy of manually provided eye positions is nition results. The PCA face recognition result for manually
not confirmed and that nobody knows where the real eye pc,_marked eye locations was 83.30%, and the fully automated
sitions are, it is not convincing to quantify the performance €Ye locations resulted in a recognition rate of 81.75%. The
of our eye detector using the distance between the manuaflifference between automatic and manually marked points
eye positions and the detected eye positions. To further val-S only due to recognition errors in 10 out of 608 images.
idate the performance our eye detector, we decide to applyBY l00king at the ROC curve we can confirm that the re-
it to face recognition and use the accuracy of face recogni-Sults for automatically marked eye positions produce very
tion to judge its performance. Specifically, face recognition Similar results to manually marked points.

testing was performed using experiments 1, 2 and 4 from The PCA + LDA recognition results were slightly poorer
FRGC 1.0. In each of the three experiments, 608 probethan the pure PCA results. However, the automatically
images were Compared against 152 ga”ery images_ In exmarked pOintS still had very similar performance when com-
periment 1, single controlled still images were compared Pared to the manually marked points.

against single controlled images. The experiment utilized a

§et of 183 tra_lining images tp train the classifiers. In Exper- 5.2.2 Experiment 2

iment 2 multiple controlled images were compared against

multiple controlled images. In this experiment 732 images The recognition results of experiment 2 are shown in Fig-
were used for training. Finally, experiment 4 compared un- ure 8.(b). FRGC 1.0 experiment 2, had remarkably similar
controlled single images to controlled single images. This performance between the automated and the manual recog-
experiment used 366 images for training. nition results. The PCA face recognition result for manually

5.2 Face Recognition Experiment



marked eye locations was 97.04% and the fully automatedcan be improved if those poor eye detections can be iden-

eye locations resulted in a recognition rate of 96.38%. tified and removed from subsequent face recognition. Our
The difference between automatic and manually markedfuture research will address this problem by associating a

points is only due to recognition errors in 4 out of 608 im- confidence measurement with each detected eye.

ages. In fact, the automatic face detection missed only 22

out of 608 total faces. The difference between automatic .

and manually marked eyes for PCA + LDA was nearly the 6 Conclusion

same as those for regular PCA. _ . . .
In this paper, we introduce an automatic eye detection tech-

nigue. Experimental results are then provided to show
5.2.3 Experiment 4 the validation of the eye detector using FRGC 1.0 data-
base. The results show that face recognition based on the
automatic eye localization has comparable accuracy with
the face recognition based on manual eye positions. This

. . demonstrates that our proposed eye localization method can
face recognition result for manually marked eye locations

was 36.84%, and the fully automated eye locations resultedbe incorporated mto_a fully au_tomatu? face recogmnon Sys-
. L tem. Future work will further improving our eye localiza-
in a recognition rate of 25.82%. The results for automated .. .

A . tion method under uncontrolled environments.
detection in this experiment compared to manually marked
points are poorer than the results of the previous two exper-
iments. The PCA + LDA recognition differences between References
automated and manually marked points are once again sim-
ilar to the PCA results.
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ure 8.(c). Experiment 4 was significantly more difficult for
face recognition than the other two experiments. The PCA
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