
                             Elsevier Editorial System(tm) for International Journal of Approximate Reasoning

                                  Manuscript Draft

Manuscript Number: IJA-D-07-00004R2

Title: Efficient Non-myopic Value-of-Information Computation For Influence Diagrams

Article Type: Research Paper

Section/Category: 

Keywords: Value-of-Information, Influence Diagrams, Decision Making,

Central-Limit Theorem, Stress Modeling

Corresponding Author: Dr. wenhui liao, Ph.D.

Corresponding Author's Institution: Rensselaer Polytechnic Institute

First Author: wenhui liao, Ph.D.

Order of Authors: wenhui liao, Ph.D.; Qiang Ji, PHD

Manuscript Region of Origin: 

Abstract: In an influence diagram (ID), value-of-information (VOI) is defined as the difference between the 

maximum expected utilities with and without knowing the outcome of an uncertainty variable prior to making 

a decision. It is widely used as a sensitivity analysis technique to rate the usefulness of various information 

sources, and to decide whether pieces of evidence are worth acquisition before actually using them. 

However, due to the exponential time complexity of exactly computing VOI of multiple information sources, 

decision analysts and expert-system designers

focus on the myopic VOI, which assumes observing only one information source, even though several 

information sources are available. In this paper, we present an approximate algorithm to compute non-

myopic VOI efficiently by utilizing the central-limit theorem. The proposed method overcomes several 

limitations in the existing work. In addition, a partitioning procedure based on the d-separation concept is 

proposed to further improve the computational complexity of the proposed algorithm. Both the experiments 

with synthetic data and the experiments with real data from a real-world application demonstrate that the 



proposed algorithm can approximate the true non-myopic VOI well even with a small number of 

observations. The accuracy and efficiency of the algorithm makes it feasible in various applications where 

efficiently evaluating a large amount of information sources is necessary.

Suggested Reviewers: 

Opposed Reviewers: 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Efficient Non-myopic Value-of-Information

Computation For Influence Diagrams

Wenhui Liao and Qiang Ji

{liaow, jiq}@rpi.edu

Department of Electrical, Computer and Systems Engineering

Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA

Abstract

In an influence diagram (ID), value-of-information (VOI) is defined as the dif-
ference between the maximum expected utilities with and without knowing the
outcome of an uncertainty variable prior to making a decision. It is widely used as a
sensitivity analysis technique to rate the usefulness of various information sources,
and to decide whether pieces of evidence are worth acquisition before actually us-
ing them. However, due to the exponential time complexity of exactly computing
VOI of multiple information sources, decision analysts and expert-system designers
focus on the myopic VOI, which assumes observing only one information source,
even though several information sources are available. In this paper, we present
an approximate algorithm to compute non-myopic VOI efficiently by utilizing the
central-limit theorem. The proposed method overcomes several limitations in the
existing work. In addition, a partitioning procedure based on the d-separation con-
cept is proposed to further improve the computational complexity of the proposed
algorithm. Both the experiments with synthetic data and the experiments with real
data from a real-world application demonstrate that the proposed algorithm can
approximate the true non-myopic VOI well even with a small number of obser-
vations. The accuracy and efficiency of the algorithm makes it feasible in various
applications where efficiently evaluating a large amount of information sources is
necessary.

Key words: Value-of-Information, Influence Diagrams, Decision Making,
Central-Limit Theorem, Stress Modeling

1 Introduction

In a wide range of decision-making problems, a common scenario is that a
decision maker must decide whether some information is worth collecting, and
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what information should be acquired first given several information sources
available. Each set of information sources is usually evaluated by value-of-
information (VOI). VOI is a quantitative measure of the value of knowing
the outcome of the information source(s) prior to making a decision. In other
words, it is quantified as the difference in value achievable with or without
knowing the information sources in a decision-making problem.

Generally, VOI analysis is one of the most useful sensitivity analysis techniques
for decision analysis (Raiffa, 1968; Shachter, 1999). VOI analysis evaluates
the benefit of collecting additional information in a specific decision-making
context (Yokota and Thompson, 2004). General VOI analyses usually require
three key elements: 1) A set of available actions and information collection
strategies; 2) A model connecting the actions and the related uncertainty
variables within the context of the decision; and 3) values for the decision
outcomes. The methods of VOI analysis could be quite different when different
models are used.

In this paper, we consider VOI analysis in decision problems modeled by Influ-
ence Diagrams. Influence diagrams were introduced by Howard and Matheson
in 1981 (Howard and Matheson, 1981) and have been widely used as a knowl-
edge representation framework to facilitate decision making and probability
inference under uncertainty. An ID uses a graphical representation to cap-
ture the three diverse sources of knowledge in decision making: conditional
relationships about how events influence each other in the decision domain;
informational relationships about what action sequences are feasible in any
given set of circumstances; and functional relationships about how desirable
the consequences are (Pearl, 1988). An ID can systematically model all the
relevant random variables and decision variables in a compact graphical model.

In the past several years, a few methods have been proposed to compute VOI
in IDs. (Ezawa, 1998) introduces some basic concepts about VOI and evidence
propagation in IDs. (Dittmer and Jensen, 1997) present a method for calculat-
ing myopic VOI in IDs based on the strong junction tree framework (Jensen
et al., 1994). (Shachter, 1999) further improves this method by enhancing the
strong junction tree as well as developing methods for reusing the original tree
in order to perform multiple VOI calculations. (Zhang et al., 1993) present an
algorithm to speed up the VOI computation by making use of the interme-
diate computation results, which are obtained when computing the optimal
expected value of the original ID without the observations from the infor-
mation sources. Instead of computing VOI directly, (Poh and Horvitz, 1996)
describe a procedure to identify a partial order over variables in terms of their
VOIs based on the topological relationships among variables in the ID. How-
ever, all these papers only focus on computing myopic VOI, which is based on
two assumptions: 1) “No competition:” each information source is evaluated
in isolation, as if it were the only source available for the entire decision; 2)
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“One-step horizon:” the decision maker will act immediately after consulting
the source (Pearl, 1988). These assumptions result in a myopic policy: every
time, the decision maker evaluates the VOI of each information source one
by one, and chooses the one with the largest VOI. Then the observations are
collected from the selected information sources, the probabilities are updated,
and all the remaining information sources are to be reevaluated again, and a
similar procedure repeats.

Obviously, the assumptions are not always reasonable in some decision cir-
cumstances. Usually, the decision maker will not act after acquiring only one
information source. Also, although a single information source may have low
VOI and is not worth acquisition compared to its cost, several information
sources used together may have high VOI compared to their combined cost.
In this case, by only evaluating myopic VOI, the conclusion will be not to col-
lect such information, which is not optimal since its usage together with other
information sources can lead to high value for the decision maker. Therefore,
given these limitations in myopic VOI, it is necessary to compute non-myopic
VOI.

Non-myopic VOI respects the fact that the decision maker may observe more
than one piece of information before acting, thus requires the consideration
of any possible ordered sequence of observations given a set of information
sources. Unfortunately, the number of the sequences grows exponentially as
the number of available information sources increases, and thus it is usually
too cumbersome to compute non-myopic VOI for any practical use, and this
is why the before mentioned work only focuses on myopic VOI. Given these
facts, an approximate computation of non-myopic VOI is necessary to make
it feasible in practical applications. To the best of our knowledge, (Heckerman
et al., 1993) are the only ones who proposed a solution to this problem. In
their approach, the central-limit theorem is applied to approximately compute
non-myopic VOI in a special type of ID for the diagnosis problem, where only
one decision node exists. Certain assumptions are required in their method: 1)
all the random nodes and decision nodes in the ID are required to be binary; 2)
the information sources are conditionally independent from each other given
the hypothesis node, which is the node associated with the decision node and
utility node.

Motivated by the method of Heckerman et al, we extend this method to more
general cases 1 : 1) all the random nodes can have multiple states and the
decision node can have multiple rules (alternatives); 2) the information sources
can be dependent given the hypothesis node; and 3) the ID can have a more
general structure. But same as Heckerman et al’s method, we only

discuss the VOI computation in terms of IDs that have only one

1 A brief version of this extension can be found in (Liao and Ji, 2006).
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decision node. This decision node shares only one utility node with

another chance node. With the proposed algorithm, non-myopic VOI can be
efficiently approximated. In order to validate the performance of the proposed
algorithm, we not only perform the experiments based on the synthetic data
for various types of IDs, but also provide a real-world application with real
data.

Because of the efficiency and accuracy of the proposed method, we believe
that it can be widely used to choose the optimal set of available information
sources for a wide range of applications. No matter what selection strategies
people use to choose an optimal set, such as greedy approaches, heuristic
searching algorithms, or brute-force methods, the proposed method can be
utilized to evaluate any information set efficiently in order to speed up the
selection procedure.

The following sections are organized as follows. Section 2 presents a brief
introduction to influence diagrams. The detail of the algorithm is described
in Section 3. Section 4 discusses the experimental results based on synthetic
data. And a real application is demonstrated in Section 5. Finally, Section 6
gives the conclusion and some suggestions for future work.

2 Influence Diagrams

An influence diagram (ID) is a graphical representation of a decision-making
problem under uncertainty. Its knowledge representation can be viewed through
three hierarchical levels, namely, relational, functional, and numerical. At the
relational level, an ID represents the relationships between different variables
through an acyclic directed graph consisting of various node types and directed
arcs. The functional level specifies the interrelationships between various node
types and defines the corresponding conditional probability distributions. Fi-
nally, the numerical level specifies the actual numbers associated with the
probability distributions and utility values (Diehl and Haimes, 2004).

Specifically, an ID includes three types of nodes: decision, chance (random),
and value (utility) nodes. Decision nodes, usually drawn as rectangles, indicate
the decisions to be made and their set of possible alternative values. Chance
nodes, usually drawn as circles/ellipses, represent uncertain variables that are
relevant to the decision problem. They are similar to the nodes in Bayesian
networks (Jensen, 2001), and are associated with conditional probability ta-
bles (CPTs). Value nodes, usually drawn as diamonds, are associated with
utility functions to represent the utility of each possible combination of the
outcomes of the parent node. The arcs connecting different types of nodes have
different meanings. An arc between two chance nodes represents probabilistic
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dependence, while an arc from a decision node to a chance node represents
functional dependence, which means the actions associated with the decision
node affect the outcome of the chance node. An arc between two decision
nodes implies time precedence, while an arc from a chance node to a deci-
sion node is informational, i.e., it shows which variable will be known to the
decision maker before a decision is made (Pearl, 1988). An arc pointing to a
utility node represents value influence, which indicates that the parents of the
utility node are those that directly affect its utility. Figure 1 illustrates these
arcs and gives corresponding interpretations.

Probabilistic
Dependence

Time
Precedence

Functional
Dependence

Informational

Value
Influence

Fig. 1. Interpretations of arcs in an ID, where circles represent chance (random)
nodes, rectangles for decision nodes, and diamonds for value (utility) nodes.

Most IDs assume a precedence ordering of the decision nodes. A

regular ID assumes that there is a directed path containing all deci-

sion nodes; a no-forgetting ID assumes that each decision node and

its parents are also parents of the successive decision nodes; and a

stepwise decomposable ID assumes that the parents of each deci-

sion node divide the ID into two separate fractions. In this paper,

we consider IDs that have only one decision node, i.e., ignoring all

previous decisions. The goal of ID modeling is to choose an optimal policy
that maximizes the overall expected utility. A policy is a sequence of decision
rules where each rule corresponds to one decision node. Mathematically, if
there is only one decision node in an ID and assuming additive decomposition
of the utility functions, the expected utility under a decision rule d given any
available evidence e, denoted by EU(d|e), can be defined as follows:

EU(d|e) =
n∑

i=1

∑
Xi

p(Xi|e, d)ui(Xi, d) (1)

where ui is the utility function over the domain Xi ∪ {D}. For example, Xi

could be the parents of the utility node that ui is associated with. To evaluate
an ID is to find an optimal policy as well as to compute its optimal expected
utility (Shachter, 1986; Shachter and Ndilikilikesha, 1993). More detail about
IDs can be found in (Korb and Nicholson, 2003; Jensen, 2001).

Generally, the advantages of an ID can be summarized by its compact and
intuitive formulation, its easy numerical assessment, and its effective graphical
representation of dependence between variables for modeling decision-making
under uncertainty. These benefits make ID a widely used tool to model and
solve complex decision problems in recent years.
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3 Approximate VOI Computation

3.1 Value of Information

The VOI of a set of information sources is defined as the difference between the
maximum expected utilities with and without the information sources (Korb
and Nicholson, 2003). VOI can be used to rate the usefulness of various infor-
mation sources and to decide whether pieces of evidence are worth acquisition
before actually using the information sources (Pearl, 1988).

D

U

On-1
O1

Oi
Oj

...

...

O2 On

Fig. 2. An ID example for non-myopic VOI computation. Θ is the hypothesis node,
D is the decision node, and U is the utility node. Oi represents possible observations
from an information source. There could be hidden nodes between Θ and Oi.

We discuss the VOI computation in terms of IDs that have only one decision
node. This decision node shares only one utility node with another chance
node, as shown in Figure 2. And the decision node and the chance

node are assumed to be independent. In the ID, the chance node Θ,
named as hypothesis node, represents a mutually exclusive and exhaustive set
of possible hypotheses θ1, θ2, ..., θh; the decision node D represents a set of
possible alternatives d1, d2, ..., dq; the utility node U represents the utility of
the decision maker, which depends on the outcome of Θ and D; and the chance
nodes O1, ...,On represent possible observations from all kinds of information
sources about the true state of Θ. And each Oi may have multiple states. Let
O = {O1, ..., On}, the VOI of O, V OI(O), w.r.t. the decision node D, can be
defined as follows:

V OI(O)=EU(O) − EU(Ō) (2)

EU(O) =
∑
o∈O

p(o) max
dj∈D

∑
θi∈Θ

p(θi|o)u(θi, dj) (3)

EU(Ō) =max
dj∈D

∑
θi∈Θ

p(θi)u(θi, dj) (4)

6
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where u() denotes the utility function associated with the utility node U ,
EU(O) denotes the expected utility to the decision maker if O were observed,
while EU(Ō) denotes the expected utility to the decision maker without ob-
serving O. Here the cost of collecting information from the information sources
is not included; thus, the VOI can also be called perfect VOI (Heckerman et al.,
1993). The net VOI is the difference between the perfect VOI and the cost
of collecting information (Howard, 1967). Since after calculating the perfect
VOI, the computation of the net VOI is just a subtraction of cost, we focus
on the perfect VOI in the subsequent sections.

As shown in Equation 2, to compute V OI(O), it is necessary to compute
EU(O) and EU(Ō) respectively. Obviously, EU(Ō) is easier to compute,
whereas directly computing EU(O) could be cumbersome. If the decision
maker has the option to observe a subset of observations {O1, ..., On} and
each Oi has m possible values, then there are mn possible instantiations of the
observations in this set. Thus, to compute EU(O), there are mn inferences
to be performed. In other words, the time complexity of computing VOI is
exponential. It becomes infeasible to compute VOI(O) when n is not small.

The key to computing V OI(O) efficiently is to compute EU(O), which can
be rewritten as follows:

EU(O) =
∑
o∈O

p(o) max
dj∈D

∑
θi∈Θ

p(θi|o)u(θi, dj)

=
∑
o∈O

max
dj∈D

∑
θi∈Θ

p(o)p(θi|o)u(θi, dj)

=
∑
o∈O

max
dj∈D

∑
θi∈Θ

p(θi)p(o|θi)u(θi, dj) (5)

It is noticed that each instantiation of O corresponds to a specific optimal
action for the decision node D. We define the decision function δ : O → D,
which maps an instantiation of O into a decision in D. For example, δ(o) = dk

indicates when the observation is o, the corresponding optimal decision is
dk, dk = argmax

dj∈D

∑
θi∈Θ

p(θi|o)u(θi, dj). Therefore we can divide all the instan-

tiations of O into several subsets, where the optimal action is the same for
those instantiations in the same subset. Specifically, if D has q decision rules,
{d1, ..., dq}, all the instantiations of O can be divided into q subsets, od1 , od2 ,
..., odq

, where odk
= {o ∈ O|δ(o) = dk}. Figure 3 illustrates the relationships

between each instantiation and the q subsets. Thus, from Equation 5, EU(O)
can be further derived as follows:

EU(O) =
∑
θi∈Θ

p(θi)
q∑

k=1

∑
o∈odk

p(o|θi)u(θi, dk) (6)
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o1 o2 ... oi ... ox od1 od2 ... odq

(a) (b)

Fig. 3. (a) Each oi corresponds to an instantiation; (b) All the instantiations can
be divided into q subsets, where each instantiation in the set odi

corresponds to the
optimal decision di.

In the next several sections, we show how to compute EU(O) efficiently.

3.2 Decision Boundaries

In Equation 6, the difficult part is to compute
∑

o∈odk

p(o|θi) because the size

of the set odk
could be very large based on the previous analysis. In order to

compute it efficiently, it is necessary to know how to divide all the instantia-
tions of O into the q subsets. We first focus on the case that Θ has only two
states, θ1, θ2, and then extend it to the general case in Section 3.4.

Based on the definition, the expected utility of taking the action dk is EU(dk) =
p(θ1) ∗ u1k + p(θ2) ∗ u2k, where u1k = u(θ1, dk), and u2k = u(θ2, dk). We can
sort the index of all the decision rules based on the utility functions, such that
u1k > u1j and u2k < u2j for k < j. Figure 4 gives an example of the utility
function u(Θ, D). As shown in the figure, as k increases, u1k decreases and
u2k increases. If there is an action di that cannot be sorted according to this
criterion, it is either dominated by another action, or it dominates another
action. (If u(di, Θ) is always larger than u(dj, Θ), no matter what state of Θ
is, we say di dominates dj). Then the dominated action can be removed from
the set of possible actions, without changing the optimal policy.

1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

U
til

ity

u
1k

u
2k

Fig. 4. An example of the utility function U(Θ,D).

Proposition 1: Let rjk =
u2j−u2k

u1k−u1j+u2j−u2k
, p∗kl = max

k<j≤q
rjk, and p∗ku = min

1≤j<k
rjk,

8
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then dk is the optimal action if and only if p∗kl ≤ p(θ1) ≤ p∗ku. In addition,
p∗ql = 0 and p∗1u = 1.(Here k is the index of an action.)

Proof : see Appendix.

Proposition 1 presents that if the probability of Θ being θ1 is between p∗kl and
p∗ku, dk is the optimal decision. From this, we can further derive Proposition
2.

Proposition 2:

∑
o∈odk

p(o) = p(p∗kl ≤ p(θ1|o) ≤ p∗ku) (7)

Proof : see Appendix.

The proof of Proposition 2 establishes Equation 7 by showing that both sides
of this equation express the probability that dk is the optimal decision for θ1.
Based on Proposition 2, we can get the following corollary.

Corollary 1:

∑
o∈odk

p(o|θ1) = p(p∗kl ≤ p(θ1|o) ≤ p∗ku|θ1) (8)

∑
o∈odk

p(o|θ2) = p(p∗kl ≤ p(θ1|o) ≤ p∗ku|θ2) (9)

The equations in Corollary 1 indicate the probability that the decision maker
will take the optimal decision dk after observing new evidence, given the sit-
uation that the state of Θ is θi before collecting the evidence.

Based on Corollary 1, the problem of computing
∑

o∈odk

p(o|θi), i = 1, 2, (from

Equation 6) transfers to the problem of computing p(p∗kl ≤ p(θ1|o) ≤ p∗ku|θi),
which is the topic of the next section. We will focus on p(p∗kl ≤ p(θ1|o) ≤ p∗ku|θ1)
only because the procedure of computing p(p∗kl ≤ p(θ1|o) ≤ p∗ku|θ2) is similar.

3.3 Approximation with Central-Limit Theorem

3.3.1 A Partitioning Procedure

To compute p(p∗kl ≤ p(θ1|o) ≤ p∗ku|θ1), one way is to treat p(θ1|o) as a random
variable. If the probability density function of this variable is known, it will

9
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be easy to compute p(p∗kl ≤ p(θ1|o) ≤ p∗ku|θ1). However, it is hard to get such
a probability density function directly. But we notice that p(p∗kl ≤ p(θ1|o) ≤
p∗ku|θ1) = p(

p∗
kl

1−p∗
kl

≤ p(θ1|o)
p(θ2|o) ≤

p∗
ku

1−p∗
ku

|θ1). Based on the transformation property

between a random variable and its function (Casella and Berger, 1990), it is

straightforward that p(p∗kl ≤ p(θ1|o) ≤ p∗ku|θ1) = p(
p∗

kl

1−p∗
kl

≤ p(θ1|o)
p(θ2|o) ≤

p∗
ku

1−p∗
ku

|θ1).

Let us take a closer look at p(θ1|o)
p(θ2|o) because it is critical in the approximate

algorithm.

If all the Oi nodes are conditionally independent from each other given Θ,
based on the chain rule:

p(θ1|O)

p(θ2|O)
=

p(O1|θ1)

p(O1|θ2)
...

p(On|θ1)

p(On|θ2)

p(θ1)

p(θ2)
(10)

Usually some Ois may not be conditionally independent given Θ. We will
show that p(θ1|o)

p(θ2|o) is approximately distributed as a log-normal random vari-
able. However, in order to prove it, it is necessary to obtain a format similar
to Equation 10 even when Ois are not conditionally independent. We thus
propose a partitioning procedure to partition O into several groups based on
the principle of d-separation(Pearl, 1988), where the nodes in one group are
conditionally independent from the nodes in other groups. This procedure
consists of three steps.

(1) Decide whether two nodes, Oi, Oj, are conditionally independent given Θ
by exploring the ID structure based on four rules: i) if there is a directed

path between Oi and Oj without passing Θ, Oi and Oj are dependent; ii)
if both Oi and Oj are the ancestors of Θ, Oi and Oj are dependent given
Θ; iii) after removing the links to and from Θ from the original ID, if
Oi and Oj have common ancestors, or Oi is Oj’s ancestor, or vice versa,
then Oi and Oj are dependent; and iv) in all the other cases, Oi and Oj

are conditionally independent given Θ.
(2) Build an undirected graph to model the relationships between the nodes.

In such a graph, each vertex represents an Oi node, and each edge between
two vertices indicates that the two corresponding nodes are dependent
according to the rules in Step 1.

(3) Partition the graph into disjoint connected subgraphs. A depth first
search (DFS) algorithm (Cormen et al., 2002) is used to partition the
graph into several connected components (disjoint connected subgraphs)
so that each component is disconnected from other components. The
nodes in each connected component are conditionally independent from
the nodes in any other connected components. Therefore, each connected
component corresponds to one group.

10
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O3 O4
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O7O6

H3

O
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O8 O9

O1
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O3

O4
O7O6O

5

O8 O9

(a) (b)

Fig. 5. (a) An ID example; (b) The graph built by the partitioning procedure.

For example, for the ID in Figure 5(a), with the partitioning procedure, the Oi

nodes can be divided into 5 groups, {O1, O2}, {O3, O4, O5}, {O6}, {O7}, and
{O8, O9}. Figure 5(b) shows the graph built by the partitioning procedure.

3.3.2 Central Limit Theorem

Generally, with the partition procedure presented in the previous subsection, O
can be automatically divided into several sets, named Os1, Os2, ..., Osg , where
g is the overall number of the groups. Thus, Equation 10 can be modified as
follows:

p(θ1|O)

p(θ2|O)
=

p(Os1|θ1)

p(Os1|θ2)
...

p(Osg |θ1)

p(Osg |θ2)

p(θ1)

p(θ2)
(11)

⇒ ln
p(θ1|O)

p(θ2|O)
=

g∑
i=1

ln
p(Osi|θ1)

p(Osi|θ2)
+ ln

p(θ1)

p(θ2)

⇒ lnφ =
g∑

i=1

wi + c, where φ =
p(θ1|O)

p(θ2|O)
, wi = ln

p(Osi|θ1)

p(Osi|θ2)
, c = ln

p(θ1)

p(θ2)

In the above equation, c can be regarded as a constant reflecting the state of
Θ before any new observation is obtained and any new decision is taken. Here,
we assume p(θ2|O), p(Osi|θ2), and p(θ2) are not equal to 0.

Let W =
g∑

i=1

wi be the sum of wi. Following (Heckerman et al., 1993), we use

the cental-limit theorem to approximate W . The central-limit theorem (Feller,
1971) states that the sum of independent variables approaches a Gaussian dis-
tribution when the number of variables becomes large. Also, the expectation
and variance of the sum is the sum of the expectation and variance of each in-
dividual random variable. Thus, regarding each wi as an independent variable,
W then follows a Gaussian distribution. Then, based on Equation 11, φ will be
a log-normal distribution. For a random variable X, if ln(X) has a Gaussian
distribution, we say X has a log-normal distribution. The probability density

11
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function is: p(x) = 1
S
√

2πx
e−(ln x−M)2/(2S2), denoted as X ∼ LogN(M, S2) (Crow

and Shimizu, 1988), where M and S are the mean and standard deviation of
the variable’s logarithm (Balakrishnan and Chen, 1999). In order to assess
the parameters (mean and variance) of the log-normal distribution, we need
to compute the mean and the variance of each wi. The computational process
is shown as follows.

Assume Osi has ri instantiations, {osi
1 , ..., osi

ri
}, where ri is the product of the

number of the states for each node in the group Osi, e.g., if Osi = {O1, O2},
and both O1 and O2 have three states, then ri = 3 ∗ 3 = 9. Table 1 gives the
value and the probability distribution for each wi:

Table 1
The probability distribution of wi.

wi p(wi|θ1) p(wi|θ2)

ln
p(o

si
1 |θ1)

p(o
si
1 |θ2)

p(osi

1 |θ1) p(osi

1 |θ2)

... ... ...

ln
p(o

si
ri
|θ1)

p(o
si
ri
|θ2)

p(osi
ri
|θ1) p(osi

ri
|θ2)

Based on the table, the expected value µ, and the variance σ2 for each wi can
be computed as follows:

µ(wi|θ1) =
ri∑

j=1

p(osi

j |θ1)ln
p(osi

j |θ1)

p(osi
j |θ2)

(12)

σ2(wi|θ1) =
ri∑

j=1

p(osi

j |θ1)ln
2p(osi

j |θ1)

p(osi
j |θ2)

− µ2(wi|θ1) (13)

By the central-limit theorem, the expected value and the variance of W can
be obtained by the following equations:

µ(W |θ1) =
g∑

i=1

µ(wi|θ1) (14)

σ2(W |θ1) =
g∑

i=1

σ2(wi|θ1) (15)

Therefore, based on Equation 11, for W ∼ N(µ(W |θ1), σ
2(W |θ1)), we have

φ ∼ LogN(µ(W |θ1) + c, σ2(W |θ1)), where LogN denotes the log-normal dis-
tribution. After getting the probability distribution function and the function
parameters for φ in Equation 11, we are ready to assess the non-myopic VOI.

12
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Before we go to the next section, we first analyze the computational steps
involved in computing the parameters for the log-normal distribution, which
is the most time-consuming part in the algorithm. Based on Equations 12

and 14, the overall number of the computational steps is 4
g∑

i=1

ri + 2g. We

will show that this number is much smaller than the overall number of the
computational steps in the exact computational method during the algorithm
analysis in Section 3.5.

3.3.3 Approximate Non-myopic Value-of-Information

Based on Proposition 1 in Section 3.2, we know that dk is the optimal action
with the probability p(p∗kl ≤ p(θ1|o) ≤ p∗ku), which is equivalent to p(

p∗
kl

1−p∗
kl

≤
φ ≤ p∗

ku

1−p∗
ku

) as shown in Section 3.3.1. Let φ∗
kl =

p∗
kl

1−p∗
kl

, and φ∗
ku =

p∗
ku

1−p∗
ku

, thus, dk

is the optimal decision if and only if φ∗
kl ≤ φ ≤ φ∗

ku. Then, based on Corollary
1 in Section 3.2, the following equation stands:

∑
o∈odk

p(o|θ1) = p(φ∗
kl ≤ φ ≤ φ∗

ku|θ1) (16)

Furthermore, from Section 3.3.2, we know that φ ∼ LogN(µ(W |θ1)+c, σ2(W |θ1)),
thus,

p(φ∗
kl ≤ φ ≤ φ∗

ku|θ1) =
1

σ(W |θ1)
√

2πx

φ∗
ku∫

φ∗
kl

e
−(ln x−µ(W |θ1)−c)2

2σ2(W |θ1) dx (17)

p(φ∗
kl ≤ φ ≤ φ∗

ku|θ2) can be computed in the same way by replacing θ1 with θ2

in the previous equations.

Therefore, VOI can be approximated by combining Equations 2, 6, 16, and
17. Figure 6 shows the key equations of the algorithm when Θ has only two
states. In summary, to approximate V OI(O) efficiently, the key is to compute
EU(O), which leads to an approximation of

∑
o∈odk

p(o|θ1) with the log-normal

distribution by exploiting the central-limit theorem and the decision bound-
aries.

13
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Fig. 6. The key equations to approximate VOI when Θ has only two states, D has
multiple rules, and the other nodes have multiple states.

3.4 Generalization

In the previous algorithm, the node Θ only allows two states, although the
other random nodes and the decision node can be multiple states. However,
in real-world applications, Θ may have more than two states. In this section,
we extend the algorithm to the case that Θ can have several states too. As-
sume Θ has h states, θ1, ..., θh, and still, d has q rules, d1, ..., dq, similarly to
Equation 11, we have the following equations:

p(θi|O)

p(θh|O)
=

p(Os1|θi)

p(Os1|θh)
...

p(Osg |θi)

p(Osg |θh)

p(θi)

p(θh)
, i 6= h (18)

⇒ ln
p(θi|O)

p(θh|O)
=

g∑
k=1

ln
p(Osk|θi)

p(Osk|θh)
+ ln

p(θi)

p(θh)

⇒ lnφi =
g∑

k=1

wi
k + ci,

where φi =
p(θi|O)

p(θh|O)
, wi

k = ln
p(Osk|θi)

p(Osk |θh)
, ci = ln

p(θi)

p(θh)

Let Wi =
g∑

k=1

wi
k, i 6= h, Wi still has a Gaussian distribution. Here, we assume

p(θh|O), p(Osk|θh), and p(θh) are not equal to 0. The similar method in Sec-
tion 3.3 can be used to compute the variance and the mean. Specifically, for
the new defined wi

k in the above equation, Table 1 can be modified as follows:

Thus, we get the following equations:

14
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Table 2
The probability distribution of wi

k.

wi
k p(wi

k|θ1) ... p(wi
k|θh)

ln
p(o

sk
1 |θi)

p(o
sk
1 |θh)

p(osk
1 |θ1) ... p(osk

1 |θh)

... ... ... ...

ln
p(o

sk
rk

|θi)

p(o
sk
rk

|θh)
p(osk

rk
|θ1) ... p(osk

rk
|θh)

µ(wi
k|θj)=

rk∑
l=1

p(osk

l |θj)ln
p(osk

l |θi)

p(osk

l |θh)
, 1 ≤ i < h, 1 ≤ j ≤ h, 1 ≤ k ≤ g (19)

σ2(wi
k|θj)=

rk∑
l=1

p(osk

l |θj)ln
2 p(osk

l |θi)

p(osk

l |θh)
− µ2(wi

k|θj) (20)

Similar to Equation 14, the expected value and the variance of Wi can be
obtained as we see here:

µ(Wi|θj) =
g∑

k=1

µ(wi
k|θj), 1 ≤ i < h, 1 ≤ j ≤ h (21)

σ2(Wi|θj) =
g∑

k=1

σ2(wi
k|θj) (22)

Accordingly, φi follows the log-normal distribution with Sij = σ(Wi|θj) and
Mij = µ(Wi|θj) + ci. We denote the probability density function of φi given
θj as fθj

(φi). Equations 19 and 21 show that the overall number of the com-
putational steps to assess the parameters for the log-normal distributions is

4h
g∑

k=1

rk + 2h(h − 1)g when h > 2.

Even though fθj
(φi) can be easily obtained, it is still necessary to get the

decision boundaries for each optimal decision in order to efficiently compute∑
o∈odk

p(o|θj). Therefore, a set of linear inequality functions need to be solved

when Θ has more than two states. For example, if dk is the optimal action,
EU(dk) must be larger than the expected utility of taking any other action.
Based on this, a set of linear inequality functions can be obtained:

p(θ1)u1k + p(θ2)u2k + ... + p(θh)uhk ≥ p(θ1)u1j + ... + p(θh)uhj

⇒ u1k − u1j + uhj − uhk

uhj − uhk
· p(θ1) + ... +

u(h−1)k − u(h−1)j + uhj − uhk

uhj − uhk
· p(θh−1) ≥ 1

⇒ u1k − u1j

uhj − uhk
· p(θ1)

p(θh)
+ ... +

u(h−1)k − u(h−1)j

uhj − uhk
· p(θh−1)

p(θh)
≥ 1 (23)
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We assume uhj − uhk > 0; otherwise, “≥” is changed to “≤” in the last
inequality.

Let Ak be the solution region of the above linear inequalities, then

∑
o∈odk

p(o|θj) =
∫

Ak

fθj
(φ1)...fθj

(φh−1)dAk, 1 ≤ j ≤ h, 1 ≤ k ≤ q (24)

The right side of Equation 24 is an integral over the solution region Ak decided
by the linear inequalities. We first demonstrate how to solve the integral when
Θ has three states, and then introduce the method for the case that Θ has
more than three states.

When Θ has three states, Equation 23 can be simplified as follows:

p(θ1)u1k + p(θ2)u2k + p(θ3)u3k ≥ p(θ1)u1j + p(θ2)u2j + p(θ3)u3j (25)

⇒ α1kj .
p(θ1)

p(θ3)
+ α2kj.

p(θ2)

p(θ3)
≥ 1

where α1kj =
u1k − u1j

u3j − u3k
, and α2kj =

u2k − u2j

u3j − u3k

In the above, it is assumed that u3j > u3k; if u3j < u3k, then “ ≥ ” is changed
to “ ≤ ” in the last inequality.

And Equation 24 can be simplified as follows:

∑
o∈odk

p(o|θj) =
∫

Ak

fθj
(φ1)fθj

(φ2)dAk, 1 ≤ k ≤ q, 1 ≤ j ≤ 3 (26)

Ak is decided by (q−1) linear inequalities and each inequality has two variables
φ1 and φ2 as defined in Equation 25. We use the following steps to solve this
integral when Ak is a finite region.

1. Identify all the lines that define the inequalities and find all the intersection
points between any two lines as well as the intersection points between any
line and the x (or y) axis.

2. Choose the intersection points that satisfy all the linear inequalities, and
use them as vertices to form a polygon.

3. Divide the polygon into several simple regions:
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Specifically, for each vertex, we generate a line crossing this vertex and parallel
to the y-axis. The lines then divide the polygon into several simple regions.

4. Evaluate the integral in each simple region and sum the values together.

An example of the solution region is shown in Figure 7. In this example, if
α1kj > α1kj(i 6= j), then α2kj > α2kj too. Therefore, the solution region can be
decided by the intersection points of the lines that are defined by the linear
inequalities and the axes. For example, in Figure 7, Ak is decided by a, b, c, and
d, which are selected from the intersection points {(1/α1kj, 0), (0, 1/α2kj), j =
1, ..., q, j 6= k}. Based on (Cohen and Megiddo, 1994), the time complexity
of solving m linear inequalities with n variables (each inequality only has 2
variables) is O(mnlogm + mn2log2n). In this case, n is 2 and m is q − 1.

Fig. 7. A solution region of a group of linear inequalities.

When Θ has more than three states, the integral needs to be performed in
a high-dimension space (dimension is larger than 2). Therefore, we solve it
with Quasi-Monte Carlo integration (Hammersley, 1960; Kalos and Whitlock,
1986), which is a popular method to handle multiple integral. Quasi-Monte
Carlo integration picks points based on sequences of quasirandom numbers
over some simple domain A′

k which is a superset of Ak, checks whether each
point is within Ak, and estimates the area (n-dimensional content) of Ak as
the area of A′

k multiplied by the fraction of points falling within Ak. Such
a method is implemented by Mathematica (Mathematica, 2006), which can
automatically handle a multiple integral with a region implicitly defined by
multiple inequality functions.

Figure 8 shows the key equations of the algorithm when Θ has multiple states.
The main equations are similar to those in Figure 6. However, since Θ has
multiple states, it becomes more complex to obtain the parameters of the
log-normal distribution and perform the integration.
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Fig. 8. The key equations to compute VOI when Θ has multiple states.

3.5 Algorithm Analysis

Now, we analyze the computational complexity of the proposed approximation
algorithm compared to the exact computational method. For simplicity, as-
sume that the number of the state of each Oi node is m, and there are n nodes
in the set O. Assume we only count the time used for computing expected
utilities. Then the computational complexity of the exact VOI computational
method is approximately hmn, where h is the number of the state of the Θ
node. With the approximation algorithm, the computational complexity is re-
duced to hmk, where h is the number of the state of the Θ node, and k is the
number of Oi nodes in the maximum group among {Os1, ..., Osg}. In the best
case, if all the Oi nodes are conditionally independent given Θ, the time com-
plexity is about linear with respect to m. In the worst case, if all the Oi nodes
are dependent, the time complexity is approximately mn. However, usually,
in most real-world applications, k is less than n, thus, the approximate algo-
rithm is expected to be more efficient than the exact computational method,
as will be shown in the experiments. For example, for the ID in Figure 5,
n = 9, m = 4, h = 3, and q = 3. Then, for the exact computation, the num-
ber of computations is around 3 ∗ 49 = 786432, while using the approximate
algorithm, the number of computations is only around 3 ∗ 43 = 192.

However, in addition to the cost of computing expected utilities, the approxi-
mation algorithm also includes some extra costs: sorting the utility functions
(Section 3.2), partitioning the O set (Section 3.3.1), and deciding the decision
boundaries (Section 3.2) when Θ has two states, or performing the integral
when Θ has more than two states (Section 3.4). These costs are not included
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in the above analysis. In general, the extra time in these steps is much less
than the time used for computing expected utilities. For example, the time
complexity of sorting is O(qlog(q)), the time complexity of the partition pro-
cedure is O(|V | + |E|) (V is the set of vertex, and E is the set of edges in
an ID), and the time complexity in deciding the decision boundaries when
θ has two states is O(q2). When θ has more than two states, deciding the
decision boundaries needs additional time. Empirically, it doesn’t affect the
overall speed, as will be shown in the experiments. In addition, most steps
in computing expected utilities involve performing inferences in an ID, which
is usually NP-hard and thus consumes much more time than a step in the
procedures of sorting, partitioning, and integrating.

4 Experiments

The experiments are designed to demonstrate the performance of the proposed
algorithm compared to the exact VOI computation. We limit the ID test model
with at most 5 layers 2 and up to 11 information sources due to the exponential
computational time behind the exact computation. Ten different ID models are
constructed, where in one of the IDs the O nodes are conditionally independent
given the Θ node. Table 3 describes the structures of these IDs. The IDs are
parameterized with 150 sets of different conditional probability tables and
utility functions, a process which yields 1500 test cases. In each the one-third
of them, Θ node has 2, 3, and 4 states respectively. Without loss of generality,
all the other random nodes and the decision node have four states.

Table 3
ID structures. k is the size of the biggest group after partitioning.

k 5 4 3 2 1

Number of IDs 2 3 3 1 1

For each test case, the VOIs for different O subsets with the size from 3 to 11
are computed. The results from the approximation algorithm are compared to
the exact computation implemented with the brute-forth method. Let VOIt
be the ground-truth, and VOI be the value computed with the proposed al-
gorithm. Assuming V OIt 6= 0, the error rate is defined as follows:

Err =
|V OIt− V OI|

V OIt

The 1500 test cases described previously are divided into six groups, named as

2 The length of the longest path starting from (or ending at) the hypothesis node
is 5.
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ID indep: 2-state, ID indep:3-state, ID indep:4-state, ID dep:2-state, ID dep:
3-state, and ID dep:4-state. Table 4 describes the six groups.

Table 4
Testing cases.

ID indep: 2-state 50 test cases, where Oi nodes are conditionally independent

given Θ whose state is binary.

ID indep: 3-state 50 test cases, where Oi nodes are conditionally independent

given Θ who has 3 states

ID indep: 4-state 50 test cases, where Oi nodes are conditionally independent

given Θ who has 4 states

ID dep: 2-state 450 test cases, where Oi nodes are conditionally dependent

given Θ whose state is binary.

ID dep: 3-state 450 test cases, where Oi nodes are conditionally dependent

given Θ who has 3 states

ID dep: 4-state 450 test cases, where Oi nodes are conditionally dependent

given Θ who has 4 states

Figure 9 illustrates the results from the six groups of 1500 test cases. Chart (a)
shows the average errors for each group, while Chart (b) shows the VOIs for
one specific case, which is randomly chosen from the test cases from ID dep:
3-state. As the set size of the Oi nodes increases, the error rate decreases.
When the state number of Θ is the same, the error rates of the dependent
cases are larger than the error rates of the conditional independent cases.
This can be explained by the reason that the IDs in the dependent cases have
fewer independent O subsets than the ID in the independent groups. Since
the central-limit theorem is the basis of our algorithm, it works better when
the number of wi increases, which corresponds to the number of independent
O subsets. Even when the size of O set is as small as 6, the average error is
less than or around 0.1 for all the cases. We could run several larger IDs with
much more Oi nodes, and the error curve would be progressively decreasing.
Here, we intend to show the trend and the capability of this algorithm.

Charts (c) and (d) show the average computational time with the exact com-
putation and the approximation computation. When the set size of the Oi

nodes is small, the computational time is similar. However, as the size becomes
larger, the computational time of the exact computation increases exponen-
tially, while the computational time of the approximation algorithm increases
much slower. Thus, the larger the O set size is, the more time the approxima-
tion algorithm can save. Likewise, as the number of the state of each Oi node
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Fig. 9. Results from the four groups of 1500 test cases: (a) Average error rates
with the approximation algorithm; (b) VOIt vs. VOI for one test case from
ID dep: 3-state; (c) Computational time (log(t), unit is second) for the groups of
ID indep:n-state, n = 2, 3, 4; and (d) Computational time (log(t), unit is second)
for the groups of ID dep:n-state, n=2,3,4

further increases, the computational saving would be more significant. As the
number of states of Θ increase, the computational time also slightly increases.

5 An illustrative Application

We use a real-world application in human computer interaction to demonstrate
the advantages of the proposed algorithm. Figure 10 shows an ID for user stress
recognition and user assistance. The diagram consists of two portions. The up-
per portion, from the top to the “stress” node, depicts the elements that can
alter human stress. These elements include the workload, the environmental
context, specific character of the user such as his/her trait, and importance
of the goal that he/she is pursuing. This portion is called predictive portion.
On the other hand, the lower portion of the diagram, from the “stress” node
to the leaf nodes, depicts the observable features that reveal stress. These
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features include the quantifiable measures on the user physical appearance,
physiology, behaviors, and performance. This portion is called diagnostic por-
tion. The hybrid structure enables the ID to combine the predictive factors
and observable evidence in user stress inference. For more detail please refer
to (Liao et al., 2005).
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Fig. 10. An influence diagram for recognizing human stress and providing user assis-
tance. Ellipses denote chance nodes, rectangles denote decision nodes, and diamonds
denote utility nodes. All the chance nodes have three states.

To provide timely and appropriate assistance to relieve stress, two types of
decision nodes are embedded in the model to achieve this goal. The first type
is the assistance node associated with the stress node, which includes three
types of assistance that have different degrees of impact and intrusiveness to
a user. Another type of decision nodes is the sensing action node (Si node in
Figure 10). It decides whether to activate a sensor for collecting evidence or
not. Through the ID, we decide the sensing actions and the assistance action
sequentially. In order to first determine the sensing actions (which sensors
should be turned on), VOI is computed for a set S consisting of Si. Using the
notations defined before, we have V OI(S) = V OI(E)−

∑
Si∈S

ui(Si), where E is

the set of observations corresponding to S and V OI(E) = EU(E)−EU(Ē).

Figure 11 shows the experimental results for the stress model. We enumer-
ate all the possible combinations of sensors and then compute the value-of-
information for each combination. Chart (a) illustrates the average VOI er-
rors for different sensor sets with the same size. And Chart (b) displays the
Euclidean distance between the true and estimated probabilities

∑
o∈odk

p(o|θi)

(Equation 26). Similarly to the simulation experiments, the error decreases
as the size of O set increases, and the computational time increases almost
linearly in the approximation algorithm.
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Fig. 11. Results for the stress modeling: (a) average errors with the approximation

algorithm; (b) Euclidean distance between the true and approximated
∑

o∈odk

p(o|θi);

(c) computational time (log(t), unit is second); (d) true VOI vs approximated VOI.

6 Conclusions and Future Work

As a concept commonly used in influence diagrams, VOI is widely used as
a criterion to rate the usefulness of various information sources, and to de-
cide whether pieces of evidence are worth acquiring before actually using the
information sources. Due to the exponential time complexity of computing
non-myopic VOI for multiple information sources, most researchers focus on
the myopic VOI, which requires the assumptions (“No competition” and “One-
step horizon”) that may not meet the requirements of real-world applications.

We thus proposed an algorithm to approximately compute non-myopic VOI
efficiently by utilizing the central-limit theorem. Although it is motivated by
the method of (Heckerman et al., 1993), it overcomes the limitations of their
method, and works for more general cases, specifically, no binary-state as-
sumption for all the nodes and no conditional-independence assumption for
the information sources. Table 5 compares our method with the method in

23



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(Heckerman et al., 1993). Due to the benefits of our method, it can be applied
to a much broader field. The experiments demonstrate that the proposed al-
gorithm can approximate the true non-myopic VOI well, even with a small
number of observations. The efficiency of the algorithm makes it a feasible so-
lution in various applications when efficiently evaluating a lot of information
sources is necessary.

Table 5
The proposed algorithm vs. the algorithm in (Heckerman et al., 1993).

Our algorithm Heckerman’s algorithm

Hypothesis node (Θ) can be multiple states Θ has to be binary

Decision node (D) can have multiple rules D has to be binary

Information sources nodes (Os) can be Os have to be conditionally

dependent from each other independent from each other

Nevertheless, the proposed algorithm focuses on the influence diagrams with
one decision node under certain assumptions. For example, currently, we as-
sume the the hypothesis node Θ and the decision node d are independent. If D
and Θ are dependent, but conditionally independent given the observation set
O, Equations (5) and (6) will not be affected, so our algorithm can still apply.
However, if D and Θ are dependent given O, it may be difficult to directly
apply our algorithm. Another scenario is that when there are more than one
hypothesis node and/or utility nodes. One possible solution is to group all
these hypotheses nodes into one. We would like to study these issues in the
future.

Appendix

Proposition 1: Let rjk =
u2j−u2k

u1k−u1j+u2j−u2k
, p∗kl = max

k<j≤q
rjk, and p∗ku = min

1≤j<k
rjk,

then dk is the optimal action if and only if p∗kl ≤ p(θ1) ≤ p∗ku.

Proof of Proposition 1:

⇒ In this direction, we prove that if dk is the optimal action, p(θ1) ≥ max
k<j≤q

rjk

and p(θ1) ≤ min
1≤j<k

rjk.

If dk is the optimal action, EU(dk) must be larger than or equal to the expected
utility of any other action. Based on the definition, the expected utility of
taking the action dk is EU(dk) = p(θ1)∗u1k+p(θ2)∗u2k, where u1k = u(θ1, dk),
and u2k = u(θ2, dk). Therefore, we get the equations as follows:
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EU(dk) ≥ EU(dj), for ∀j, j 6= k (27)

⇒ p(θ1) ∗ u1k + p(θ2) ∗ u2k ≥ p(θ1) ∗ u1j + p(θ2) ∗ u2j (28)

⇒ p(θ1) ≥
u2j − u2k

u1k − u1j + u2j − u2k

= rjk if j > k (29)

p(θ1) ≤
u2j − u2k

u1k − u1j + u2j − u2k

= rjk if j < k (30)

Thus, based on the above equations, p(θ1) ≥ max
k<j≤q

rjk and p(θ1) ≤ min
1≤j<k

rjk.

⇐ In this direction, we prove that if p(θ1) ≥ max
k<j≤q

rjk and p(θ1) ≤ min
1≤j<k

rjk,

then dk is the optimal action.

If p(θ1) ≥ max
k<j≤q

rjk, ∀j, k < j ≤ q, we get

p(θ1) ≥ rjk =
u2j − u2k

u1k − u1j + u2j − u2k
(31)

⇒ p(θ1)(u1k − u1j + u2j − u2k) ≥ u2j − u2k (32)

⇒ p(θ1) ∗ u1k + (1 − p(θ1)) ∗ u2k ≥ p(θ1) ∗ u1j + (1 − p(θ1)) ∗ u2j (33)

⇒ EU(dk) ≥ EU(dj) (34)

Similarly, for ∀j, 1 ≤ j < k, we can get EU(dk) ≥ EU(dj). Therefore, dk has
the maximal expected utility and thus is the optimal decision.

Proposition 2:
∑

o∈odk

p(o) = p(p∗kl ≤ p(θ1|o) ≤ p∗ku)

Proof of Proposition 2:

Based on Proposition 1, dk is the optimal decision if and only if the value of
p(θ1) is between p∗kl and p∗ku. Therefore, given an instantiation o, the proba-
bility that dk is the optimal decision is equal to the probability that p(θ1|o) is
between p∗kl and p∗ku, i.e., p(p∗kl ≤ p(θ1|o) ≤ p∗ku).

On the other hand, we know that odk
is a subset of instantiations, each of

which corresponds to the optimal action dk. Therefore, as long as o belongs to
the set of odk

, dk will be the optimal decision. In other words, the probability
of dk being the optimal decision is the sum of the probability of each o ∈ odk

,
which is

∑
o∈odk

p(o). Therefore,
∑

o∈odk

p(o) = p(p∗kl ≤ p(θ1|o) ≤ p∗ku).
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Dear Reviewers and Editor,

   We are very glad to know that our paper will become acceptable after a minor revision. 
Thanks for the comments about our paper (IJA-D-07-00004R1). We have addressed 
every issue raised by the reviewer. The details can be found in the following itemized 
answers to the reviewer’ questions as well as in the revised manuscript, where the new 
changes are marked in bold.

1) If section 2 should be a general introduction to influence diagram, it might be 
appropriate to also discuss no-forgetting and the requirement of a linear ordering of the 
decisions. If you only want to consider the type of IDs used for VOI analysis you could 
drop the representation of e.g. time precedence and functional dependence, since these 
type of relations doesn't appear in the diagrams you consider.

Following the reviewer’s suggestion, we added more information about different types of 
IDs. We also clearly indicate the ID type considered in this paper. Please refer to 
paragraph 2, page 5.

2)On page 22: Doesn't the computational time increase exponentially in
the size of the O set (the y-scale is logarithmic).

For the exact computation, the computational time increases exponentially in the size of 
the O set, as shown in Figure 11(c). But in the approximate algorithm, it only depends on 
the size of the largest group among the conditionally independent O subsets. As shown 
in Figure 11(c), the approximate algorithm saves time significantly.

3) Comment (on our response to question 1 in the previous response letter): I don't quite 
agree with this. If you have, say, two decisions D1 and D2 (with D1<D2) and you want 
to calculate the VOI for a set of observations O, then your algorithm would compare the 
EU of observing O before D1 with the EU of observing O (possibly never) after D2. You 
don't consider the possibility of observing O before D2 but after D1.

Moreover, I would prefer that this was clearly stated already in the introduction. As it is 
now, this is first described on page 6, and here it appears only implicitly through the 
description of the type of influence diagram that you consider.

We agree with the reviewer that the proposed algorithm doesn’t take decision sequence 
into account. What we tried to say in the previous response is that, our algorithm can still 
apply to some IDs with a sequence of actions. The application given in Section 5 is such 
a case. 

Following the reviewer’s suggestion, we added the descriptions of IDs that our algorithm 
fits in to the Introduction section. Please refer to the last paragraph in page 3.

5) Comment: The limitations of the algorithm shouldn't be tugged away in the 
conclusions section, but should be stated explicitly when it becomes relevant. For 

* Response to Reviewers



2

example, it is only at the conclusion where you explicitly state that the D decision 
variable and the hypothesis variable should be independent. Similar, you assume that 
there is only one hypothesis node, but this is only stated in the conclusion.

Following the reviewer’s suggestion, the limitations are presented not only in the
Introduction and Conclusion, but also Section 3 when the algorithm is presented. Please 
refer to paragraph 2 of page 6.

6) Finally, the manuscript could still benefit from a thorough check of spelling
and grammar. Below are a few examples…

We fixed the examples pointed by the reviewer and also proofread the paper.


