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Abstract—Due to the significant complexity of membrane mor-
phology and the generally poor image quality in electron tomo-
graphic volumes, current automatic methods for segmentation of
membranes perform poorly. Users must resort to manual tracing
of recognized patterns on 2-D slices of the volume, a method that
suffers from subjectivity and is very labor intensive, preventing
quantitative analyses of tomographic data that require compara-
tive analyses of many volumes. To overcome these limitations, we
develop an automatic 3-D segmentation method that fully exploits
the prior knowledge about the shape of the membranes as well as
the 3-D information provided by the tomograms, and systemati-
cally combines this knowledge with the image data to improve seg-
mentation results. The method is based on the watersnake frame-
work. By mathematically reformulating the traditional watershed
segmentation as an energy minimization problem, the watersnake
inherits the many strengths of the watershed method while over-
coming the limitations of the traditional energy-based segmenta-
tion methods. In our previous work (H. Nguyen et al., 2003), the
original watersnake model was successfully modified by incorpo-
rating smoothness into watershed segmentation. In this work, we
further extend that model to incorporate into the energy function
various constraints representing our prior knowledge about the
global shape of the cellular features to be segmented. Segmenta-
tion can, therefore, be accomplished via minimization of the en-
ergy function subject to the shape prior constraints. Finally, the
mathematical framework is further extended from 2-D to 3-D so
that segmentation can be carried out in 3-D to take advantage of
the additional information provided by the tomograms. We apply
this method for the automatic extraction of biological membranes
of varying complexities including those of bacterial walls and mi-
tochondrial boundaries.

Index Terms—Electron tomography, image segmentation, mem-
branes, watershed.

I. INTRODUCTION AND SIGNIFICANCE

ELECTRON tomography is a method for determining 3-D
structure by electron microscopy (EM), using multiple tilt

views of the specimen [2], [3]. Electron tomograms contain, in
principle, vast amounts of information on the locations and ar-
chitectures of large numbers of subcellular assemblies and or-
ganelles at a resolution significantly higher than that which is
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possible with optical microscopy. In the relatively short time
since its first applications in the late 1980s, electron tomography
has provided numerous new insights into subcellular structure.
A good example is the mitochondrion, whose textbook descrip-
tion has undergone major revision as a result of electron tomo-
graphic studies [4]–[7]. In the last five years, electron tomog-
raphy has begun to evolve from a technique practiced in only a
handful of specialized centers to one that is increasingly avail-
able to biomedical researchers.

A. Segmentation Bottleneck

However, even as the technology for producing tomographic
reconstructions has become more sophisticated and accessible,
and the data proliferate, the quantitative analysis and interpre-
tation of the data remains a serious bottleneck. Quantitative
analysis of electron tomograms typically involves segmenting
cell components, measuring their dimensions, locating critical
points, and determining spatial relations among the compo-
nents (e.g., [6], [8], [9]). Segmentation is the identification
and separation of components of interest from the complex
and densely packed cellular environment characteristic of
well-preserved biological specimens. Of all the steps involved
in quantitative analysis of EM images, segmentation is particu-
larly challenging, in part due to the tremendous complexity of
biological features and in part due to poor EM image quality
resulting from the low contrast of the input images (particularly
when unstained, frozen-hydrated specimens are used), limited
angular sampling, and an incomplete tilt range.

Because of these difficulties, segmenting cellular compo-
nents has been dominated by manual procedures that rely
on the expert knowledge of biologists to segment and recog-
nize specific structures. For example, mitochondrial cristae
can be segmented from electron-tomographic reconstructions
by manual tracing. Such manual procedures, however, are
time-consuming, subjective, prone to operator errors, and
ill-suited to handling the data throughput required to make
statistic correlations among datasets recorded under differing
functional conditions. To mitigate these difficulties, several
software packages have evolved specifically for the contouring
of electron-tomographic data sets, including: SYNU [6], IMOD
[10], [8], SPIDER/STERECON [11], [12], and NIH Image
[13]. These software packages incorporate tools that provide
a limited degree of operator assistance, e.g., placing spher-
ical models in the location of vesicles as determined from a
single contour; extending membranes drawn in one level to
the next level in the volume, and “growing” linear objects
such as microtubules from single lines [9], [10], [12], [14],
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[15]. These computer approaches have been applied to seg-
mentation projects in cellular electron tomography in several
laboratories, e.g., Marsh et al., 2001 [8], Harlow et al. 2001
[9], Segui-Simarro et al., 2004 [16], Sosinsky et al., 2005 [17].
However, the gain in project throughput provided by such tools
is limited. For example, it took Marsh and colleagues [8] four
months to produce a complex 3-D map of the Golgi region in
part of a single pancreatic beta cell. This same group is now
engaged in combining 50 or more tomographic reconstructions
to map a large fraction of the cellular volume in order to
understand patterns of vesicular trafficking [18]. The current
level of sophistication of computer-assisted segmentation is
woefully inadequate for this task. More importantly, the cur-
rent approaches to computer-aided segmentation share several
drawbacks with fully manual 2-D tracing of features. These
include reliance on overly subjective criteria for feature extrac-
tion and delineation, and failure to utilize the full range of 3-D
information in tomograms, which should provide important
clues about feature shape and continuity.

B. Progress Toward Automated Segmentation

Over the years, automated segmentation techniques have also
been developed for various EM applications. These methods
can be grouped into two main categories: the energy minimiza-
tion based approach and the watershed-based approach. Based
on the minimization of an energy function, the energy-based ap-
proach can be further divided into the contour-based methods:
the region-based method, and the graph-based method. The
contour-based methods include active contours, active sur-
face models (balloons), deformable models, and the level-set
framework [19]. These methods have been successfully used in
medical imaging for recognizing anatomical features from mag-
netic resonance imaging (MRI) images and scans [20]–[23].
Active contour applications to electron tomography include a
geodesic active contour for segmentation of subcellular features
in HIV-infected macrophages [24], parametric active contour
to segment chromosomes from 3-D volumes [25], globally
optimal geodesic active contours to cell microscopy [26], and
active contour to achieve a 3-D reconstruction and segmentation
of DNA filaments [27] using the level set method [28], [29]. In
graph-based method, Frangakis and Hegrel [30] extended the
normalized graph cut [31] for finding the boundaries between
prokaryotic cells such as Pyrodictum abyssi and the ice in
which they were embedded. Similarly, viruses were segmented
successfully from the background and from the liposomes that
served as mock host cells. The advantages of the traditional
active contour-based methods include invariance to scale, size,
and rotation. Despite the effort on improving the convergence of
active contour [32], their common drawback is that they require
high-contrast images, a good initial contour or surface model,
and considerable fine-tuning of parameters in order to converge
correctly. The recent work in active contour such as the one by
Chan and Vese [33] has overcome some drawbacks with the
traditional contour-based methods. Their method, however, is
a region-based method relying on a unrealistic assumption of
homogeneity of both foreground and background.

The watershed algorithm uses an immersion technique that is
based upon analogy with the gradually flooding a topological re-

Fig. 1. Three-dimensional structure of mitochondrial membranes with outer
membranes enclosing the inner membranes. (A). Surface rendering of the mem-
branes in a condensed mitochondrion, prepared by conventional chemical fixa-
tion, plastic embedding, and heavy-metal staining. Arrows point to tubular crista
junctions. (B).Surface renderingof themembranes inamitochondrionsuspended
in 0.3 M sucrose, plunge-frozen at liquid nitrogen temperature, and imaged in
a cryo-electron microscope.

lief by a fluid, with barriers built at the points where independent
flows meet [34]–[37]. Volkmann [38] developed a 3-D version of
the watershed algorithm for electron microscopy. This approach
was effectively applied to a variety of electron-density maps, in-
cluding in situ Golgi apparatus [39]. Their study demonstrates
that the watershed method can segment membranes within the
cellular context, and that the watershed method often produces
excellent results for images with low complexity.

While the automated segmentation methods achieved a cer-
tain degree of success in segmenting and tracing some cellular
structures from EM images, these methods tend to be image
data-driven only and therefore their success is limited to large
and relatively simple structures. In addition, these methods can
be fooled by subtle boundaries and image artifacts. We believe
the performance of the automated segmentation techniques can
be significantly improved by incorporating prior knowledge
about the structure as well as the 3-D information into the
segmentation process.

C. Significance of Biological Membranes

The planned focus on biological membranes stems from their
central importance to biology. Biomembranes define most of the
cell’s internal compartments, acting both as barriers to diffusion
and scaffolds for the molecular machinery associated with scores
of processes, including energy transduction, protein trafficking,
endo-and exocytosis, etc. In many cases, well-defined changes
in local membrane topology are directly involved in these pro-
cesses (endocytosis, viral budding); in other cases, transitions in
overall membrane morphology (“remodeling”) have been found
to correlate with changes in functional state. A recent example
is the dramatic remodeling of the mitochondrial inner membrane
associated with mobilization of internal cytochrome prior to its
release during apoptosis (see Fig. 1, topic reviewed in [40]).

The basic structure of most fungal, plant, and animal mito-
chondria under normal physiological conditions is the same:
a smooth outer membrane that envelops an inner membrane
whose surface area is considerably larger and which envelopes a
protein-rich matrix. The inner membrane has numerous invagi-
nations, cristae, each of which has one or more tubular connec-
tions to the membrane periphery. The crista morphology is gen-
erally not uniform and the junctions are not always short and cir-
cular [41], [4], [5]. A “typical” mitochondrial membrane mor-
phology is shown in Fig. 1.
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To give a sense of the scale of the problem, segmentation of
large complex volumes typically can take days, weeks, or even
months, as it did for Marsh et al. [8] to manually trace the mem-
branes and cytoskeletal components in a serial tomographic re-
construction of part of one pancreatic cell. For individual liver
mitochondria, manual tracing of the membranes in a single to-
mogram (500 500 200 voxels) typically requires 16–24 h.
In the case of avian flight muscle mitochondria, which have a
much greater density of cristae, it can take a week to trace a
subvolume within the same size tomogram.

The goal of the proposed research is to develop a 3-D model-
based approach for segmenting biological membranes of mi-
tochondria and bacteria, fully exploiting any prior knowledge
about the shapes of membranes. For the research reported in
this paper, we introduce methods for automatically tracing the
relatively simple inner and outer membrane boundaries in mito-
chondria and in bacteria such as E coli. Future work will extend
current methods to segmenting the more complex cristae and
their junctions. The main innovations of this research are: 1)
mathematically combining the watershed segmentation and the
prior shape information via the watersnakes model, 2) a novel
application of the method to membrane segmentation based on
systematic combination of the prior knowledge about the mem-
branes with the image data, and 3) performing the watersnake
segmentation in 3-D to take full advantage of the 3-D informa-
tion that is currently lost when segmentation is performed on
slices of tomograms. While 3-D watershed has been applied in
other biological or medical imaging modalities [42], [43], its use
in EM image has been limited, and in particular, the use of 3-D
watershed with global shape prior is new.

While the focus of the proposed research is on segmentation of
biological membranes in EM images, the proposed techniques
will have wide applicability to other cellular structures in
electron tomography and to other forms of medical imaging
since the underlying theories of combining prior knowledge
with image data remains true with other features. In addition,
the proposed research may also be applicable to other modalities
such as MRI and ultrasound since the quality of those modalities
are at least as good, and usually better than EM images.

II. LITERATURE REVIEW ON MODEL-BASED SEGMENTATION

The complexity of the biological features, the crowded en-
vironment, and the inherent low signal-to-noise ratio (SNR)
present significant challenges to data-driven methods for seg-
mentation in electron-tomographic reconstructions. On the other
hand, the subcellular structures that we want to segment usually
possess some distinctive geometric properties such as tubular
structures of the cristad junctions at the membrane periphery
and the very thin (5–10 nm) structure of membrane boundaries.
This prior shape knowledge may be obtained from biologists,
from statistical analysis of the training shapes, or acquired
from user-drawn shapes, and they should be fully exploited
to improve the segmentation accuracy and robustness.

While use of prior knowledge is relatively novel for segmen-
tation of electron tomographic volumes, the concept has been
widely adopted by segmentation in other modalities. We clas-
sify model-based segmentation techniques into three primary
categories that differ in the way in which prior knowledge is

incorporated into the segmentation procedure. The categories
are: rigid modeling, constrained deformable modeling, and
statistical shape modeling. One common rigid model-based
method is template matching. In template matching [44], [45],
the template is generally a structure that has been determined
at high resolution, usually by an imaging modality other than
electron microscopy (most often X-ray crystallography). After
filtration of the template to match the approximate resolution
of the electron-tomographic reconstruction, and direction-de-
pendent adjustment to match the missing angular information,
cross correlation is used to find objects matching the template
in the 3-D tomographic reconstruction. Preliminary studies
indicate that template matching is reasonably effective for iden-
tifying large macromolecular complexes such as chaperones in
cell-free systems [44], [46] and ryanodine receptors in tomo-
graphic reconstructions of isolated triad junctions [47]. While
encouraging, these preliminary efforts still struggle with false
positives and have not yet been used to any appreciable extent
to segment 3-D reconstructions of in situ cellular environment.
Other major drawbacks of template matching include difficulty
of constructing templates for complex biological structures
and its inability to adapt to structure shape variability.

Constrained deformable modeling achieves improved robust-
ness by using prior knowledge to constrain deformation. One
way to achieve this is to incorporate size and shape constraints
explicitly into the energy function of the active contour through
a regularization term. This makes it possible to detect obscured
objects. Recent approaches in level-set methods incorporate
a representation of a reference shape within the energy func-
tional. Thus, the recovered object boundary should resemble
the expected contour, in addition to being constrained by
length, smoothness and compatibility with the image features.
Current work in model-based segmentation using level sets
include Leventon [48] Tsai et al. [49], Rousson and Paragios
[50], Chan [51], Cremers et al. [52], and many others. The
latest research in constrained deformable modeling deals with
multiple different shape templates rather than a single template
[53]–[55], with multiple shape instances in a given input image
[56], [57] or with the segmentation of temporally evolving
shapes [58].

Most methods mentioned above are based on either pixel ho-
mogeneity in a region or discontinuity at region boundaries. The
homogeneity assumption is rarely the case in practice due to
noise. The edge-based methods usually focus on the evolution
of object contour. However, as the contour is driven by a local
force, the methods are sensitive to local optima due to the lack of
a robust stopping criterion. The level set method can be equiv-
alent to the watersnake model by combining level set with Gra-
dient Vector Flow as demonstrated by Xu et al. [59].

Both the template based approach and the constrained de-
formable modeling approach impose rigid and fixed prior shape
constraints into the segmentation process. In practice however,
the shape constraint may not be rigid and may include some
variation. The statistical shape modeling methods [60], [61],
[53], [62] can handle variable shape constraints. Primarily rep-
resented by the active shape model (ASM) technique developed
by Cootes et al. [63], the statistical shape modeling is an ap-
proach for the incorporation of prior knowledge. The variations
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of object shape are estimated by applying principal component
analysis to the training samples and a subspace of most influen-
tial modes are determined. The restriction of the search for ob-
ject contours within this subspace can avoid the convergence to
irregular shapes. The ASM approach has been successfully used
for many tasks in general medical imaging [64]–[66] as well as
for segmentation of nerve capillary structures from electron mi-
croscope images [67].

The watershed algorithm from mathematical morphology
overcomes many drawbacks of the edge-based methods. It is a
region-growing algorithm guided by the edge information. It
does not assume region homogeneity and it can identify most
significant edges between the regions. For watershed-based
segmentation, several efforts have been spent on incorporating
prior information to the segmentation [1], [68]. Prior knowl-
edge such as information about the number of regions and
the location of each region is often provided through markers.
Recent work on regularization of the watershed algorithm has
mostly focused on imposing smoothness on the watershed
lines [1], [69]–[71]. In [72], Vachier and Meyer introduce the
viscous watershed transform which can also produce smooth
contours by simulating the flooding of viscous fluids like oil
and mercury. They prove that the effect of viscous fluids can
be achieved with the standard nonviscous watershed algorithm
by prefiltering the relief surface with some morphological
filters called viscous closing. The method by Grau et al. in
[71] incorporates prior knowledge into the lower slope used
for calculation of topographical distance. In the calculation,
the difference between the surface value at two pixels is re-
placed by the difference between the probability that the pixels
belong to the same object class. This probability model can
then be defined to carry prior information regarding object
appearance features like intensity or color. The latest work by
Beare [68] presents a new formulation of the watershed method
to impose local smoothness constraint into the watershed
lines. The constraint is implemented through a morphological
opening operation incorporated into the segmentation process
to constrain the borders of regions to be smooth. However,
contour smoothness is a too general form of regularization.
Shape prior information is much more powerful in representing
domain specific knowledge. While the watershed methods
above can impose local smoothness, it remains unclear what
other boundary constraints can be incorporated. In general,
these methods are restricted to local constraints only. Passat
et al. [73] presented an approach to integrate prior high level
anatomical knowledge with 2-D watershed method for brain
vessel segmentation. The prior knowledge, however, is pri-
marily used for selecting watershed markers for initialization.

Although incorporation of prior knowledge into segmentation
has been well-studied, current methods are either limited to 2-D
like most of the constrained energy-based methods or limited to
local prior such as the constrained watershed methods. Further-
more, application of prior knowledge to segmentation of cell
components from electron tomographic volumes requires fur-
ther refinements, due to the unique challenges imposed by these
data sets. First, the segmentation should allow sufficient flexi-
bility to reflect biological shape variability exhibited by the ob-
jects in the volume. Overemphasis of prior knowledge, i.e., rigid

size and shape constraints, tends to produce similar segmenta-
tions for dissimilar objects, thereby making comparisons among
the objects meaningless. Second, given the often non-uniformity
of image quality, model-based segmentation needs to be adap-
tive so that the prior model is weighted more for regions of lower
image quality while weighted less for regions of higher image
quality. Finally, it is important to perform segmentation in 3-D
due to the additional information on feature shape and conti-
nuity provided by the 3-D data. In this proposal, we introduce
methods to address these issues.

III. WATERSNAKE SEGMENTATION

After carefully studying different possible methods, we
introduce a new approach to EM segmentation, which is an ex-
tension of the watersnake model [1]. The major contribution is a
new combination of energy-based approach with the traditional
watershed method, which can incorporate prior information re-
garding object shape. We call the proposed method shape-driven
3-D watersnake. The choice of the watersnake model is based
on the following considerations. First, the watershed algorithm
overcomes many drawbacks of the traditional energy-based
methods. It is a region growing algorithm guided by the edge
information, therefore effectively combining the region in-
formation with the edge information, and hence significantly
alleviating the local minima problem that has plagued many
energy-based methods. In fact, our previous work proves that
watersnake can produce a global minimum [1]. In addition, our
study shows that compared with the traditional energy-based
methods, the watershed method is faster and requires few
tuning parameters. Second, Volkmann et al. [38] demonstrated
the promise of the watershed method for EM image segmenta-
tion. Their method, however, remains morphologically based
and segmentation is accomplished typically through region
growing, without incorporation of any prior information. We
want to further improve upon their work by systematically
incorporating the local and global prior into the segmentation
process so that segmentation can be more accurate and robust
for more complex images. Third, despite many weaknesses,
one major benefit of the traditional energy-based methods is
the mechanism they offer to easily incorporate prior knowledge
into the segmentation process. While the traditional watershed
algorithm through marker selection can easily impose prior
knowledge of the number of objects and their location, it is
not convenient for incorporation of priori shape information,
especially the global shape information. By reformulating the
watershed segmentation in an energy minimization framework,
the watersnake model offers a way to combine energy-based
approach with the watershed to exploit respective strengths
while avoiding their respective weaknesses. In the discussion
to follow, we first briefly summarize the watersnake concept
[1]. This is then followed by introducing our approach for
incorporating local and global priors. Finally, we will discus
the extension of the 2-D watersnake to 3-D.

A. Watersnake

Morphologically, the input of a watershed method is a relief
function representing edge evidences, where the morphological
gradient is the common choice for computing such a relief. By
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viewing this function as a mountain landscape, object bound-
aries are determined as watershed lines. The watershed method
is typically implemented with a region growing method, which
grows a region from a seed point (marker). To cast the water-
shed method into an energy minimization framework, we first
need to define an energy functional. Let be the seed for each
region, and be the relief function representing the image gra-
dient norm. For any pixel , we consider the set of
all paths linking and the marker . The topographical dis-
tance from to is defined as the minimal sum of gradient
norm of over all possible paths

(1)

In our previous work [1], it is proved that a mutually exclusive
partition of an image space minimizes the energy
function

(2)

if and only if the partition is a watershed segmentation of . The
term is the value at . Equation (2) establishes the equiv-
alence of the watershed to energy minimization. Details about
proof of this theorem can be found in [1]. Details about this the-
orem can be found in [1]. Besides [1], other works [74]–[80]
also discussed combination of watersheds with energy function
information.

For this research, we focus on bilayer segmentation, i.e., seg-
menting one object from a given image. This segmentation di-
vides the image into two regions: the object region and the back-
ground region. Furthermore, we assume that the object is a con-
nected region as is usually the case in most applications. The
method takes as input two marker regions: and and a
relief function representing image gradient norm. The exterior
marker indicates a seed of the background region. Pixels
in this marker are known to be background pixels. Similarly,
the interior marker is a seed of the object region, pixels of
which are known to be inside the object. and can
be specified manually or by various automatic algorithms de-
pending on specific applications. Pixels not belonging to any of
the markers are referred to as uncertain. The algorithm will de-
termine the segmentation label, either object or background, for
uncertain pixels.

Following (2), the watershed between and is ob-
tained by minimizing the following functional:

(3)

In the subsequent discussion, we will use (3) as the energy
function. Compared with the traditional energy-based formula-
tion, the watersnake topographical energy function measures the
homogeneity of region . But the topographical energy function
does not contain any parameters, a major advantage over the
conventional energy terms. The watersnake, therefore, does not
need to go back and forth between updating region parameters

Fig. 2. Illustration of the bilayer watersnake energy function.

and updating pixel labels. The minimization is therefore sim-
pler, faster, and less likely to be stuck in the local minimums.
In summary, (3) unifies the watershed approach with the en-
ergy-based approach. Hence, the watersnake represents a fusion
of energy-based segmentation with the morphology-based seg-
mentation, and combine the advantages of both approaches.

B. Incorporation of Prior Information

Having represented the watershed segmentation as an energy
minimization, the incorporation of the prior information can be
achieved by by adding additional terms to the energy function.
Specifically, the labeling of uncertain pixels is obtained by the
minimization of an energy function combining a data term, a
prior term and a smoothness term

(4)

where , and are the weighting coefficients. The definition
of each term is given subsequently in the remainder of this sec-
tion.

1) The Data Term: The data term is to help the algorithm
locate the object border at the strongest edges between the two
markers. Since , (3) can be equivalently written as

(5)

over all pixels in region . The border of the that minimizes
this functional will be the watershed line where the equality

is satisfied [77], [81]. Fig. 2 illustrates the
bilayer watersnake energy function, where and are the
two seeds for the object and background, respectively.

2) The Fixed Prior Shape Term: This term is meant to im-
pose similarity between the resulting shape and a fixed reference
shape, representing the prior knowledge about the feature shape.

Let be the contour of the reference shape and let
be the signed distance transform to from

(6)

where denotes the shortest distance from to .
Since is negative if and only if is inside the reference
contour, the region functional is minimized if

and only if exactly matches the reference shape. Therefore,
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Fig. 3. Fixed prior shape and its transformation to align with the object contour.

this functional can be added to the energy to constrain to be
similar to the reference shape.

Furthermore, to make the minimization result invariant to the
position and orientation of the reference shape, we use the trans-
formed distance function. This distance map is obtained from

via a geometrical transformation with parameters .
The fixed prior term is then defined as

(7)

where denotes the transformation of . The optimal
value of is determined simultaneously with . In this work,
we consider the three types of transforms: translation, rotation,
and scaling:

(8)

where and is the vector of trans-
formation parameters.

Fig. 3 shows the prior shape and its alignment with the object
contour.

3) The Variable Prior Term: Unlike the fixed shape prior, the
variable shape prior allows certain degree of variability in the
prior shape. As we discussed before, this feature is important
for EM images since the same structure may vary slightly from
tomogram to tomogram.

Following the active shape model proposed by Cootes [63]
and Leventon [48], who first proposed the PCA-based shape
prior in the pattern recognition field, we formulate the prior
shape function as follows. Let be the training
shapes of the biological structure from different tomograms, we
can then construct a subspace of those shapes using principal
component analysis (PCA)

(9)

where represents the mean shape, are the basis vectors
that characterize the main modes of the feature shape variation,
and are the coefficients. Accommodating geometrical trans-
formations (translation, rotation, scaling), the variable shape
regularization term may be rewritten as

(10)

Fig. 4. Illustration of the formulation of the smoothness constraint.

where is the distance transform as defined in (7). is a
vector of and it is computed together with during the opti-
mization such that the search for the shape of object contours is
limited to the subspace spanned by .

Note that the representation shape variation using PCA re-
quires the training data set to follow a Gaussian distribution,
which implies that the training data have to be globally similar.
The PCA method, therefore, cannot represent significant shape
variation.

4) The Smoothness Term: This term imposes local smooth-
ness on the contour of . We assume the object boundary lo-
cally smooth. The standard approach to producing smoothness
is to minimize the contour length, the differentiation of which
generates a curvature term in contour evolution equation. In the
watersnake framework, however, this approach requires the con-
tour length being implemented as a region functional [1]. In this
work, we propose a new smoothness term which is a region
functional and at the same time has a similar effect as contour
length.

For each pixel inside we define as the area
of the overlap between a disk of radius centered at , and
the object exterior . Similarly, for each pixel outside we
define as the area of the overlap between the disk
and the object interior, i.e., . Fig. 4 illustrates the smoothness
constraint. Let be a mask function that takes values 1 and
0 inside and outside respectively. Then, and can be
expressed as

(11)

High values of or on the boundary
of indicate high curvatures of the contour. To smooth the con-
tour, we add to the energy a smoothness term defined as

(12)

where is a function penalizing high values of and .
For example, we have used

(13)
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where is the maximal value of along the
border of a digital radius . As such, the smoothness term be-
comes effective only when the radius of the osculating circle is
less than .

C. The Total Energy

Based on the above definitions, the total energy function is
rewritten as follows if using the fixed prior term

(14)

or is written as follows if the variable prior term is used

(15)

Given the total energy function, the force acting on a point at
the border of a region consists of forces from different sources
as represented by the different terms in the functional. The PDE
of this functional can then be used to determine the motion of
the boundary.

Without changing the minimization solution, we fix the value
of and tune and for specific applications. Below
we will discuss an automatic method to adaptively vary and

, depending on image quality.

D. Locally Adaptive Weights

Noise in electron tomographic volumes of objects such as mi-
tochondria poses a challenge for automatic segmentation. While
images are often cluttered with many irrelevant details, object
data may be weak or absent at some places where the object is
dense and penetration of the electron beam is poor. When un-
stained frozen-hydrated specimens are used, resulting images
usually have low contrast. These factors together with limited
angular sampling and an incomplete tilt range lead to low SNR
and directional resolution loss in some portion of the tomogram.
We observe that the proposed method has difficulty with de-
tecting object borders at low contrast regions or regions that are
highly textured with clutter. In such regions, it is better to rely
more on the prior shape model. This observation allows us to
design a method to make adaptive to local photometric char-
acteristics such that in the area where the watershed line may be
inaccurate we like to rely more on the prior by increasing the
value .

To characterize image textures in the neighborhood of a
pixel , we put all gradient vectors of pixels in in the same
coordinate system with being the origin. We then fit the end
points of the vectors into an ellipsoid via eigenvector decompo-
sition. The three axes of this ellipsoid can be obtained from the

eigenvalues of the following matrix:

(16)

where , and denote the image derivative with respect
to , respectively. Let and be the minimum
and maximum eigenvectors of respectively and consider their
ratio

(17)

Low values of indicate that all gradient vectors in are
strongly oriented and is close to a clear edge where the
watershed is expected to produce an accurate result. On the
other hand, high values of (close to 1) indicate either a ho-
mogeneous region or a highly noisy region where the gradient
vectors are diffused. In this case, the watershed often does not
produce accurate results. Thus, the prior weight can be set as:

(18)

where is a constant.
In addition, should also be adaptive to the distance between

the watershed line and the reference contour. If the watershed
line is too far from the reference contour, a high weigh for
[defined in (6)] should be used. But when the watershed is close
to the reference contour, a small weigh of should be used,
leaving the resulting contour close to the watershed line which
better adheres to edges. To incorporate the closeness to the ref-
erence contour we can set

(19)

Combining all above three considerations, we set as follows:

(20)

where is a predefined constant.

E. Extension to 3-D

All energy terms of the proposed framework are readily for
extension to the 3-D case. Given a 3-D image we can
calculate its morphological gradient at each pixel as the differ-
ence between the maximum and the minimum of in a neigh-
borhood of the pixel. Given two marker sets and , the
3-D watershed segmentation can be obtained by minimizing

(21)

where denotes the 3-D topographical distance. A fixed prior
shape can also be incorporated by adding to the watershed en-
ergy a volume integral of distance to a reference 3-D surface

(22)

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on October 12, 2008 at 20:08 from IEEE Xplore.  Restrictions apply.



NGUYEN AND JI: SHAPE-DRIVEN THREE-DIMENSIONAL WATERSNAKE SEGMENTATION 623

where is the 3-D distance transform function defined sim-
ilarly as in (7). The variable prior and the smoothness terms can
be extended to the 3-D in a similar fashion.

F. Minimization Algorithm

As will be shown, the minimization of the smoothness
term requires much computation. Therefore, we first minimize

1 with respect to and . The re-
sulting segmentation will be used as the initial point for the
minimization of the total energy
with respect to .

1) Minimization of can be carried
out as follows:

a) Given an initial estimate of .
b) Fixing , determine by selecting all pixels where

the integrand is negative

(23)

c) Fixing , optimize for transformation parameters :

(24)

d) Iterate Steps 2 and 3 until stability.
The minimization in (24) is done by the exhaustive search
in a neighborhood of the previous estimate of .

2) Minimization of full energy
.

a) Start from the segmentation result of the previous al-
gorithm.

b) For each pixel at object border, calculate ,
the decrease of the energy function for the case where
the label of the pixel is changed. Specifically, when
the pixel is changed from “background” to “object”

(25)

On the other hand, if the pixel is changed from “ob-
ject” to “background,” the energy decrease is calcu-
lated as

(26)

1For simplicity, we only consider the fixed shape prior here.

c) Select pixel with the maximal potential decrease of
the energy. Denote it .

d) If then stop.
e) Otherwise, recompute the potential energy decrease

for all border pixels within a distance from
.

f) Iterate Steps 3–5.

As observed, the computation of is an expensive op-
eration requiring a scan over the neighborhood of . In addition,
the need to recompute for border pixels in the neighborhood

makes the optimization with the smoothness term computa-
tionally expensive.

G. Acquisition of the Prior Shape

An important part of the proposed research is to capture the
prior shape of the biological features. The acquisition of prior
knowledge about the shape of structures will be carried out
interactively with the user. For structures with parameterizable
shapes such as mitochondrial or bacterial outer membrane
boundaries and some crista junctions with regular shapes [6], it
should be possible to parameterize these membrane segments
as either cylinders or hyperboloids of revolution. Given the
parametric models, the user is asked to select a few points on
the surface of the structure. The program uses these points
along with the parametric model to obtain estimates of the
shape parameters, which in turn, are fed into the segmentation
software to perform the segmentation.

For more complicated structures that cannot be character-
ized analytically but which have relatively consistent shapes
across different volumes, a set of training datasets (tomograms)
is needed to capture the mean shape of the structure and its
random variability across volumes following (9). The user is
asked to manually map out points on a typical structure in each
volume either in 2-D or 3-D, producing a cloud of 3-D points
representing the surface of the structure. This is then repeated
for different volumes, producing sets of 3-D points. The mean
and covariance matrix of the sets of 3-D points are then ac-
quired. The covariance matrix captures the random variability
of structure across different volumes, which is fed into the seg-
mentation software. Observed variability in the crista junctions
of isolated rat liver mitochondria (see Fig. 1), in terms of length
and flattening, would present a good test of the ability of the
segmentation algorithms to deal with random variation in struc-
tures.

Finally, there are structures inside cells that are both com-
plicated and vary significantly from volume to volume, with no
obvious common shape at any scale. In these cases, the user will
be asked to provide a set of control points on the surface of the
feature of interest in every volume to be segmented. The pro-
gram will then perform segmentation subject to the constraint
that the final surface must go through the manually identified
points. Provided the control points are good, the end product
would be an accurate and objectively defined surface.

In general, to overcome the difficulty of specifying the 3-D
shape manually, we adopt the following procedure. We assume
as given only a few 2-D contours which are the intersection of
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Fig. 5. Results of the proposed algorithm for different weights of the shape prior term.

Fig. 6. Results from the 2-D version of the proposed watersnake algorithm with incorporation of reference shape and smoothness. (a) White contours represent the
result of the proposed algorithm. Dark (or blue) contours are the manual segmentation provided by an expert. (b) Three-dimensional surface obtained by stacking
the white contours of all slices.

the reference surface with certain slices. Information about
the reference surface in between the slices is obtained by linear
interpolation. Specifically, suppose and be the reference
contours given for two different slices of the reference surface.
We compute the signed distance transforms of these contours
and denote them and , respectively. The ref-
erence contour of a slice in between and is determined
as set of points satisfying

(27)

where is a weighting coefficient calculated based on the rela-
tive position of the slice to and . Let , and be the

value of the slices that contain , and , respectively.
Then

(28)

IV. EXPERIMENTS

To demonstrate the promise of our methods on EM images,
we first applied them to tomograms of intact frozen-hydrated rat
liver mitochondria for the segmentation of outer membranes. In
this case, the outer membrane is only 10 nm from the inner mem-
brane at the organelle periphery. For the experiments, before the
segmentation started, images are fisrt smoothed by the opening
by reconstruction filter [42]. The exterior marker is specified as
a rectangle enclosing the object of interest, while the interior
marker is specified as a point inside the object. The coefficient

is fixed at 0.5. Other than Fig. 5, for volumes in other fig-
ures are all set to 0.3. For the computation of , we used

and . The coefficient is set to a large value 500 which
effectively removes all sharp corners for which the radius of the
osculating disk is less than . The coefficient is calculated
as follows. Once the two topographic distance and
have been computed, the original watershed contour can be de-
termined. We then calculate the mean of the gradient values
along the watershed line, and set

(29)

Such setting of will makes the result of the minimization in-
variant to scaling of image intensity.

Fig. 5 shows the result of the proposed algorithm for the seg-
mentation of a 2-D mitochondria image obtained from one slice
in a 3-D tomography volume. The task was to segment the outer
membrane of the mitochondria structure. The image is very
noisy and cluttered. The reference shape is chosen as a circle.
The result with incorporation of the reference shape shows an
obvious improvement over the original watershed lines which
has several excursions of the contour into the object or back-
ground regions. Moreover, changing the weighting coefficient
of the shape term leads to smooth transition from the result of
the original watershed algorithm to a result that looks the same
as the reference shape.

We first study the 2-D version of the proposed method (i.e.,
perform segmentation on each slice). Fig. 6 shows the segmen-
tation results of different slices in a 3-D mitochondria tomog-
raphy image volume. The volume has 74 slices.

The reference shape was selected by manually segmenting
the outer membrane of one of the slices. The reference looks
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Fig. 7. Result of the proposed 2-D watersnake with incorporation of prior shape knowledge for another mitochondria EM image.

Fig. 8. Results of the original 2-D watershed algorithm without any constraint. Segmentation fails for slice 72.

exactly as the rightmost image in Fig. 5. Since the membranes
at the first and the last slices are significantly smaller than the
slices in the middle, we used three different reference shapes for
different parts of the volume. Specifically, for segmenting slices
20–59 we used the manual segmentation of slice 30, for slices
1–19 and slices 60–74 the manually segmentation of slice 10
and 70 were used as reference, respectively. For evaluation, we
also show the contour manually drawn by an expert. The results
of the individually computed contours are then stacked to form
a 3-D surface that is shown in Fig. 6(b).

Fig. 7 shows the results of the proposed algorithm for another
volume image. As observed, the results are generally accurate
although errors are still observed at few places due to dark par-
ticles that create high peaks on the gradient surface.

For comparison, the results of the original 2-D watershed al-
gorithm is shown in Fig. 8. As expected, the watershed algo-
rithm failed to identify the correct membrane boundaries due
to its sensitivity to image clutter. In slice 72, the contour even
shrinks to a small dot. The poor performance is further demon-
strated by the 3-D rendering of the 2-D detection as shown in
the bottom two figures.

To study the performance of the 3-D version of the proposed
method, for the same sequence we then applied our 3-D wa-
tershed algorithm. A reference surface was created from five
reference contours specified for slices 1, 10, 30, 50, and 74, re-
spectively. During energy minimization, we do not consider the
full 3-D geometrical transformation of the reference volume but
only the translation and rotation in the ( ) plane. Two 3-D
markers are obtained by stacking the 2-D markers of all slices,
yielding a vertical line for the interior marker and a rectangular
tube for the exterior marker. The results are shown in Fig. 9. The
generated contours closely follow the manually drawn contours.
it is clearly that by taking advantage of the 3-D information, the

3-D watersnake outperforms the 2-D watersnake, despite the use
of the same amount of prior shape information. In fact, the 3-D
watersnake is better than its 2-D counterpart with or without
shape prior. In addition, the results by 3-D watersnake are also
much better than the results of the 3-D watershed algorithm,
which are shown in Fig. 10. This demonstrates the importance
of the prior information. Hence, it is important to use both 3-D
data and prior shape information for robust and accurate seg-
mentation. The proposed algorithm can segment membranes in
volume image of size 400 400 100 in just a few minutes on
a 1.4-GHz laptop.

To further demonstrate the proposed method, we applied it to
segment both the inner and outer membrane boundaries. Fig. 11
shows the results for the inner and outer membrane boundaries
in the cell wall of a specially prepared (focused ion beam (FIB)-
milled) E. coli bacterium. During segmentation, the user manu-
ally traced a few slices, based on which a 3-D reference shape
model was constructed. To detect both the inner and outer mem-
brane boundaries, we first detected the outer membrane and then
used it as the outer marker of the second run of the algorithm,
which returned the inner membrane.

We have quantitatively evaluated the performance of the
proposed approach using the manually drawn contours as
the groundtruth. For this purpose, we have used two statis-
tics: precision and recall (corresponding to specificity and
sensitivity, respectively). The precision is the percentage of
machine-generated boundary pixels that are true boundary
pixel. The recall is the percentage of true boundary pixels that
are detected by the algorithm. The results are summarized in
Table I. The reason that the recall is lower than the precision
in the above table is that the ground truth boundary is thicker
than the machine-generated contour which has only one pixel
thickness. As observed, the 3-D watershed with incorporation
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Fig. 9. Result of 3-D watershed with incorporation of a reference 3-D shape. (a) White contours represent the result of the proposed algorithm. Dark (or blue)
contours are the manual segmentation provided by an expert. (b) Three-dimensional surface obtained by stacking the white contours of all slices. White contours
apparently closely follow the dark contours.

Fig. 10. Result of 3-D watersnake without prior knowledge.

Fig. 11. Detection of closely spaced double membranes using the proposed 3-D watersnake. (a) Detection results in 2-D and (b) Detection results in 3-D. Bacterium
is 800 nm in diameter, milled to a thickness of 400 nm; the spacing between membranes is 30 nm.

TABLE I
RESULTS OF QUANTITATIVE EVALUATION FOR

DIFFERENT SEGMENTATION SETTINGS

of a reference shape has the best performance while the original
2-D watershed has the poorest performance.

V. CONCLUSION

In this paper, we introduce mathematical solutions for
model-based automatic segmentation in electron tomography.
In particular, we propose to segment and trace biological
membranes. Based on combining two powerful segmenta-
tion approaches (energy-based and watershed), the proposed
method inherits each approach’s strengths while avoiding their
weaknesses. In addition, the systematic incorporation of both
global and local prior knowledge into the segmentation process
as well as the extension of the segmentation from 2-D to 3-D
further enhance the capabilities of the proposed method for
difficult and complex EM images. The promise of the methods
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are demonstrated for automatically segmenting biomedical
membranes of a globally convex shape. Specifically, experi-
ments demonstrate the importance and significance of prior
shape and the 3-D information in improving segmenting and
tracing difficult biological membranes. In the future, we will
extend the proposed methods for segmenting more complex
membranes, such as mitochondrial inner membrane cristae and
their junctions.

While the focus of the proposed research is on segmenta-
tion of biological membranes in EM images, the proposed tech-
niques will have wide applicability to other cellular structures
in electron tomography and to other forms of medical imaging,
since the underlying theories of combining prior knowledge
with image data remains true with other features. In addition,
the proposed research may also be applicable to other modalities
such as MRI and ultrasound since the quality of those modali-
ties are at least as good, and usually better than EM images.
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