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Abstract

Projective transformations relate the coordinates of images that are taken by either a camera
that undergoes only rotation while imaging an arbitrary scene, or one that rotates and translates
while imaging a planar surface. Estimating the eight parameters of a projective transformation
between a pair of image planes induces a global, dense correspondence between them that can
be used for registration or mosaicking. This is a standard problem in image processing and
computer vision.

The projective transformation estimation problem is typically posed as the minimization
of a nonlinear functional of eight parameters, and solved with an “off-the-shelf” numerical
algorithm. Here it is shown that in fact, this minimization can be analytically reduced to a non-
linear problem in only two parameters. Any descent algorithm to solve the eight-dimensional
minimization can be modified to produce an algorithm for the two-dimensional problem. Sev-
eral algorithms based on the two-dimensional problem are proposed and results are presented
on data from real images to experimentally verify their superiority. Not only are the proposed
algorithms efficient, but they are also robust to the types of measurement noise that could be
introduced by poorly matched corresponding points or outliers in the data sets.

Index terms: projective transformations, homographies, collineations, mosaicking, registration
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1 Introduction

A projective transformation maps a pointw ∈ R2 tow′ ∈ R2 by:

w′ =
Aw + b

cTw + d
(1)

whereA ∈ R2×2, b, c ∈ R2, andd ∈ R are such that
∣∣ A
cT

b
d

∣∣ 6= 0. An affine transformation is a

special case of a projective transformation withc = 0 andd = 1.

The estimation of the parameters of a two-dimensional projective transformation is a standard

problem that arises in image and video processing. Typical applications of the estimated parame-

ters are the synthesis of an image mosaic from a set of images of a static scene taken by a rotating

camera [1, 2, 3, 4, 5], and the registration of images of a planar surface taken by multiple separated

cameras [6, 7].

We can pose the projective transformation estimation problem as a least-squares minimiza-

tion based on a finite set of noisy point samples of the underlying transformation. This results in

an eight-dimensional nonlinear nonquadratic minimization problem. Such a problem is typically

solved numerically using an ‘off-the-shelf’ procedure such as the Gauss-Newton or Levenberg-

Marquardt algorithm [8]. In special cases, approximations are possible that enable closed-form

solutions. For example, when thec parameters are very close to 0, Tan [9] introduced an approxi-

mation to make the least-squares problem linear. Kanatani [10] proposed a tensor-based approxi-

mation that reduces the estimation problem to an eigendecomposition. However, the mapping (1)

is very sensitive to changes in thec parameters, and as these parameters deviate from 0, the above

approximations quickly diverge from the solution to the nonlinear problem. Instead of using a set

of point correspondences as a basis for estimating a projective transformation, Mann and Picard

[2] proposed an iterative technique for simultaneously estimating the transformation parameters

and optical flow over an entire image pair. They used bilinear approximations to the projective
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transformations in each step in order to simplify the estimation.

The main contribution of this paper is an efficient and robust new framework for solving

the projective transformation estimation problem. We show in Section 4 that the general least-

squares problem for estimating a projective transformation can be analytically reduced to a two-

dimensional nonquadratic minimization problem. Some properties of the two-dimensional cost

function are discussed in Section 5. In Sections 6 and 7 we discuss issues involved with the prac-

tical minimization of the cost function by analyzing its gradient and Hessian, and show that in

theory, any descent algorithm for the eight-dimensional problem can be modified to produce a

more effective descent algorithm for the two-dimensional problem. We provide experimental re-

sults in Section 8 to show that Newton methods based on the two-dimensional problem outperform

analogous methods applied to the eight-dimensional problem. Furthermore, we propose an ap-

proximate second-derivative method that is quite robust to measurement noise. A brief summary

of some of our results originally appeared in [11].

2 Preliminaries

We consider the situation where the same static scene is imaged by two camerasC0 andC1. These

could be two physically separate cameras, or a single moving camera at different points in time.

The images are formed on coordinatized image planesP0 andP1, respectively. Let the scene

coordinates of a pointP in theC0 coordinate system be(X, Y, Z), and in theC1 coordinate system

be(X ′, Y ′, Z ′). We denote the corresponding image coordinates ofP in P0 andP1 byw = (x, y)

andw′ = (x′, y′), respectively. We assume idealized pinhole cameras that produce images by

perspective projection. Thus,

x = f0
X
Z

y = f0
Y
Z

x′ = f1
X′

Z′
y′ = f1

Y ′

Z′

(2)

Heref0 andf1 are the focal lengths ofC0 andC1, respectively. We assume that the two cameras

3



are related by a rigid motion. Hence, theC1 coordinate system can be expressed as a rotationR of

theC0 coordinate system followed by a translation[tX tY tZ ]T . That is,

 X ′

Y ′

Z ′

 = R

 X
Y
Z

+

 tX
tY
tZ

 (3)

By substituting (3) into (2), we obtain:

x′ =
r11

f1

f0
x+ r12

f1

f0
y + r13f1 + tXf1

Z

r31

f0
x+ r32

f0
y + r33 + tZ

Z

(4)

y′ =
r21

f1

f0
x+ r22

f1

f0
y + r23f1 + tY f1

Z

r31

f0
x+ r32

f0
y + r33 + tZ

Z

(5)

Here therij are the elements of the rotation matrixR given in (3).

We note two special cases of (4) and (5). In the first case,tX = tY = tZ = 0, corresponding to

a camera whose optical center undergoes no translation, we obtain

x′ =
r11

f1

f0
x+ r12

f1

f0
y + r13f1

r31

f0
x+ r32

f0
y + r33

y′ =
r21

f1

f0
x+ r22

f1

f0
y + r23f1

r31

f0
x+ r32

f0
y + r33

In the second case, we assume that all scene points satisfyk1X + k2Y + k3Z = 1, corresponding

to a planar surface. Then (4)-(5) become:

x′ =
(r11

f1

f0
+ tXf1k1)x+ (r12

f1

f0
+ tXf1k2)y + (r13f1 + tXf1k3)

( r31

f0
+ tZk1)x+ ( r32

f0
+ tZk2)y + (r33 + tZk3)

y′ =
(r21

f1

f0
+ tY f1k1)x+ (r22

f1

f0
+ tY f1k2)y + (r23f1 + tY f1k3)

( r31

f0
+ tZk1)x+ ( r32

f0
+ tZk2)y + (r33 + tZk3)

In each case, we have reduced the relationship between image coordinates to the form of a projec-

tive transformation.
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3 Projective Transformations

ForM ∈ R3×3 with det(M) 6= 0, i.e.,M ∈ GL(3), write M =
(
A
cT

b
d

)
with A ∈ R2×2, b and

c ∈ R2×1, andd ∈ R. Then the transformationgM of the plane defined by

gM(w) =
Aw + b

cTw + d
(6)

is called a projective transformation (or collineation or homography) with homogeneous coordi-

natesM .

The set of projective transformations of the plane forms a groupG under function composition.

In the remainder of the development, we will normalized = 1, so that a projective transformation is

uniquely characterized by eight parametersM = (A, b, c). This excludes the set of transformations

with d = 0; however, this subset of transformations is not usually of interest. The matrixA reflects

changes in rotation and scale of thew plane, and the vectorb reflects translational offset. The two

“projective” parameters ofc account for the keystoning effects of perspective projection.

Projective transformations relate the image coordinates of a pair of images taken by cameras

whose optical center undergoes no translation, or of images of a planar surface. Hence, projec-

tive transformations can be used to align several such images in the same frame of reference, as

illustrated in Figure 1. The nonlinear warping of the images is clearly visible.

Note thatgM in (6) is defined at all points ofR2 except thosew on the linecTw + 1 = 0,

which is called the singular line of the fixed transformationgM . Along this lineAw+ b 6= 0, since

M ∈ GL(3). In the two special cases above, singular lines have a geometric interpretation. The

singular line is the intersection of the image planeP0 with the planeZ ′ = 0 corresponding to the

parallel transport of the image planeP1 to the center of projectionO1. This is illustrated in Figure

2. In practical situations (e.g. when the image planes are of finite extent, and one camera is not in

the field of view of the other) all the points inP0, including the center or origin, lie to the side of
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(a)

(b)

Figure 1: Applications of projective transformations. (a) Mosaicking images from a non-
translating camera, (b) registering images of a planar surface taken by a translating camera.
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the singular line withcTw + 1 > 0.

(a) (b)

singular line

O1

O0

P0

P1

P1

singular line

P0

O

Figure 2: (a) Singular line in fixed-center case, (b) Singular line in translated case.

For a fixed projective transformation, hence for a fixedc, there is a line ofw in P0 that lie on

the corresponding singular line. Conversely, for a fixedw ∈ P0, there is a singular line ofc in

R
2and a corresponding half-planecTw+1 > 0. Since we will estimate a projective transformation

from a set of fixed data points, the intersection of these half-planes inc-space form a set of special

interest.

4 The Least-squares Estimate

We will consider a parameter estimation problem in which the data is a set of noisy measurements

of matching points between a pair of images of a static scene. In practice, the noisy point samples

originate from automatically generated or manually selected feature correspondences in an image

pair such as similar blocks of pixels, intersections of lines, or corners. Our objective is to select the

parametersM = (A, b, c) so thatgM best fits a given set of point matches:{wj 7→ w′j ∈ R2, j =
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1, . . . , N}. A case of special interest arises when the data consists of noisy samples of a fixed but

unknown projective transformationgM∗: w′j = gM∗(wj) + ej, j = 1 . . . N . Hereej ∈ R2 is the

error in the measurement ofgM∗(wj). In this case we seek an estimateM of M∗.

An estimateM is, by definition,admissibleif the singular line ofgM does not intersect the

convex hullW of 0 andwj, j = 1, . . . , N . Since0 ∈ W ,M is admissible if and only ifcTw+1 > 0

for all w ∈ W . This is equivalent to the requirement thatcTwj +1 > 0, j = 1, . . . , N . This defines

an open convex setCo ⊂ R2 of allowed values forc, andM is admissible if and only ifc ∈ Co.

The set of admissible estimates is the open set{(A, b, c):A ∈ R2×2, b ∈ R2, c ∈ Co}. Note that

admissibility does not requireM ∈ GL(3). Figure 3 illustrates the admissible regionCo generated

by data points from an actual image pair.

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

c1

c2

Figure 3: The admissible regionCo of the (c1, c2) plane generated by data points from actual
images (see Figure 4). Thin lines represent singular lines; thick lines are singular lines that actively
bound the admissible region.

The least-squares estimatêM = (Â, b̂, ĉ) consists of those values ofA, b andc that globally
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minimize:

Q(M) =
1

2

N∑
j=1

(
w′j −

Awj + b

cTwj + 1

)T (
w′j −

Awj + b

cTwj + 1

)
(7)

over all admissibleM = (A, b, c). In general this estimate need not be an element ofGL(3) and

hence need not itself be a projective transformation. However, for a wide range of reasonable

models for the noise termsej, j = 1, . . . , N , M̂ will generically be an element of the open set

GL(3). We defer the proof thatQ has a global minimum within the set of admissible estimates to

the end of Section 6.

For a fixed data set, obtaining the least-squares estimate requires solving a nonlinear mini-

mization problem over an open subset of8-dimensional Euclidean space. However, as Theorem 1

below shows, the solution can also be obtained by solving a nonlinear minimization problem over

an open convex subset ofR2.

Theorem 1 Assuming that the pointswj, j = 1, . . . , N are not colinear, the least-squares estimate

M̂ has the form(A(ĉ), b(ĉ), ĉ) and thus lies on the2-dimensional submanifold

M ∆
= {(A, b, c):A = A(c), b = b(c), c ∈ Co} of the eight dimensional spaceR2×2 × R2 × Co.

Proof: SinceM̂ minimizes (7), it follows that we must haveDAQ(M̂) = 0, DbQ(M̂) = 0, and

DcQ(M̂) = 0. This yields the normal equations:

Â
∑
j

wjw
T
j

(ĉTwj + 1)2
+ b̂
∑
j

wTj
(ĉTwj + 1)2

−
∑
j

w′jw
T
j

ĉTwj + 1
= 0 (8)

Â
∑
j

wj
(ĉTwj + 1)2

+ b̂
∑
j

1

(ĉTwj + 1)2
−
∑
j

w′j
ĉTwj + 1

= 0 (9)

∑
j

(
w′j −

(
Âwj + b̂

ĉTwj + 1

))T (
Âwj + b̂

ĉTwj + 1

)
wj

ĉTwj + 1
= 0 (10)
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We can rewrite (8) and (9) as a linear system:

[ Â b̂ ]W (ĉ) = V (ĉ) (11)

whereW (c) ∈ R3×3, V (c) ∈ R2×3 are the functions ofc ∈ R2 and the data points given by:

W (c) =


∑N

j=1

wjw
T
j

q2
j (c)

∑N
j=1

wj
q2
j (c)

∑N
j=1

wTj
q2
j (c)

∑N
j=1

1
q2
j (c)

 (12)

V (c) =

[ ∑N
j=1

w′jw
T
j

qj(c)

∑N
j=1

w′j
qj(c)

]
(13)

Hereqj(c) = cTwj + 1. Therefore, defining

[ A(c) b(c) ] = V (c)W−1(c) (14)

we have(Â, b̂, ĉ) = (A(ĉ), b(ĉ), ĉ) and the theorem follows.

We make a standing assumption that the points{wj : j = 1, . . . , N} are not all colinear inR2.

This ensures thatW (c) is positive definite and hence thatA(c) andb(c) are defined for allc ∈ Co.

To see this, consider an arbitrary vector inR3 partitioned as
(
v1

v2

)
wherev1 ∈ R2 andv2 ∈ R. Then

straightforward algebra shows that

(
v1

v2

)T 
∑N

j=1

wjw
T
j

q2
j (c)∑N

j=1

wTj
q2
j (c)

∑N
j=1

wj
q2
j (c)∑N

j=1
1

q2
j (c)

(v1

v2

)T
=

N∑
j=1

(vT1 wj + v2)2

q2
j

≥ 0

ThusW (c) is positive definite if and only if for no nonzero(v1, v2) ∈ R2×R is it the case that

vT1 wj + v2 = 0 for all wj, j = 1, . . . , N . This is equivalent to the condition that(wj −wk)Tv1 = 0

for all j, k = 1, . . . , N , or that all thewj are colinear.
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In view of Theorem 1, we can define a two-dimensional cost functionalJ : Co → R by

J(c) =
1

2

N∑
j=1

(
w′j −

A(c)wj + b(c)

cTwj + 1

)T (
w′j −

A(c)wj + b(c)

cTwj + 1

)
(15)

J(c) is simply the least-squares cost function restricted to the manifoldM. By construction, for

anyMo = (A(co), b(co), co) ∈M,Q(Mo) = J(co). Hence the global minimizing solution ofJ(c)

within Co is ĉ. This reduces the determination of the least-squares estimateM̂ to the minimization

of J overCo.

From the proof of the theorem, we can see that the 8-dimensional minimization ofQ(M)

decouples into a nonlinear 2-dimensional minimization ofc and a solution of a linear system for the

“affine” parameters(A, b). This can be viewed as a specific case of a general mixed least-squares

problem considered by Golub and Pereyra [12] that separates into linear and nonlinear variables.

We go into considerably more detail here, exploring the structure of our specific problem.

Casting the problem in a two-dimensional setting allows us to visualize the cost function and

the steps that a minimization algorithm takes. We shall show in Section 6 that in addition to being

of reduced dimensionality, the cost functionJ(c) can be numerically minimized more efficiently

than the cost functionQ(M).

Figures 4a and 4b illustrate a pair of natural images, and a set of 25 noisy matching points

between the images. Figure 4c illustrates the cost functionJ graphed over the regionCo for this

set of data points. As can be seen, the cost functionJ has a single minimum withinCo, located at

the bottom of a deep bowl.

5 The Behavior ofJ on Singular Lines

For c∗ on one or more singular lines, the matricesW (c∗) andV (c∗) that define(A(c∗), b(c∗))

in (14) are not defined. However, below we provide two results concerning the finiteness and
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c2

Projective transformation estimation cost function J(c
1
,c

2
)

c1

(a) (b)

(c)

Figure 4: (a) and (b) A pair of natural images taken by a rotating camera with 25 matching points
indicated. (c) The cost functionJ(c1, c2) corresponding to the set of matched data points. The
thick lines are the singular lines that actively boundCo.
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continuity of the functionsA(c) andb(c) asc approaches a singular line. In the first theorem, we

consider the behavior as we approach a point that lies on exactly one singular line.

Theorem 2 Fix c∗ such thatc∗Tw1 + 1 = 0, andc∗Twj + 1 6= 0 for j 6= 1.

1. The limiting valueslimc→c∗ [ A(c) b(c) ] are well-defined, finite, and given by:

[ Ao bo ] = V2W
−1
2

[
I − ppTW−1

2

pTW−1
2 p

]
(16)

wherep = [wT1 1]T and

W2 =

 ∑N
j=2

wjw
T
j

q2
j (c∗)

∑N
j=2

wj
q2
j (c∗)∑N

j=2

wTj
q2
j (c∗)

∑N
j=2

1
q2
j (c∗)


V2 =

[ ∑N
j=2

w′jw
T
j

qj(c∗)

∑N
j=2

w′j
qj(c∗)

]

2. (Ao, bo) is the solution to the well-defined constrained least-squares problem

min
A,b

1

2

N∑
j=2

(
w′j −

Awj + b

c∗Twj + 1

)T (
w′j −

Awj + b

c∗Twj + 1

)
s.t. Aw1 + b = 0

3. limc→c∗
A(c)w1+b(c)
cTw1+1

= w′1.

Proof: The proof can be found in the appendix.

This result shows that, unlike the cost functionQ(M), the cost functionJ(c) is finite and

continuous along the singular lines. However, along singular lines the resulting least-squares pro-

jective transformation estimates are not members ofGL(3). The second and third parts of the

theorem give precise characterizations of the limiting solution(A(c∗), b(c∗)) on a singular line.
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Not only does the solution(A(c∗), b(c∗)) keep the cost function finite, but it zeros the offending

data point’s contribution to the cost function.

It is also important to consider the limiting behavior of(A(c), b(c)) asc approaches an inter-

section of two singular lines. To this end, we state the following theorem; the omitted proof is

straightforward but tedious, and follows the same pattern as the proof of Theorem 2.

Theorem 3 Fix c∗ such thatc∗Tw1 + 1 = 0 andc∗Tw2 + 1 = 0, withw1 6= w2 andc∗Twj + 1 6= 0

for j > 2.

1. The limitlimc→c∗ [ A(c) b(c) ] is well-defined, finite, and given by the solution of the fol-

lowing constrained minimization problem overN − 2 data points:

min
A,b

1

2

N∑
j=3

(
w′j −

Awj + b

c∗Twj + 1

)T (
w′j −

Awj + b

c∗Twj + 1

)
s.t. Aw1 + b = 0 (17)

Aw2 + b = 0 (18)

2. Moreover,limc→c∗
A(c)w1+b(c)
cTw1+1

= w′1 and limc→c∗
A(c)w2+b(c)
cTw2+1

= w′2.

The intersection of three singular lines requires that three data points be colinear. In such an

event one can prove a corresponding result on the finiteness and continuity ofA(c) andb(c), and

so on. At this point, we can prove the existence of global minima ofJ andQ:

Theorem 4 If the closure of the set of admissible estimatesC̄o is compact and each vertex of the

C̄o polygon is determined by the intersection of at most two singular lines, thenJ has a global

minimum inC̄o andQ has a global minimum inR2×2 × R2 × C̄o.

Proof. From Theorems 2 and 3, we have thatJ is continuous over the compact setC̄o, so it must

have a global minimizer̂c in C̄o. By Theorem 1,Q(M) is globally minimized by(A(ĉ), b(ĉ), ĉ).
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6 Line-Search Descent

Typical algorithms for the minimization of a nonlinear function such as (7) operate in an iterative

fashion as follows. Given a current approximationMk of M̂ select a directiondk and take a step

along the line fromMk in the directiondk so as to decrease the objective function. The next

approximationMk+1 is the value ofM at this point. Typically the directiondk is related to the

gradient of the objective function evaluated atMk.

When applied to the cost functionQ(M) such a scheme operates as follows. LetMk =

(Ak, bk, ck), k ≥ 0, be the approximation of̂M after stepk and letdk = (Fk, gk, hk) denote

the search direction used at stepk. Then(Ak+1, bk+1, ck+1) = (Ak, bk, ck) + αk(Fk, gk, hk), where

the step sizeαk ≥ 0 is selected to ensure thatQ(Mk+1) ≤ Q(Mk).

For all such schemes we can make several observations. LetMo = (Ao, bo, co) withAo ∈ R2×2,

andbo, co ∈ R2. Define the projection ofMo ontoM to beP (Mo)
∆
= (A(co), b(co), co).

Theorem 5 Letd = (F, g, h) with F ∈ R2×2, andg, h ∈ R2. Then

1. For anyMo, J(co) = Q(P (Mo)) ≤ Q(Mo).

2. ForMo onM, define

M(α) = Mo + αd

c(β) = co + βh

α∗ = argminα≥0 Q(M(α))

β∗ = argminβ≥0 J(c(β))

Mβ∗ = (A(c(β∗)), b(c(β∗)), c(β∗))

ThenQ(Mβ∗) = J(c(β∗)), andQ(Mβ∗) ≤ Q(P (M(α∗))) ≤ Q(M(α∗)) ≤ Q(Mo).
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3. For Mo onM, if d = (F, g, h) is a descent direction forQ at Mo, thenh is a descent

direction forJ at co.

Proof:

1. Consider minimizingQ(M) with M constrained so thatc = co. The normal equations for this

problem are linear and have the unique solution(A(co), b(co)). Hence on the constraint setc = co,

Q(M) has a unique global minimum at the point(A(co), b(co), co) = P (Mo). SinceMo lies in this

set,Q(P (Mo)) ≤ Q(Mo).

2. Forβ ≥ 0, Mβ = (A(c(β)), b(c(β)), c(β)) is a curve onM passing throughMo (β = 0) and

P (M(α∗)) (β = α∗). Along this curveQ(Mβ) = J(c(β)). Hence the minimum ofQ along the

curve occurs atβ = β∗. ThusJ(c(β∗)) = Q(Mβ∗) ≤ Q(P (M(α∗))). The other inequalities

follow from part (1) and the definition ofα∗.

3. Since(F, g, h) is a descent direction forQ atMo, there existsαo > 0 such thatQ(Mo + αd) ≤

Q(Mo) for all α ∈ [0, αo]. Forα ≥ 0 letMα = (A(co + αh), b(co + αh), co + αh). Then for all

α ∈ [0, αo], J(co +αh) = Q(Mα) ≤ Q(Mo +αd) ≤ Q(Mo) = J(co). The first inequality follows

from part (1); the second follows from the fact thatd is a descent direction forQ atMo.

Theorem 5 indicates that each step of an iterative minimization ofQ(M) can be improved by

exploiting the formulasA(c) and b(c) to project the next approximation onto the manifoldM.

Moreover, part (2) indicates that minimizingJ(c) in the directionhk from ck yields a greater

decrease in the least-squares objective than either minimizingQ(M) in the directiondk fromMk

and then projecting, or simply minimizingQ(M) in the directiondk fromMk. Other issues aside,

this suggests that obtaining the least-squares estimate by iteratively minimizingJ(c) is potentially

more efficient than a similar scheme applied toQ(M). The third part of the theorem shows that

at any point on the manifoldM, every descent direction forQ yields a corresponding descent

direction forJ . If we combine this with part (2) we see that minimization ofJ along this direction
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will yield a smaller value of the least-squares objective function than minimizingQ in the given

descent direction. Note that parts (2) and (3) of the theorem do not generally hold forMo off the

manifoldM.

Of course,J is a more complex function thanQ and hence it is conceivable that the necessary

computations in minimizingJ are also more complex. However, as far as the gradient is concerned

this is not the case. To see this, letM(c) = (A(c), b(c), c). Then for eachh ∈ R2,

DJ(c)h = DAQ(M(c)) ·DcA(c)h+DbQ(M(c))Dcb(c)h+DcQ(M(c))h

SinceM(c) lies onM,DAQ(M(c)) = DbQ(M(c)) = 0. Then from (10),

∇J(c) = DcQ(M(c)) (19)

=
N∑
j=1

(
w′j −

A(c)wj + b(c)

cTwj + 1

)T
A(c)wj + b(c)

cTwj + 1

wj
cTwj + 1

The computation ofA(c) andb(c) is equivalent to the computation of∇AQ and∇bQ, and can

be efficiently accomplished by solving the linear system (11). The computation of∇J givenA(c)

andb(c) is equivalent to the computation of∇cQ. Thus the computation of the gradient ofJ is no

more complex than computing the gradient ofQ.

7 Second-Derivative Methods

It is well known that minimization methods based on the second derivative of the objective function

have superior rates of convergence. These methods are based on various modifications of the

Newton-Raphson and Gauss-Newton schemes (see [8]). Applied toQ, these operate by setting

Mk+1 = Mk − H(Mk)
−1∇Q(Mk), whereH(Mk) is either the Hessian ofQ atMk or a suitable

approximation.
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If we defineŵj =
A(c)wj+b(c)

cTwj+1
, we can writeQ(M) = 1

2

∑N
j=1(w′j − ŵj)T (w′j − ŵj). Then

DQ(M) = −
N∑
j=1

(
w′j − ŵj

)T
Dŵj

D2Q(M) =
N∑
j=1

DŵTj Dŵj −
N∑
j=1

(
w′j − ŵj

)T
D2ŵj

D2Q(M) is the Hessian ofQ atM and the first term is the Gauss-Newton approximation of the

Hessian.

It is straightforward to derive expressions for the Hessians ofQ andJ and their Gauss-Newton

approximations. The Hessian forJ is quite cumbersome sinceJ depends onc both directly and

through the dependence ofA(c) andb(c) on c. The result is:

H =
N∑
j=1

1

q2
j (c)

[
(ŵj − 2εj)

T ŵjwjw
T
j −NT

j (ŵj − εj)wTj
]

(20)

whereεj =
(
w′j − ŵj

)
andNj =

[
∂A
∂c1
wj + ∂b

∂c1
∂A
∂c2
wj + ∂b

∂c2

]
. The Gauss-Newton approxima-

tion to the Hessian is:

HGN =
N∑
j=1

1

q2
j (c)

(Nj − ŵjwTj )T (Nj − ŵjwTj )

The details of these derivations, as well as an explanation of how to compute the partial deriva-

tives ofA andb with respect toc, are lengthy and can be found in [13].

The complexity of these expressions raises the issue of obtaining efficiently computable ap-

proximations to the Hessian ofJ . For example, one natural approximation is to assume thatA and

b are independent ofc so that eachNj becomes 0. This results in the approximation

Ĥ =
N∑
j=1

1

q2
j (c)

[
(ŵj − 2εj)

T ŵjwjw
T
j

]
(21)
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In fact, this matrix is the same as the2 × 2 block of partials∂
2Q
∂c2

. We will see how algorithms

based on this approximation and the Gauss-Newton approximation fare in the presence of different

types of noise in the next section.

8 Experimental Results

We will compare various second-derivative methods for minimizingJ andQ experimentally using

data obtained from several pairs of natural images. In general, we will use the following framework

for our second-derivative methods to minimizeJ(c). The only difference is the approximation to

the Hessian used in step 3.

Newton scheme for minimizingJ .

1. Initializec = 0.

2. Compute the gradient ofJ exactly using (19).

3. Approximate the Hessian∂
2J
∂c2

by some positive semidefinite matrix̂H.

4. Use these quantities to update the value ofc using an approximate Newton-Raphson step.

5. Use the new value ofc to update the values ofA andb using (14).

6. Test for convergence. Exit or return to step 2.

The initialization ofc = 0 in step 1 is justified in practice, since the values ofc for projective

transformations arising from real image processing problems often havec = O(10−4) (see Table

1). Algorithms to find a value ofα in step 4 that brings about a sufficient decrease in the cost

function are generally based on a backtracking and cubic interpolation strategy [8].

We implemented five minimization algorithms:
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Example First Second Number â11 â12 b̂1 ĉ1
Number Image Image of wj â21 â22 b̂2 ĉ2

1 Firestone1 Firestone2 70 1.1781 -0.0640 -173.88 0.0006
0.1316 1.1045 0.01 -0.0001

2 Firestone2 Firestone1 69 0.8486 0.0636 146.44 -0.0005
-0.0976 0.9728 -17.47 0.0001

3 B320fr0 B320fr1 90 0.8532 -0.0223 8.51 -0.0004
-0.0166 0.9639 -1.68 0.0002

4 Track1 Track2 30 0.9703 -1.5266 83.10 -0.0004
-0.0404 0.9630 -5.85 -0.0007

5 Atrium1 Atrium2 35 1.1146 0.6413 -95.36 0.0005
-0.0790 0.6171 2.50 -0.0008

6 Atrium2 Atrium3 33 0.7564 -0.6599 160.15 -0.0004
0.0010 0.8996 13.44 0.0009

Table 1: Information and nominal parameters for the 6 data sets.

1. GNQ: Standard Gauss-Newton applied toQ.

2. GNJ : Standard Gauss-Newton applied toJ .

3. N̂ : Approximate Newton applied toJ , usingĤ from (21).

4. QdirJ : Approximate Newton applied toJ , using the projections of search directions from

Q onto the manifold, as suggested by Theorem 5.

5. NJ : Full Newton applied toJ , using the actual Hessian (20).

The algorithms were compared on six pairs of natural images and associated point correspon-

dences. Three of the image pairs were created by a rotating camera; point correspondences for

these images were obtained automatically using the feature detection and matching algorithm de-

scribed in Tan et al. [14]. The other three image pairs are different views of planar scenes; in

these cases the point correspondences were obtained manually. For all six images there is very

little noise in the correspondences. Information about the test images and the best least-squares

projective transformation estimates for each example are given in Table 1.

The objective of our experiments is to investigate the performance and robustness of each of

the five algorithms using the type of noisy point matchings characteristic of real image processing
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applications. To accomplish this goal we modified the virtually noiseless measurements discussed

above by adding noise of two different types to each correspondence. The first type was Gaussian

noise of increasing variance. That is, random noise was added to each nominal correspondence

(x, y) 7→ (x′, y′) to obtain(x̃, ỹ) 7→ (x̃′, ỹ′), wherex̃ = x+n1, ỹ = y+n2, x̃′ = x′+n3, ỹ′ = y′+n4

and(n1, n2, n3, n4) are independent zero-mean Gaussian random variables with varianceσ2. The

second type of noise was the same, except(n1, n2, n3, n4) were drawn from a zero-mean Gaussian

distribution of variance 5 with probability1 − p, and from a uniform distribution over[−50, 50]

with probabilityp.

The first type of noise simulates increasingly inaccurate feature correspondences. Inaccura-

cies in real applications could come from poor sensors, suboptimal correspondence algorithms, or

coarsely subsampled data. For example, if the images were subsampled by a factor of16 in each

direction before estimating correspondence, we could expect errors in the range±8 pixels in the

original coordinates. The second type of noise simulates a generally good correspondence algo-

rithm with increasing probability of obtaining a non-Gaussian outlier. Such outliers can occur, for

example, when a block-matching algorithm “finds” a matching block with a lower mean-squared-

error than the correct block induced by camera and object motion.

Before applying the minimization algorithms to each modified data set, we normalized each of

the sets{wj, j = 1, . . . , N} and{w′j, j = 1, . . . , N} so that the measurements are zero mean and

with range approximately[−1, 1]. This avoids numerical instabilities introduced by data measure-

ments that can vary by orders of magnitude. Recovering the projective transformation parameters

in the original, unnormalized coordinates after the estimation is complete is accomplished by an

easily derivable transformation. Details on the data normalization can be found in the appendix.

For each modified data set, the five different minimization algorithms all converged to the

same projective transformation estimate. The 2-dimensional methods were initialized withc =

0. The 8-dimensional methods were initialized withA = I, b = 0, c = 0. In each case we

ensured that the algorithms employed the same computational procedures and tests for conver-
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gence in the appropriately-dimensioned space. Namely, the algorithm terminates when either

the relative change in the gradient is small enough, i.e.max1≤i≤d

∣∣∣∇f(x)i max{|xi|,ti}
|f(x)|

∣∣∣ ≤ 10−6,

or the relative change in the parameters is small enough, i.e.|∆x|
max{|xi|,ti} ≤ 10−6. Herex =

(a11, a12, a21, a22, b1, b2, c1, c2), d = 8 in the eight-dimensional case andx = (c1, c2), d = 2 in

the two-dimensional case, andf is the appropriately-dimensioned least-squares functionalQ or J .

Additionally, ti is a “typical” value of parameteri to avoid problems with defining relative change

when the parameters are small. In our tests we usedt = (1, 1, 1, 1, 100, 10, .0001, .0001). This

choice is justified given the underlying parameters for our data set (see Table 1).

The number of floating point operations required for the three algorithms to converge with the

purely Gaussian noise model is illustrated in Figure 5. Figure 5a pertains to the images taken by

rotating cameras, and Figure 5b to the images of planar scenes. Thex axis in each figure is the

varianceσ2 of the noise added to the correspondences. They axis in each figure represents the

computational effort (i.e. number of floating point operations) required to converge to a solution,

relative to Gauss-Newton onQ (the “standard” method). Each data point is the mean of 100 trials

at the same noise variance with different realizations of the random variables, averaged over 3

different data sets of the same type.

We can see that using theQ search directions onJ is uniformly better than doing standard

Gauss-Newton onQ, and that Gauss-Newton onJ is uniformly better than both. The full Newton

method onJ does better than the Gauss-newton method onJ at higher noise variances, though

worse at lower noise variances. This is consistent with the observations in Dennis [8, p. 226].

Interestingly, the approximate Newton method using the Hessian approximation in (21) is only

superior to other methods at higher variances. This would indicate that whileĤ can be computed

efficiently, it is a poor approximation to the true HessianH at low noise variances, i.e. the partial

derivatives ofA andb with respect toc are significant. This is confirmed by plotting the indicator

‖Ĥ − H‖/‖H‖ as a function of the noise variance for the first data set, illustrated in Figure 6.

For comparison, we also show the indicator‖HGN −H‖/‖H‖ for the Gauss-Newton method. We
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can see that in the presence of no noise, roughly 85% of the Hessian is “unapproximated” byĤ,

compared to only 0.1% in the Gauss-Newton case. Though theN̂ iteration requires fewer floating

point operations, 18 iterations were required compared to only 3 for Gauss-Newton. However,

the Gauss-Newton approximation contains none of the terms in the full Hessian involvingεj, the

errors in the fitted data. Hence, as the noise variance increases,HGN becomes an increasingly

poor approximation. On the other hand,Ĥ contains one of theεj terms from the full Hessian and

incrementally improves with increasingεj. Of course, the substantial partial derivative terms that

make up most of the Hessian are still ignored.

The number of floating point operations required for the three algorithms to converge with the

outlier noise model is illustrated in Figure 7. Figure 7a pertains to the images taken by rotating

cameras, and Figure 7b to the images of planar scenes. Thex axis in each figure is the probabilityp

that a coordinate is an outlier. They axis has the same interpretation as in Figure 5. Each data point

is the mean of 100 trials at the same outlier probability with different realizations of the random

variables, averaged over 3 different data sets of the same type.

The results here again indicate the superiority of the two-dimensional algorithms. The main

difference is the lower rate of decrease of theN̂ curves, which indicates that the Gauss-Newton

method onJ is a better choice overall when the correspondence contains outliers. Of course, a

good estimation scheme will iteratively reject outliers [15] until the noise can be well-modeled by

a Gaussian distribution, and re-estimate.

9 Conclusions

The experimental results indicate that obtaining the least-squares estimate of the parameters of a

projective transformation using the algorithms proposed in Section 7 to minimizeJ(c) offers a

distinct efficiency advantage over using a standard algorithm such as Gauss-Newton to minimize

Q(M).
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Figure 5: Relative floating point operation counts for purely Gaussian noise. (a) Rotating camera
data sets, (b) Planar surface data sets.
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Figure 6:‖Ĥ −H‖/‖H‖ as a function of noise variance for̂N andGNJ methods.

Even when it is desired to work withQ(M) directly, computingA(0) andb(0) by (14) can

provide immediate and accurate initial estimates of the parametersA and b for a minimization

algorithm, removing the need for additional pre-processing to estimate the scale, rotation, and

translation difference between an image pair.

Possible future research in this area includes a deeper investigation of how the relationship be-

tween the positions of the data points, the noise in their measurement, and the underlying projective

transformation parameters affect the convergence of the algorithm. For example, our simulations

indicate that theN̂ algorithm presented is quite robust to high-variance noise. In fact, in terms of

total floating point operations (not displayed in the figures above), its computational cost seems to

decrease with noise variance while the costs of the other algorithms increase. However, we lack a

rigorous analysis of why this is so.

Additionally, it may be possible to use the two-dimensional cost functionJ(c) to analyze the

existence and behavior of local minima. We have been able to construct data sets that induce a cost

functionJ(c) with multiple local minima over the regionCo, and have experimentally obtained
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Figure 7: Relative floating point operation counts for Gaussian noise with outliers. (a) Rotating
camera data sets, (b) Planar surface data sets.
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bifurcation diagrams for the minima as the configuration of the data points is continuously varied.

However, in our experience with projective transformations arising from real data, we have never

observed multiple local minima of the least-squares cost functional withinCo. (It is clear from

Figure 4c that many local minima exist outside ofCo).

We only address the estimation of a single projective transformation here, but there are natural

extensions to the joint estimation of the projective transformations relating several images, e.g.

frames of a video sequence. The composition of multiple pairwise estimates is suboptimal for the

joint problem, and can lead to unstable error growth [16]. Additional issues arise when the images

are constrained to form a seamless360◦ panorama, as in Szeliski [4].
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Appendix

A.1 Proof of Theorem 2

Definec(α) = c∗ + αh, whereh is an approach vector inR2. Thenq1(c(α)) = αhTw1 6= 0 whenα 6= 0
andhTw1 6= 0 (i.e. the approach direction is not along the singular line). We henceforth assume thathTw1

is normalized to 1, so thatq1(c(α)) = α. (Note thathTw1 = 1 is just a line parallel to the singular line. As
we decreaseα, we approach the singular pointc∗ along lines parallel toc∗Tw1 + 1 = 0.) By solving (14)
with c(α), we naturally defineA(α) andb(α).

1. We split up the expressions (12)-(13) by separating out the first point (and noting thatq1 = α):

W (c∗ + αh) =

 w1wT1
α2 +

∑N
j=2

wjw
T
j

q2
j (α)

w1
α2 +

∑N
j=2

wj
q2
j (α)

wT1
α2 +

∑N
j=2

wTj
q2
j (α)

1
α2 +

∑N
j=2

1
q2
j (α)


V (c∗ + αh) =

[
w′1w

T
1

α +
∑N

j=2

w′jw
T
j

qj(α)
w′1
α +

∑N
j=2

w′j
qj(α)

]
Hereqj(α) = (c∗ + αh)Twj + 1. We now rewrite the defining equation (11) as:

[ A(α) b(α) ]
[

1
α2

[
w1w

T
1 w1

wT1 1

]
+W2(α)

]
=
[

1
α
w′1p

T + V2(α)
]

(22)

where

W2(α) =

 ∑N
j=2

wjw
T
j

q2
j (α)

∑N
j=2

wj
q2
j (α)∑N

j=2

wTj
q2
j (α)

∑N
j=2

1
q2
j (α)
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V2(α) =
[ ∑N

j=2

w′jw
T
j

qj(α)

∑N
j=2

w′j
qj(α)

]
We note that asα→ 0,W2(α) andV2(α) converge to well-defined finite matricesW2(0) andV2(0).
In the following, we will use the notationsW2, V2 with the understanding that they are functions of
α. While it is true that forα > 0,W2(α) andV2(α) are also functions ofh, the limiting valuesW2(0)
andV2(0) are independent ofh.

Taking (22) and isolatingA(α) andb(α) on the left-hand side, we have

[ A(α) b(α) ] =
[

1
α
w′1p

T + V2

] [
1
α2

[
w1w

T
1 w1

wT1 1

]
+W2

]−1

(23)

Here we have introduced the abbreviationp = [wT1 1]T . First consider the matrix that is inverted in
(23) above. Using the matrix inversion lemma, we can write[

1
α2

[
w1w

T
1 w1

wT1 1

]
+W2

]−1

=
[

1
α
p

1
α
pT +W2

]−1

= W−1
2 − 1

α2
W−1

2 p

[
1 +

1
α2
pTW−1

2 p

]−1

pTW−1
2

= W−1
2 −W−1

2 p
[
α2 + pTW−1

2 p
]−1

pTW−1
2

= W−1
2 − W−1

2 ppTW−1
2

α2 + pTW−1
2 p

= W−1
2

[
I − ppTW−1

2

α2 + pTW−1
2 p

]

Therefore, we can rewrite (23) as

[ A(α) b(α) ] =
[

1
α
w′1p

T + V2

]
W−1

2

[
I − ppTW−1

2

α2 + pTW−1
2 p

]
= w′1p

TW−1
2

[
1
α

(
α2 + pTW−1

2 p
)
I − 1

αpp
TW−1

2

α2 + pTW−1
2 p

]

+V2W
−1
2

[
I − ppTW−1

2

α2 + pTW−1
2 p

]
= w′1p

TW−1
2

α

α2 + pTW−1
2 p

+ V2W
−1
2

[
I − ppTW−1

2

α2 + pTW−1
2 p

]

Lettingα→ 0 in the above, we obtain

[ Ao bo ] = lim
α→0

[ A(α) b(α) ]

= V2W
−1
2

[
I − ppTW−1

2

pTW−1
2 p

]
(24)
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2. Consider the minimization problem

min
A,b

1
2

N∑
j=2

(
w′j −

Awj + b

c∗Twj + 1

)T (
w′j −

Awj + b

c∗Twj + 1

)
(25)

s.t. Aw1 + b = 0

The normal equations for the constrained problem are:

A

N∑
j=2

wjw
T
j

(c∗Twj + 1)2
+ b

N∑
j=2

wTj
(c∗Twj + 1)2

−
N∑
j=2

w′jw
T
j

c∗Twj + 1
+ λwT1 = 0

A
N∑
j=2

wj
(c∗Twj + 1)2

+ b

N∑
j=2

1
(c∗Twj + 1)2

−
N∑
j=2

w′j
c∗Twj + 1

+ λ = 0

Aw1 + b = 0

Hereλ is a Lagrange multiplier inR2. Rewriting these normal equations in the notation of the
previous section, we obtain

[ A b ] = V2W
−1
2 − λpTW−1

2 (26)[
A b

]
p = 0 (27)

It is easy to see that (26) is satisfied by the choice of(Ao, bo) in (24), with

λ =
V2W

−1
2 p

pTW−1
2 p

Furthermore,(Ao, bo) satisfy the constraint equation (27). Hence, by uniqueness of the solution of the
linear least-squares problem, we conclude that along singular lines, the solution of (11) converges to
the solution of the constrained minimization problem (25) posed over the data set minus the offending
point.

3. From the expression (24), we can also obtain an expression for the point to which(Ao, bo, c∗) maps
w1:

lim
α→0

A(α)w1 + b(α)
(c∗ + αh)Tw1 + 1

= lim
α→0

1
α

[ A(α) b(α) ]p

= lim
α→0

1
α
w′1p

TW−1
2

α

α2 + pTW−1
2 p

+V2W
−1
2

[
I − ppTW−1

2

α2 + pTW−1
2 p

]
p

= lim
α→0

w′1p
TW−1

2

p

α2 + pTW−1
2 p

30



+V2W
−1
2

[
1
α
p− 1

α

ppTW−1
2 p

α2 + pTW−1
2 p

]
= lim

α→0
w′1

pTW−1
2 p

α2 + pTW−1
2 p

+ V2W
−1
2

αp

α2 + pTW−1
2 p

= w′1

A.2 Data Normalization

To avoid numerical instabilities introduced by data measurements that vary by orders of magnitude, it is
generally wise to normalize the data before processing it. Hence, we need to understand how the solution to
the least-squares problem using the normalized data is related to the solution of the problem in the original
coordinates. To this end, we present the following lemma, which is easily proven.

Lemma 1 Consider the data sets given by

zj = Qwj + t

z′j = Rw′j + t′

for t, t′ ∈ R2,Q,R ∈ GL(2), andj = 1, . . . , N . If M̂ = (Â, b̂, ĉ) is the minimizer of

Q(M) =
1
2

N∑
j=1

(
w′j −

Awj + b

cTwj + 1

)T (
w′j −

Awj + b

cTwj + 1

)

then the minimizerM̃ = (Ã, b̃, c̃) of

Q̃(M) =
1
2

N∑
j=1

(
z′j −

Azj + b

cT zj + 1

)T (
z′j −

Azj + b

cT zj + 1

)
is given by

(Ã, b̃, c̃) =

(
RÂQ−1 + t′ĉTQ−1

1− ĉTQ−1t
,
Rb̂−RÂQ−1t

1− ĉTQ−1t
,

Q−T c

1− ĉTQ−1t

)
In other words,

(Â, b̂, ĉ) =

(
R−1(Ã− t′c̃T )Q

1 + c̃T t
,
R−1(b̃+ Ãt)

1 + c̃T t
−R−1t′,

QT c̃

1 + c̃T t

)
(28)

In practice, we normalize the data so that the measurements are zero mean with range approximately
[−1, 1]. This corresponds to a choice of

t = −µ
α t′ = −µ′

α′

Q = 1
αI R = 1

α′ I
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where

µ = 1
N

∑N
j=1wj µ′ = 1

N

∑N
j=1w

′
j

α = 1
2 (maxj |xj − µx|+ maxj |yj − µy|) α′ = 1

2

(
maxj |x′j − µ′x|+ maxj |y′j − µ′y|

)
For this choice of(t, t′, Q,R), we can rewrite (28) as

Â =
1
α(α′Ã+µ′c̃)

1− µ
α
c̃

b̂ = α′(b̃−Ã µ
α

)

1− µ
α
c̃

+ µ′ ĉ = c̃
α−µc̃
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