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Abstract

Projective transformations relate the coordinates of images that are taken by either a camera
that undergoes only rotation while imaging an arbitrary scene, or one that rotates and translates
while imaging a planar surface. Estimating the eight parameters of a projective transformation
between a pair of image planes induces a global, dense correspondence between them that can
be used for registration or mosaicking. This is a standard problem in image processing and
computer vision.

The projective transformation estimation problem is typically posed as the minimization
of a nonlinear functional of eight parameters, and solved with an “off-the-shelf” numerical
algorithm. Here it is shown that in fact, this minimization can be analytically reduced to a non-
linear problem in only two parameters. Any descent algorithm to solve the eight-dimensional
minimization can be modified to produce an algorithm for the two-dimensional problem. Sev-
eral algorithms based on the two-dimensional problem are proposed and results are presented
on data from real images to experimentally verify their superiority. Not only are the proposed
algorithms efficient, but they are also robust to the types of measurement noise that could be
introduced by poorly matched corresponding points or outliers in the data sets.

Index terms: projective transformations, homographies, collineations, mosaicking, registration

*This research was patrtially supported by grants from the IBM Tokyo Research Laboratory and the New Jersey
Center for Multimedia Research. Peter Ramadge is the corresponding author.



1 Introduction
A projective transformation maps a pointc R? to w’ € R? by:

,  Aw+b

e 1
cTw+d (1)

whereA € R**2 b, ¢ € R?, andd € R are such thaﬁ(f}iﬂ # 0. An affine transformation is a
special case of a projective transformation witk 0 andd = 1.

The estimation of the parameters of a two-dimensional projective transformation is a standard
problem that arises in image and video processing. Typical applications of the estimated parame-
ters are the synthesis of an image mosaic from a set of images of a static scene taken by a rotating
camerall, 2, 3, 4, 5], and the registration of images of a planar surface taken by multiple separated
cameras [6, 7].

We can pose the projective transformation estimation problem as a least-squares minimiza-
tion based on a finite set of noisy point samples of the underlying transformation. This results in
an eight-dimensional nonlinear nonquadratic minimization problem. Such a problem is typically
solved numerically using an ‘off-the-shelf’ procedure such as the Gauss-Newton or Levenberg-
Marquardt algorithm [8]. In special cases, approximations are possible that enable closed-form
solutions. For example, when thg@arameters are very close to 0, Tan [9] introduced an approxi-
mation to make the least-squares problem linear. Kanatani [10] proposed a tensor-based approxi-
mation that reduces the estimation problem to an eigendecomposition. However, the mapping (1)
IS very sensitive to changes in th@arameters, and as these parameters deviate from 0, the above
approximations quickly diverge from the solution to the nonlinear problem. Instead of using a set
of point correspondences as a basis for estimating a projective transformation, Mann and Picard
[2] proposed an iterative technique for simultaneously estimating the transformation parameters

and optical flow over an entire image pair. They used bilinear approximations to the projective



transformations in each step in order to simplify the estimation.

The main contribution of this paper is an efficient and robust new framework for solving
the projective transformation estimation problem. We show in Section 4 that the general least-
squares problem for estimating a projective transformation can be analytically reduced to a two-
dimensional nonquadratic minimization problem. Some properties of the two-dimensional cost
function are discussed in Section 5. In Sections 6 and 7 we discuss issues involved with the prac-
tical minimization of the cost function by analyzing its gradient and Hessian, and show that in
theory, any descent algorithm for the eight-dimensional problem can be modified to produce a
more effective descent algorithm for the two-dimensional problem. We provide experimental re-
sults in Section 8 to show that Newton methods based on the two-dimensional problem outperform
analogous methods applied to the eight-dimensional problem. Furthermore, we propose an ap-
proximate second-derivative method that is quite robust to measurement noise. A brief summary

of some of our results originally appeared in [11].

2 Preliminaries

We consider the situation where the same static scene is imaged by two cégends;. These
could be two physically separate cameras, or a single moving camera at different points in time.
The images are formed on coordinatized image plgaeand P, respectively. Let the scene
coordinates of a poinP in theC, coordinate system beX, Y, Z), and in theC; coordinate system
be (X', Y’ Z'). We denote the corresponding image coordinate? of P, andP; by w = (z,y)
andw’ = (2/,y'), respectively. We assume idealized pinhole cameras that produce images by
perspective projection. Thus,

T = fo% Yy = fo%

x = fl% y = f1%

Here f, and f; are the focal lengths @f, andC,, respectively. We assume that the two cameras

(2)



are related by a rigid motion. Hence, tiecoordinate system can be expressed as a rotatioh

theC, coordinate system followed by a translatiog ¢y t]*. That s,

X' X ty
Y | =R|Y | +| ty ?3)
A z ty

By substituting (3) into (2), we obtain:

, 7“11%$+7’12%y‘1‘7’13fl‘i‘m

r = r31 7’32 tz (4)
%o T+ y + r33 +

, 7“21f—317—1‘7’22f—y‘i‘7’23fl—i‘Y—f1

= 5
4 T51I+r3y+7’33+— ()

Here ther;; are the elements of the rotation matfxgiven in (3).

We note two special cases of (4) and (5). In the first cases ty = t; = 0, corresponding to

a camera whose optical center undergoes no translation, we obtain

, T11 %x + 7’12%y +ri3f1
7}30135 + TSQ@/ + 733

_ 7“21%% +7’22f—y + a3 fi
S 4 SRy 133

In the second case, we assume that all scene points datisfy k.Y + k32 = 1, corresponding

to a planar surface. Then (4)-(5) become:

;o (7‘11% +tx fiky)z + (Tlgf +tx fika)y + (rizfi + tx fiks)
(B + tzk)x + (52 + tgko)y + (rss + tzks)

' <T21% + iy fik)z + (T22% +ty fike)y + (rosfi + ty fiks)

- (5 + tzh)a+ (3 + tzko)y + (ras + tzhs)

In each case, we have reduced the relationship between image coordinates to the form of a projec-

tive transformation.



3 Projective Transformations

For M € R¥ with det(M) # 0, i.e., M € GL(3), write M = (") with A € R?*2, ) and

c € R**!, andd € R. Then the transformatiog,; of the plane defined by

Aw+b
cTw+d

am (w) = (6)

is called a projective transformation (or collineation or homography) with homogeneous coordi-
natesj/ .

The set of projective transformations of the plane forms a gébupder function composition.

In the remainder of the development, we will normalize 1, so that a projective transformation is
uniquely characterized by eight parametéfs= (A, b, c). This excludes the set of transformations
with d = 0; however, this subset of transformations is not usually of interest. The maataiects
changes in rotation and scale of thelane, and the vectérreflects translational offset. The two
“projective” parameters aof account for the keystoning effects of perspective projection.

Projective transformations relate the image coordinates of a pair of images taken by cameras
whose optical center undergoes no translation, or of images of a planar surface. Hence, projec-
tive transformations can be used to align several such images in the same frame of reference, as
illustrated in Figure 1. The nonlinear warping of the images is clearly visible.

Note thatg,, in (6) is defined at all points dR? except thosev on the linec’w + 1 = 0,
which is called the singular line of the fixed transformatign Along this line Aw + b # 0, since
M € GL(3). In the two special cases above, singular lines have a geometric interpretation. The
singular line is the intersection of the image pldgewith the planeZ’ = 0 corresponding to the
parallel transport of the image plafig to the center of projectio®,. This is illustrated in Figure
2. In practical situations (e.g. when the image planes are of finite extent, and one camera is not in

the field of view of the other) all the points iR, including the center or origin, lie to the side of



(b)

Figure 1. Applications of projective transformations. (a) Mosaicking images from a non-
translating camera, (b) registering images of a planar surface taken by a translating camera.



the singular line withe”w + 1 > 0.

singular line

(@)

Figure 2: (a) Singular line in fixed-center case, (b) Singular line in translated case.

For a fixed projective transformation, hence for a fixgthere is a line ofv in P, that lie on
the corresponding singular line. Conversely, for a fixed& P,, there is a singular line af in
R2and a corresponding half-planéw + 1 > 0. Since we will estimate a projective transformation
from a set of fixed data points, the intersection of these half-planespace form a set of special

interest.

4 The Least-squares Estimate

We will consider a parameter estimation problem in which the data is a set of noisy measurements
of matching points between a pair of images of a static scene. In practice, the noisy point samples
originate from automatically generated or manually selected feature correspondences in an image
pair such as similar blocks of pixels, intersections of lines, or corners. Our objective is to select the

parameters\/ = (A, b, ¢) so thatgy, best fits a given set of point matchdsy; — w} € R?,j =

7



1,...,N}. A case of special interest arises when the data consists of noisy samples of a fixed but
unknown projective transformation,-: w} = gy-(w;) +¢;, j = 1... N. Heree; € R? is the
error in the measurement 9f;- (w;). In this case we seek an estimateof M *.

An estimate) is, by definition,admissibleif the singular line ofg,, does not intersect the
convex hulliW of 0 andw;, j = 1,..., N. Since0 € W, M is admissible if and only if”w+1 > 0
for allw € W. This is equivalent to the requirement tkétv; +1 > 0, j = 1,..., N. This defines
an open convex sét, C R? of allowed values for, and M/ is admissible if and only it € C,.
The set of admissible estimates is the open{édt b, c): A € R**?. b € R? ¢ € C,}. Note that
admissibility does not requiré/ € G L(3). Figure 3 illustrates the admissible regiGpgenerated

by data points from an actual image pair.

. . . . . . .
-1.5 -1 -0.5 0 0.5 1 15
cl

Figure 3: The admissible regiofi, of the (¢, ;) plane generated by data points from actual
images (see Figure 4). Thin lines represent singular lines; thick lines are singular lines that actively
bound the admissible region.

The least-squares estimaté = (A, b, ¢) consists of those values of, b andc that globally



minimize:
N T
1 Aw; + b Aw; +b
M) == A — A — 7
) 2;<wj Cij+1) (w] Cij+1) ")

over all admissible\/ = (A, b, c). In general this estimate need not be an elemenitiof3) and
hence need not itself be a projective transformation. However, for a wide range of reasonable
models for the noise terms, j = 1,..., N, M will generically be an element of the open set
GL(3). We defer the proof tha® has a global minimum within the set of admissible estimates to
the end of Section 6.

For a fixed data set, obtaining the least-squares estimate requires solving a nonlinear mini-
mization problem over an open subseBadimensional Euclidean space. However, as Theorem 1

below shows, the solution can also be obtained by solving a nonlinear minimization problem over

an open convex subset Bf.

Theorem 1 Assuming that the points;, j = 1,..., N are not colinear, the least-squares estimate
M has the form(A(¢), b(¢), ¢) and thus lies on the-dimensional submanifold
M 2 {(A,b,¢): A= A(c),b = b(c), c € C,} of the eight dimensional spadé*? x R? x C,.

Proof: SinceM minimizes (7), it follows that we must have,Q(M) = 0, D,Q(M) = 0, and

D.Q(M) = 0. This yields the normal equations:

w/AwT
A I = 8
ZCTw+ + ZCTwH ;CTU}JH ®
. A . w'
> iy 08 e S 0

~ ~ T N ~
Aw; +b Aw; +b w;
i e A / L — 0 10
Z(“’J (éij+1>) (éij+1> Tw; +1 (10)
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We can rewrite (8) and (9) as a linear system:

[A b IW(e)=V(¢) (11)

wherelV (c) € R**3, V(c) € R?*3 are the functions of € R? and the data points given by:

DAL s
7=1 ¢3(c) 7=1 ¢:(c)

W) = (12)

N w3 N 1
Zj:l qu_(]c) Zj:l He)

R O
Vi) = | 250 Zimge (13)

Hereg;(c) = ¢c"w; + 1. Therefore, defining
[ A(c) b(e) | =V (W (c) (14)
we have(A, b, &) = (A(¢), b(¢), ¢) and the theorem follows. |
We make a standing assumption that the pofmts: j = 1,..., N} are not all colinear ifR?.

This ensures thdl/(c) is positive definite and hence thatc) andb(c) are defined for alt € C,,.
To see this, consider an arbitrary vectoRihpartitioned ag;" ) wherev, € R* andv, € R. Then

straightforward algebra shows that

N wiw] N w N
o\ " zj:l 7 (c) Zj:l qf-(JC) v\’ _ (vw; + v2)” > ()
Vo N w] ZN 1\ Z ¢ T
2 =1 oy 2vi=1 B i=1 ’

ThusW (c) is positive definite if and only if for no nonzefo,, v,) € R? x R is it the case that
viw; +ve =0forallw;, j =1,..., N. This is equivalent to the condition that; — wy)?v; = 0

forall j,k =1,..., N, or that all thew; are colinear.

10



In view of Theorem 1, we can define a two-dimensional cost functignal’, — R by

s - Ly (w,, . M) (w/, . M) (15)

, J clw; +1 J clw; +1
J=1

J(c) is simply the least-squares cost function restricted to the maniéldBy construction, for
any M, = (A(c,), b(co), co) € M, Q(M,) = J(c,). Hence the global minimizing solution df(c)
within C, is ¢. This reduces the determination of the least-squares estimiabethe minimization
of J overC,.

From the proof of the theorem, we can see that the 8-dimensional minimizatiQx \df)
decouples into a nonlinear 2-dimensional minimizationand a solution of a linear system for the
“affine” parameterg A, b). This can be viewed as a specific case of a general mixed least-squares
problem considered by Golub and Pereyra [12] that separates into linear and nonlinear variables.
We go into considerably more detail here, exploring the structure of our specific problem.

Casting the problem in a two-dimensional setting allows us to visualize the cost function and
the steps that a minimization algorithm takes. We shall show in Section 6 that in addition to being
of reduced dimensionality, the cost functidiic) can be numerically minimized more efficiently
than the cost functiof)(M).

Figures 4a and 4b illustrate a pair of natural images, and a set of 25 noisy matching points
between the images. Figure 4c illustrates the cost funcitigraphed over the regiof, for this
set of data points. As can be seen, the cost funcfibas a single minimum withit',, located at

the bottom of a deep bowl.

5 The Behavior of J on Singular Lines

For ¢* on one or more singular lines, the matridégc*) and V' (c¢*) that define(A(c*), b(c*))

in (14) are not defined. However, below we provide two results concerning the finiteness and

11
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1.5

=7
=77 AL

e
SR
-~ \M."

c2

cl

©

Figure 4: (a) and (b) A pair of natural images taken by a rotating camera with 25 matching points
indicated. (c) The cost functio(c;, c2) corresponding to the set of matched data points. The
thick lines are the singular lines that actively bourid

12



continuity of the functionsA(c) andb(c) asc approaches a singular line. In the first theorem, we

consider the behavior as we approach a point that lies on exactly one singular line.
Theorem 2 Fix ¢* such that*’w; + 1 = 0, andc¢*Tw; + 1 # 0 for j # 1.

1. The limiting value$im,. ..« Ale) ble) | are well-defined, finite, and given by:

Tw—l

wherep = [w! 1]T and

T
S S,
=2 2(e)  2ei=2 ()

N w; N 1
ijg g2(c) Zj:Q 20

_ N wjw; N W)
Vo = {Za:z 5@ 2= qj(é*)}

2. (A,,b,) is the solution to the well-defined constrained least-squares problem

N T
. ]_ ’ AU}]‘ + b ’ AU}]‘ + b
I%gl 5 ; <wj B C*ij + 1) (wj B C*ij +1

s.t. Aw; +b=0

3. lim, - ’4(31;0—1111’1(6) = w).
Proof: The proof can be found in the appendix. ]

This result shows that, unlike the cost functiQii/), the cost function/(c) is finite and
continuous along the singular lines. However, along singular lines the resulting least-squares pro-
jective transformation estimates are not member&/ 6f3). The second and third parts of the

theorem give precise characterizations of the limiting solufidt-*), b(c*)) on a singular line.
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Not only does the solutiofA(c*), b(c*)) keep the cost function finite, but it zeros the offending
data point’s contribution to the cost function.

It is also important to consider the limiting behavior(of(c), b(c)) asc approaches an inter-
section of two singular lines. To this end, we state the following theorem; the omitted proof is

straightforward but tedious, and follows the same pattern as the proof of Theorem 2.

Theorem 3 Fix ¢* such that*"w; +1 = 0 andc*Twy + 1 = 0, withw; # we andcw; +1 # 0

for j > 2.

1. The limitlim._ .| Ale) b(c) | is well-defined, finite, and given by the solution of the fol-

lowing constrained minimization problem ov&r— 2 data points:

N T
. 1 ’ AU}]‘ —|— b ’ AU}]‘ —|— b
Hj}l? 5 ]ZS (wj B C*ij + 1) (wj - C*ij + 1
st.  Aw+b=0 a7

Awy +b=0 (18)

A(c)wi+b(c)
clwi+1

A(c)wa+b(c)
cTwa+1

2. Moreoverlim,._, .- = w; andlim,_, - = wh.

The intersection of three singular lines requires that three data points be colinear. In such an
event one can prove a corresponding result on the finiteness and contindity)andb(c), and

S0 on. At this point, we can prove the existence of global minima ahd(:

Theorem 4 If the closure of the set of admissible estimatgss compact and each vertex of the
C, polygon is determined by the intersection of at most two singular lines, .fHeas a global

minimum inC,, andQ has a global minimum iiR?*? x R? x C,,

Proof.  From Theorems 2 and 3, we have thias continuous over the compact €&}, so it must

have a global minimize# in C,. By Theorem 1()(M) is globally minimized by(A(¢é), b(¢), ¢). 1

14



6 Line-Search Descent

Typical algorithms for the minimization of a nonlinear function such as (7) operate in an iterative
fashion as follows. Given a current approximatibh of M/ select a direction, and take a step
along the line fromM/, in the directiond, so as to decrease the objective function. The next
approximationMy, is the value ofM at this point. Typically the directiod, is related to the
gradient of the objective function evaluated\dt.

When applied to the cost functio(M) such a scheme operates as follows. L&t =
(Ag, br,cx), K > 0, be the approximation of/ after stepk and letd, = (Fy, gk, hy) denote
the search direction used at stepThen(Ax. 1, bgy1, k1) = (Ag, bi, k) + o (F, gk, hi), where
the step sizey, > 0 is selected to ensure th@( My 1) < Q(My).

For all such schemes we can make several observationd/) et (A, b,, c,) with A, € R?*?,

andb,, c, € R?. Define the projection o/, onto M to be P(M,) 2 (A(co),b(co), Co)-
Theorem 5 Letd = (F, g, h) with F € R?*?, andg, h € R% Then
1. ForanyM,, J(c,) = Q(P(M,)) < Q(M,).

2. For M, on M, define

M(a) = M,+ad

o(B) = cot Bh

o« = argmin,,, Q(M(a))
p* = argminﬁzo J(c(B))

Mg = (A(e(87)), b(c(5)), ¢(57))

ThenQ(Mg.) = J(c(87)), andQ(Mp-) < Q(P(M(a™))) < Q(M(a”)) < Q(M,).

15



3. For M, on M, if d = (F,g,h) is a descent direction fo€) at M, thenh is a descent

direction for.J at¢,.

Proof:

1. Consider minimizing) (M) with M constrained so that= ¢,. The normal equations for this
problem are linear and have the unique solutidfx,), b(c,)). Hence on the constraint set ¢,,
Q(M) has a unique global minimum at the pofnt(c,), b(c,), ¢,) = P(M,). SincelM, lies in this
set,Q(P(M,)) < Q(M,).

2. Forp > 0, Mz = (A(c(B)),b(c(B)),c(B)) is a curve onM passing through/, (6 = 0) and
P(M(a*)) (8 = a*). Along this curveQ(Mgz) = J(c(B)). Hence the minimum of) along the
curve occurs ati = . ThusJ(c(8*)) = Q(Mp-) < Q(P(M(a*))). The other inequalities

follow from part (1) and the definition af*.

3. Since(F, g, h) is a descent direction fap at M,, there existsy, > 0 such thatQ(M, + ad) <
Q(M,) forall @ € [0, ). FOra > 0let M, = (A(c, + ah),b(c, + ah), c, + ah). Then for all
a € [0,a,), J(co +ah) =Q(M,) < Q(M,+ ad) < Q(M,) = J(c,). The first inequality follows

from part (1); the second follows from the fact thas a descent direction fap at M,,. |

Theorem 5 indicates that each step of an iterative minimizatigp(af ) can be improved by
exploiting the formulasA(c) andb(c) to project the next approximation onto the manifold.
Moreover, part (2) indicates that minimizing(c) in the directionh,, from ¢, yields a greater
decrease in the least-squares objective than either minimiziag) in the directiond;, from M,
and then projecting, or simply minimizing(2/) in the directiond;, from M,. Other issues aside,
this suggests that obtaining the least-squares estimate by iteratively mininiizinig potentially
more efficient than a similar scheme applied2V/). The third part of the theorem shows that
at any point on the manifoldM, every descent direction fa@p yields a corresponding descent

direction for.J. If we combine this with part (2) we see that minimization/odlong this direction

16



will yield a smaller value of the least-squares objective function than minimigimg the given
descent direction. Note that parts (2) and (3) of the theorem do not generally hdlf, foif the
manifold M.

Of course,J is a more complex function thai and hence it is conceivable that the necessary
computations in minimizing are also more complex. However, as far as the gradient is concerned

this is not the case. To see this, ltc) = (A(c), b(c), c). Then for eachh € R?,
DJ(c)h = DaQ(M(c)) - D;A(c)h + DyQ(M(c))Db(c)h + D.Q(M(c))h
SinceM (c) liesonM, DoQ(M(c)) = DyQ(M(c)) = 0. Then from (10),

VJ(e) = D.QM()) (19)
N (o AQwy b\ A)w; +b(e)w,
- 2 )

J clw; +1 cdw;+1 w;+1

J=1

The computation ofi(c) andb(c) is equivalent to the computation 8 ,Q andV,@, and can
be efficiently accomplished by solving the linear system (11). The computation @fiven A(c)
andb(c) is equivalent to the computation ®.(). Thus the computation of the gradient.bfs no

more complex than computing the gradientaf

7 Second-Derivative Methods

It is well known that minimization methods based on the second derivative of the objective function
have superior rates of convergence. These methods are based on various modifications of the
Newton-Raphson and Gauss-Newton schemes (see [8]). Appli€d tioese operate by setting

My = My — H(M,,)"'VQ(M,,), whereH (M) is either the Hessian @ at M, or a suitable

approximation.

17



Ac)w;+b(c)
clTw;+1

If we definew; = , We can writeQ (M) =

N
DQM) = = (w}—1iy)" Di,

D*Q(M)

I
WE
o
<5
SN
o
ug>
|
&
|
Qg>
<,
wg>

D*Q(M) is the Hessian of) at M and the first term is the Gauss-Newton approximation of the
Hessian.

It is straightforward to derive expressions for the Hessian@ ahd.J and their Gauss-Newton
approximations. The Hessian fdris quite cumbersome sincédepends om both directly and

through the dependence dfc) andb(c) onc. The result is:

N
1
H = Z [(zZ)J — 26]‘)ijij}? — NJT(IDJ — @-)wﬂ (20)

— () — ab. o |0A,,. 4 06 0A,, 4 Ob - ima-
wheree; = (v —w;) andN; = [861 Wi+ e SLwi+ acJ- The Gauss-Newton approxima

tion to the Hessian is:

N
1 . N
Hgn = Z T (N; — ij;‘-F)T(Nj — ijjT)

The details of these derivations, as well as an explanation of how to compute the partial deriva-
tives of A andb with respect ta:, are lengthy and can be found in [13].

The complexity of these expressions raises the issue of obtaining efficiently computable ap-
proximations to the Hessian dt For example, one natural approximation is to assumeAfaatd

b are independent efso that eachV; becomes 0. This results in the approximation

2 = 1 A T - T
H = Z qf-(c) [(w]— — 2¢;) ijjwj] (21)

j=1

18



In fact, this matrix is the same as the< 2 block of partials%%?. We will see how algorithms
based on this approximation and the Gauss-Newton approximation fare in the presence of different

types of noise in the next section.

8 Experimental Results

We will compare various second-derivative methods for minimizirejd(@ experimentally using
data obtained from several pairs of natural images. In general, we will use the following framework
for our second-derivative methods to minimiz&:). The only difference is the approximation to

the Hessian used in step 3.

Newton scheme for minimizing.J.

[ —

. Initializec = 0.

N

. Compute the gradient of exactly using (19).

3. Approximate the Hessia%qzcé by some positive semidefinite matri.

N

. Use these quantities to update the value wding an approximate Newton-Raphson step.
5. Use the new value efto update the values of andb using (14).
6. Test for convergence. Exit or return to step 2.

The initialization ofc = 0 in step 1 is justified in practice, since the values: &r projective
transformations arising from real image processing problems oftenchav®(10~*) (see Table
1). Algorithms to find a value ofr in step 4 that brings about a sufficient decrease in the cost
function are generally based on a backtracking and cubic interpolation strategy [8].

We implemented five minimization algorithms:

19



Example First Second | Number a1 a1 by ¢1
Number | Image Image of w; dio1 fon by éo
1 Firestonel| Firestone2 70 1.1781 | -0.0640| -173.88| 0.0006
0.1316 | 1.1045| 0.01 | -0.0001
2 Firestone2| Firestonel 69 0.8486 | 0.0636 | 146.44 | -0.0005
-0.0976| 0.9728 | -17.47 | 0.0001
3 B320fr0 B320fr1 90 0.8532 | -0.0223| 8.51 | -0.0004
-0.0166| 0.9639 | -1.68 | 0.0002
4 Trackl Track2 30 0.9703 | -1.5266| 83.10 | -0.0004
-0.0404| 0.9630| -5.85 | -0.0007
5 Atrium1 Atrium?2 35 1.1146 | 0.6413 | -95.36 | 0.0005
-0.0790| 0.6171 2.50 | -0.0008
6 Atrium2 Atrium3 33 0.7564 | -0.6599| 160.15 | -0.0004
0.0010 | 0.8996 | 13.44 | 0.0009

Table 1: Information and nominal parameters for the 6 data sets.

1. GNQ: Standard Gauss-Newton appliedjo

2. GN J: Standard Gauss-Newton appliedto

3. N: Approximate Newton applied td, usingZ from (21).

4. QdirJ: Approximate Newton applied td, using the projections of search directions from

@ onto the manifold, as suggested by Theorem 5.

5. NJ: Full Newton applied ta/, using the actual Hessian (20).

The algorithms were compared on six pairs of natural images and associated point correspon-
dences. Three of the image pairs were created by a rotating camera; point correspondences for
these images were obtained automatically using the feature detection and matching algorithm de-
scribed in Tan et al. [14]. The other three image pairs are different views of planar scenes; in
these cases the point correspondences were obtained manually. For all six images there is very

little noise in the correspondences. Information about the test images and the best least-squares

projective transformation estimates for each example are given in Table 1.

The objective of our experiments is to investigate the performance and robustness of each of

the five algorithms using the type of noisy point matchings characteristic of real image processing
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applications. To accomplish this goal we modified the virtually noiseless measurements discussed
above by adding noise of two different types to each correspondence. The first type was Gaussian
noise of increasing variance. That is, random noise was added to each nominal correspondence
(x,y) — (2/,y') to obtain(z, g) — (¥',7'), wheret = z+ny, 5 = y+no, & = 2'4n3,§ = y'+ny
and(ny,n9, n3, ny) are independent zero-mean Gaussian random variables with vasiantae

second type of noise was the same, ex¢eptn,, ns, ns) were drawn from a zero-mean Gaussian
distribution of variance 5 with probability — p, and from a uniform distribution ovér-50, 50]

with probability p.

The first type of noise simulates increasingly inaccurate feature correspondences. Inaccura-
cies in real applications could come from poor sensors, suboptimal correspondence algorithms, or
coarsely subsampled data. For example, if the images were subsampled by a fa6tor @ich
direction before estimating correspondence, we could expect errors in thefrangeels in the
original coordinates. The second type of noise simulates a generally good correspondence algo-
rithm with increasing probability of obtaining a non-Gaussian outlier. Such outliers can occur, for
example, when a block-matching algorithm “finds” a matching block with a lower mean-squared-
error than the correct block induced by camera and object motion.

Before applying the minimization algorithms to each modified data set, we normalized each of
the setg{w;,j = 1,..., N} and{w},j = 1,..., N} so that the measurements are zero mean and
with range approximately—1, 1]. This avoids numerical instabilities introduced by data measure-
ments that can vary by orders of magnitude. Recovering the projective transformation parameters
in the original, unnormalized coordinates after the estimation is complete is accomplished by an
easily derivable transformation. Details on the data normalization can be found in the appendix.

For each modified data set, the five different minimization algorithms all converged to the
same projective transformation estimate. The 2-dimensional methods were initialized with
0. The 8-dimensional methods were initialized with= 1,6 = 0,¢ = 0. In each case we

ensured that the algorithms employed the same computational procedures and tests for conver-
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gence in the appropriately-dimensioned space. Namely, the algorithm terminates when either

the relative change in the gradient is small enough, iewx; ;<4 Vf(:”)i‘?&"){‘m"“} < 1075,

or the relative change in the parameters is small enough,a’ﬁﬁﬁﬁ < 107%. Herex =
(@11, a1a, o1, ase, by, ba, c1,¢2), d = 8 in the eight-dimensional case and= (c;,c), d = 2in
the two-dimensional case, arfds the appropriately-dimensioned least-squares functiQral.J.
Additionally, ¢; is a “typical” value of parameterto avoid problems with defining relative change
when the parameters are small. In our tests we wsed(1, 1,1, 1,100, 10,.0001,.0001). This
choice is justified given the underlying parameters for our data set (see Table 1).

The number of floating point operations required for the three algorithms to converge with the
purely Gaussian noise model is illustrated in Figure 5. Figure 5a pertains to the images taken by
rotating cameras, and Figure 5b to the images of planar scenes: &tie in each figure is the
varianceo? of the noise added to the correspondences. ¢Thgis in each figure represents the
computational effort (i.e. number of floating point operations) required to converge to a solution,
relative to Gauss-Newton ap (the “standard” method). Each data point is the mean of 100 trials
at the same noise variance with different realizations of the random variables, averaged over 3
different data sets of the same type.

We can see that using thg search directions od is uniformly better than doing standard
Gauss-Newton oy, and that Gauss-Newton ohis uniformly better than both. The full Newton
method onJ does better than the Gauss-newton method @t higher noise variances, though
worse at lower noise variances. This is consistent with the observations in Dennis [8, p. 226].

Interestingly, the approximate Newton method using the Hessian approximation in (21) is only
superior to other methods at higher variances. This would indicate that #tien be computed
efficiently, it is a poor approximation to the true Hessfdrat low noise variances, i.e. the partial
derivatives ofA andb with respect ta: are significant. This is confirmed by plotting the indicator
|H — H|/||H| as a function of the noise variance for the first data set, illustrated in Figure 6.

For comparison, we also show the indicatéf;y — H||/||H || for the Gauss-Newton method. We
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can see that in the presence of no noise, roughly 85% of the Hessian is “unapproximaféd” by
compared to only 0.1% in the Gauss-Newton case. ThougWtheration requires fewer floating
point operations, 18 iterations were required compared to only 3 for Gauss-Newton. However,
the Gauss-Newton approximation contains none of the terms in the full Hessian invelythe

errors in the fitted data. Hence, as the noise variance increHggsbecomes an increasingly
poor approximation. On the other harfd,contains one of the; terms from the full Hessian and
incrementally improves with increasing. Of course, the substantial partial derivative terms that
make up most of the Hessian are still ignored.

The number of floating point operations required for the three algorithms to converge with the
outlier noise model is illustrated in Figure 7. Figure 7a pertains to the images taken by rotating
cameras, and Figure 7b to the images of planar scenes: &tis in each figure is the probabilipy
that a coordinate is an outlier. Thexis has the same interpretation as in Figure 5. Each data point
is the mean of 100 trials at the same outlier probability with different realizations of the random
variables, averaged over 3 different data sets of the same type.

The results here again indicate the superiority of the two-dimensional algorithms. The main
difference is the lower rate of decrease of fliecurves, which indicates that the Gauss-Newton
method onJ is a better choice overall when the correspondence contains outliers. Of course, a
good estimation scheme will iteratively reject outliers [15] until the noise can be well-modeled by

a Gaussian distribution, and re-estimate.

9 Conclusions

The experimental results indicate that obtaining the least-squares estimate of the parameters of a
projective transformation using the algorithms proposed in Section 7 to minifizeoffers a

distinct efficiency advantage over using a standard algorithm such as Gauss-Newton to minimize

Q(M).
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Floating point operations vs. noise in correspondence (Rotating camera data)
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Figure 5: Relative floating point operation counts for purely Gaussian noise. (a) Rotating camera
data sets, (b) Planar surface data sets.
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Approximation error in H vs. noise in correspondence (Firestone 12)
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Figure 6:||H — H||/||H|| as a function of noise variance féf andG'N.J methods.

Even when it is desired to work wit@(M) directly, computingA(0) andb(0) by (14) can
provide immediate and accurate initial estimates of the paramdtensd b for a minimization
algorithm, removing the need for additional pre-processing to estimate the scale, rotation, and
translation difference between an image pair.

Possible future research in this area includes a deeper investigation of how the relationship be-
tween the positions of the data points, the noise in their measurement, and the underlying projective
transformation parameters affect the convergence of the algorithm. For example, our simulations
indicate that theV algorithm presented is quite robust to high-variance noise. In fact, in terms of
total floating point operations (not displayed in the figures above), its computational cost seems to
decrease with noise variance while the costs of the other algorithms increase. However, we lack a
rigorous analysis of why this is so.

Additionally, it may be possible to use the two-dimensional cost funcfi@en to analyze the
existence and behavior of local minima. We have been able to construct data sets that induce a cost

function J(c) with multiple local minima over the regio@,, and have experimentally obtained
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Floating point operations vs. outlier probability (nominal variance 5) (Rotating camera data)
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Figure 7: Relative floating point operation counts for Gaussian noise with outliers. (a) Rotating
camera data sets, (b) Planar surface data sets.
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bifurcation diagrams for the minima as the configuration of the data points is continuously varied.
However, in our experience with projective transformations arising from real data, we have never
observed multiple local minima of the least-squares cost functional within(It is clear from
Figure 4c that many local minima exist outside(oj).

We only address the estimation of a single projective transformation here, but there are natural
extensions to the joint estimation of the projective transformations relating several images, e.g.
frames of a video sequence. The composition of multiple pairwise estimates is suboptimal for the
joint problem, and can lead to unstable error growth [16]. Additional issues arise when the images

are constrained to form a seaml&68° panorama, as in Szeliski [4].
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Appendix
A.l Proof of Theorem 2

Definec(a) = ¢* + ah, whereh is an approach vector iR?. Theng; (c(a)) = ahTw; # 0 whena # 0
andh”w; # 0 (i.e. the approach direction is not along the singular line). We henceforth assumé that
is normalized to 1, so that (c(a)) = «. (Note thath”w; = 1 is just a line parallel to the singular line. As
we decrease, we approach the singular poitit along lines parallel te*”w, + 1 = 0.) By solving (14)
with ¢(«r), we naturally defined(«) andb(«).

1. We split up the expressions (12)-(13) by separating out the first point (and noting that):

wlwl N ij w1 N w

—+Z 2 3 Ttz
W(c*+ah) — J= T J q; (0‘)

? +Zj:2 qz(a) P "‘Z; 2 2

( )
V(C*—l-Oéh) - |: wlwl +Z] 2 ‘1] ) wl +ZJ 2%(]@) :|

Hereg;(a) = (¢* + ah)Tw; + 1. We now rewrite the defining equation (11) as:

1 wiw!l  wy 1 T
) v ]| [ ] e wat)] = |t 4 vata) 22)
where
N B N
Waa) = | DT L=
J

N w! N 1
ijzm ijzm



! T /

_ N ww; N Y
Va(a) = [Zj:Q—q;(a]) ZJ‘:M;T&)]

We note that as: — 0, Wa(a) andVa(«r) converge to well-defined finite matric&,(0) and14(0).

In the following, we will use the notationd’s, 5, with the understanding that they are functions of
a. While itis true that forx > 0, W () andVa () are also functions df, the limiting valuedV,(0)
andV5(0) are independent df.

Taking (22) and isolatingl(«) andb(«) on the left-hand side, we have

Lo, T 1 [ ww] w !

Here we have introduced the abbreviatips- [w?1]7. First consider the matrix that is inverted in
(23) above. Using the matrix inversion lemma, we can write

1 T - 11 -
L T TN DA I W
a? | wi 1 o a

IR 1opo 0 |70 e
= WQI—EWQIp[l—i—@pTWQIp] pTW21

_ _ _ -1 _
— W2 1 W2 1p [012 +pTW2 lp] pTW2 1

_ W—l B WQ*lppTwzfl
2 o? +pTW2_1p
_ W*l |:I— ppTW2_1 :|
- 2 2 Ty —1
ot +p' Wy p
Therefore, we can rewrite (23) as
1 _ ppTW_1
Ala) bla = —w'T—l—V]WI[I——z
[Al0) b)) = | uip® 1|y L
o | e (@ "W ) T = Tpp" Wy
= wip' Wy 2 Ty—1
ot +pt Wy 'p
T —1
+ValWy ! [I— Wy ]
a?+pTWy'p
Tw—l
— Wy Y Lyt [I——pp 2 }
R a2+pTW2_1p 272 a2+pTW2_1p
Letting« — 0 in the above, we obtain
[ Ao b ] = lir%[ Ala) b(a) ]
T —1
= ;! [I —p’;lﬂ (24)
pPWy'p
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2. Consider the minimization problem

1o Aw; +b \ 7T Aw; +b
FEDD (- ) (v - 7 (25)
s.t Awy +b=
The normal equations for the constrained problem are:
A 3 w; - - w}ij T
;(*Tw+12+bjz::2(*Tw+1) ;m—i-)\wl =0
N N N !
AJZ: *Tw+12+b]z: *Tw+1 ;m+/\ =0
Awi+b = 0

Here \ is a Lagrange multiplier irR?. Rewriting these normal equations in the notation of the
previous section, we obtain

[A b] = VWt — Wyt (26)
(A b]p =0 (27)

It is easy to see that (26) is satisfied by the choicedf, b,) in (24), with

~ VaWy'p
pTWy'p

Furthermore(A,, b,) satisfy the constraint equation (27). Hence, by uniqueness of the solution of the
linear least-squares problem, we conclude that along singular lines, the solution of (11) converges to
the solution of the constrained minimization problem (25) posed over the data set minus the offending

point.

. From the expression (24), we can also obtain an expression for the point to (hich, ¢*) maps
w1

A(a)wy + b(a) |
= lim—[ A b
a—0 (¢* + ah)Twy + 1 a a[ (@) b(a) Ip
a
= hm w TW
2 a4 pTWylp
TW71
Wyt T -
as +pt Wy p
= lim W' p'W. P
1P 2 a2 +pTW,'p

30



A.2 Data Normalization

To avoid numerical instabilities introduced by data measurements that vary by orders of magnitude, it is
generally wise to normalize the data before processing it. Hence, we need to understand how the solution to
the least-squares problem using the normalized data is related to the solution of the problem in the original
coordinates. To this end, we present the following lemma, which is easily proven.

Lemma 1 Consider the data sets given by

zj = ij+t
Z; = Ruwj+t

fort,t’ € R2, Q,R e GL(2),andj =1,...,N. If M = (A,b,¢) is the minimizer of
li ij—i-b T w/—ij+b
2 cij +1 I Twj+ 1
7=1
then the minimizei/ = (4, b, é) of

N
1 Azj +b , Azj+b
2 Z (Z Tz + 1) (Zj 'z +1

Jj=1

is given by

(A5.6) = RAQ™ ' +t¢eéTQ™' Rb— RAQ 't QTc
T 1—-¢lQ 1t 7 1-¢TQ 1t "1 -¢eTQ-1t

In other words,

- R YA-tdQ R(b+ At) L, QTé
A, b, &) = R 28
(4,5,¢) ( T+t 0 1+t 14t (28)

In practice, we normalize the data so that the measurements are zero mean with range approximately
[—1, 1]. This corresponds to a choice of



where

N N
p=x > 1 W) W=y D1 W)
o = § (max; [ — pial + e [y; — ) o' = (max; 2] — i) + max; |y} — p
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