Spring Semester 2012 – Final Exam

Note:

- Show your work, underline results, and always show units.
- Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone.
- Materials' parameters may be looked up from the associated table entitled: "Room temperature properties of Si, Ge, GaAs, and GaN".
- 1. Indicate if the following statements are true or false:
 - (a) Under low-injection conditions, the minority electron concentration injected into the neutral ptype region is much smaller than the majority hole concentration in the neutral p-type region.
 - (b) Under high-injection conditions of a pn junction, the current-voltage (IV) characteristic of the pn junction is becoming linear.
 - (c) Under low-injection conditions of a pn junction, the IV characteristic of the pn junction is exponential.
 - (d) Minority carriers generally have a much shorter lifetime than majority carriers.
 - (e) The lifetime of majority carriers can be approximated to be infinitely long.
 - (f) In Si, the electron mobility is generally higher than the hole mobility.
 - (g) Under normal operation of a bipolar transistor, the BE junction and the CE junction are both operated under forward bias.
 - (h) In an n-channel metal-semiconductor field effect transistor (MESFET), the electron channel is pinched off at the drain end of the channel, if $V_{DS} V_{GS} = V_{PO}$, where V_{GS} is negative quantity and V_{DS} is a positive quantity.
 - (i) SiO₂ is a transparent material, because its bandgap energy is greater than the energy of visible light.
 - (j) Si is a transparent material, because its bandgap energy is greater than the energy of visible light.
- 2. Consider an n-channel metal-semiconductor field-effect transistor (MESFET) that is made of n-type GaAs. The MESFET has a metal-semiconductor gate with a length of $L_{\text{Gate}} = 1 \, \mu \text{m}$ and a barrier height of $e\Phi_{\text{B}} = 0.8 \, \text{eV}$ (can be neglected). The electron channel has an n-type doping concentration of $2 \times 10^{17} \, \text{cm}^{-3}$ and a channel height of 200 nm and a channel width of 100 μ m. Assume that the electron mobility in the channel is 2000 cm²/(V s).
 - (a) Assume that the gate voltage is $V_{GS} = -1$ V and assume that $V_{DS} \approx 0$. Calculate the channel resistivity.
 - Calculate the channel resistance.
 - Draw a diagram of the the IV curve (I_D -versus- V_{DS} curve) to scale. In the diagram, the ordinate, I_D , should range from 0 to 750 mA and the abscissa, V_{DS} , should range from 0 to 7.5 V.

- (b) Calculate the value of V_{DS} at which the drain current saturates, i.e. at which the channel is pinched off at the drain end.
 - Mark the calculated value of $V_{\rm DS}$ in the $I_{\rm D}$ -versus- $V_{\rm DS}$ curve.
- (c) Calculate the drain current at the value of V_{DS} calculated under question (b). Complete the trace of the I_D -versus- V_{DS} curve for $V_{GS} = -1$ V.
- 3. Consider an asymmetrically doped Si pn junction with the n-type doping concentration much greater than the p-type doping concentration, i.e. n >> p. Assume that $N_D = n = 5 \times 10^{18}$ cm⁻³ and $N_A = p = 1 \times 10^{17}$ cm⁻³. Assume further that the area of the pn junction is A = 1 mm².
 - (a) Calculate the diffusion voltage of the diode, i.e. V_D (note that the diffusion voltage is frequently called the built-in voltage, i.e. V_{bi})
 - (b) Consider an applied voltage that is $0.8 \times V_D$. Calculate the concentration of injected electrons into the p-type neutral region and compare it to the concentration of the hole majority carriers. Is the junction operated under low-level injection or high-level injection?
 - (c) For an applied voltage of $0.8 \times V_D$, calculate the electron injection current and the hole injection current. Which of the two currents is larger? Calculate the total current of the pn junction.
 - (d) Consider that the pn junction would be used as the Base-Emitter (BE) junction of a bipolar transistor.
 - Calculate the emitter efficiency if the n-type layer would be the emitter.
 - Calculate the emitter efficiency if the p-type layer would be the emitter.
 - If the pn junction would be used as the BE junction of a bipolar transistor, would this transistor advantageously be a pnp transistor or an npn transistor? Explain your choice.
- 4. Consider an n-type Si sample <u>under thermal equilibrium</u> at 300 K. The donor concentration varies from left to right as $N_D(x) = N_{D0} \exp(-ax)$ (where $N_{D0} = 10^{17} \text{ cm}^{-3}$ and $a = 1 \mu \text{m}^{-1}$). Assume that donor concentration equals electron concentration (donors are fully ionized). The electron mobility in this sample is 1200 cm^2 / (V s).
 - (a) What is the diffusion constant of electrons in this sample?
 - (b) What is the diffusion current density of electrons at x = 0? Plot the diffusion current as a function of distance.
 - (c) What is the total current density at any point x in the sample?
 - (d) Plot the drift current density as a function of distance to scale.
 - (e) Plot the band diagram from x = 0 to $x = 5 \mu m$.
 - (f) What is the potential difference between x = 0 to $x = 5 \mu m$.
 - (g) What is the direction of electric field? Briefly explain your answer.

- 5. Assume an npn bipolar junction transistor operating in forward active mode at 300 K has the following properties: $\mu_n = 1200 \text{ cm}^2 / (\text{V s})$ (electron mobility in base); $\mu_p = 425 \text{ cm}^2 / (\text{V s})$ (hole mobility in emitter). The base doping is $N_A = p = 10^{16} / \text{cm}^3$ and the base width is $W_{\text{Base}} = 40 \, \mu\text{m}$. While being fabricated, the device was contaminated, and, as a result, the minority carrier lifetimes are shortened. Assume the minority carrier lifetime is the only parameter of the device affected by this contamination, such that they are greatly reduced to $\tau_n = 50 \, \text{ns}$ (electron minority carrier lifetime in base) and $\tau_p = 100 \, \text{ns}$ (hole minority carrier lifetime in emitter).
 - (a) What is the diffusion length of electrons in the base?
 - (b) Assume a low level bias exists such that there is an injected minority carrier concentration in the base (at the emitter end) of 10¹⁰ /cm³. Plot a rough sketch of the minority carrier concentration profile in the base and explain the slope of the line. The plot need not be to scale.
 - (c) In one or two sentences, please explain qualitatively how the plot in part (b) would look differently if the sample had not been contaminated.