Midterm Exam

- 1. A semiconductor sample with a volume of 10^{-3} mm³ uniformly absorbs all light of a light source emitting an optical power of 250 mW at the wavelength 450 nm. The sample emits photons with energy 1 eV at a rate of 10^{17} s⁻¹.
 - (a) What is the electron-hole (e-h) pair generation rate (in units of $cm^{-3} s^{-1}$) in this sample?
 - (b) What is the optical power emitted by the sample?
 - (c) What is the sample's quantum efficiency (QE)?
 - (d) What is the sample's power efficiency (i.e. output-power divided by input-power)?
 - (e) Name a physical mechanism that reduces the quantum efficiency.
- 2. Circle the correct answer:
 - (a) For a semiconductor sample with quantum efficiency of 1, the wavelength of the absorbed light cannot be longer than the wavelength of the emitted light.
 T F I
 (b) The Einstein relation suggests that particles that have a high mobility diffuse very little (and vice versa).
 T F I
 (c) In a constant electric field electrons propagate with a drift velocity that is constant
 - over time. T F I (d) Generally, charge carriers diffuse more rapidly at T = 300 K than they do at 200 K. T F I
 - (e) A silicon (Si) pn junction can be intentionally doped with phosphorus (P) donors, and carbon (C) acceptors. T F I

(f) The continuity equation expresses the fact that all carriers must be accounted for. T F I T = True; F = False; I = Impossible to answer with information provided

- 3. A Si sample with an equilibrium electron concentration of 10^{10} cm⁻³ is subjected to an electric field of 100 V/cm.
 - (a) What is the equilibrium hole concentration?
 - (b) What is the drift velocity of electrons?
 - (c) What is the drift velocity of holes?
 - (d) What is the electron drift current density?
 - (e) What is the hole drift current density?
 - (f) Assume that the electron drift current is compensated by an equally large electron diffusion current. Give the gradient in electron concentration that accomplishes the compensation.
- 4. A Si pn junction has a donor concentration of 10^{18} cm⁻³ and an acceptor concentration of 10^{16} cm⁻³.
 - (a) What is the depletion width $W_{\rm D}$?
 - (b) For a pn junction, list the types of currents that should be considered.
 - (c) For the pn junction considered here, under forward-bias conditions, is there any specific current that dominates? If yes, give the name of this current.
 - (d) For the pn junction considered here, under zero-bias conditions, is there any specific current that dominates? If yes, give the name of this current.
 - (e) A design engineer considers the reverse saturation current to be too large. Which parameters of the pn junction can be changed to reduce the reverse saturation current?