Exam-02

- 1. A capacitor is formed by two open concentric metal cylinders with radius & charge of $r_1 \& Q_1$, and $r_2 \& Q_2$, respectively, where $r_1 < r_2$, $Q_1 = -Q$, and $Q_2 = Q$. The metal cylinders are located in air, have a length ℓ , and a negligibly small metal thickness.
 - (a) Draw the experimental setup and label all objects appropriately. What is the charge density, ρ^{2D} (units of C/m²), on each of the two open cylinders?
 - (b) Calculate the electric field for $r < r_1$, $r_1 < r < r_2$, and $r > r_2$. Neglect any fringe fields.
 - (c) Derive a symbolic expression for the voltage drop between the two cylinders. Calculate the voltage drop for $Q = 10^{-8}$ C, $r_1 = 1$ cm, $r_2 = 2$ cm, and $\ell = 1.0$ m.
 - (d) Derive a symbolic expression for the capacitance of the capacitor. What is the numerical value of the capacitance?
 - (e) Give a symbolic expression for the capacitance for $r_2 = r_1 + \Delta r$ where $\Delta r \ll r_1$ (you may use ln $(1 + x) \approx x$ which is valid for $x \ll 1$). Is the obtained expression reminiscent of a parallel plate capacitor?
 - (f) Give a symbolic expression for the energy density stored in the electric field as a function of r for $r_1 < r < r_2$.
- 2. A split parallel-plate capacitor has two metal plates with area $A = 1 \text{ m}^2$ and a distance between the plates of 2d = 2 mm. The gap between the plates is filled with two dielectrics, $\varepsilon_{r1} = 1.0$, on LHS¹, and $\varepsilon_{r2} = 20.0$, on RHS, each dielectric having an area $A = 1 \text{ m}^2$ and a thickness of d = 1 mm.
 - (a) Draw a diagram of the experimental configuration and label all objects appropriately. The capacitor is charged with a current pulse of 1 mA and pulse duration of 1 ms. What is the charge Q, and the charge per unit area, ρ^{2D} , of the capacitor?
 - (b) Assume that the LHS plate is "-" charged and the RHS plate is "+" charged. Neglect fringe fields. Starting with Maxwell's first equation, calculate the electric flux density \vec{D} and the electric field intensity \vec{E} inside the two dielectric materials (symbolic expressions & numerical values).
 - (c) What is the voltage drop (numerical value) across the capacitor?
 - (d) What is the energy stored (numerical value) in each of the two regions between the two metal plates?
 - (e) Which one of the two regions could be neglected? Justify your answer.
- 3. Determine if the following statements are (i) true, (ii) false, or (iii) impossible to determine due to lack of information. Explain each of your answers with a few words.
 - (a) Dielectric media contain only bound charge but no free charge.
 - (b) Metals contain free charge. Bound charge that is present in a metal is irrelevant in the context of the present course (ECSE-2100, Fields and Waves I).
 - (c) A grounded metal sheet screens an electric field better than a non-grounded metal sheet.
 - (d) The boundary condition $E_{t1} = E_{t2}$ always applies, whereas the boundary condition $D_{n1} = D_{n2}$ only applies in the absence of free interface charges (free boundary charges).

¹ LHS = Left hand side; RHS = Right hand side