- 1. A pnp Si bipolar junction transistor (BJT) has an emitter doping of $N_{A, Emitter} = 1 \times 10^{19} \text{ cm}^{-3}$ and base doping of $N_{D, Base} = 1 \times 10^{17} \text{ cm}^{-3}$. The emitter efficiency of the BJT is $\gamma = 0.999$.
 - (a) Calculate the base width, W_B , of the BJT. You may make use of the electron diffusion length formula $L_n = (D_n \tau_n)^{1/2}$ where τ_n is the minority carrier lifetime.
 - (b) Calculate the BJT's current amplification in the common emitter configuration, β .
 - (c) In practical BJTs, the current amplifications (α and β) slightly increase when V_{CE} is increased. Why do α and β slightly increase when V_{CE} is increased? Explain.
- 2. Consider an ideal MOS capacitor (with $\Phi_{\text{metal}} = \Phi_{\text{semi}}$ and $Q_{\text{oxide}} = 0$) consisting of a metal (M), an oxide (O), and an n-type semiconductor (n-type Si).
 - (a) Assume that the MOS capacitor is under equilibrium conditions. Sketch the band diagram. Label everything you sketch appropriately.
 - (b) Assume that the MOS capacitor is under strong inversion conditions. Sketch the band diagram. Label everything you sketch appropriately.
 - (c) Sketch the charge-density-versus-spatial-coordinate diagram ($\rho(x)$ -versus-x diagram) including all charges of the MOS capacitor under strong inversion conditions. Sketch the electrostatic-potential-versus-spatial-coordinate diagram (Φ -versus-x diagram) of the MOS capacitor under strong inversion conditions.
- 3. Consider a GaAs MESFET (Metal-semiconductor FET) with an electron concentration of $n = 10^{16}$ cm⁻³. Assume that the MESFET has a gate length of $L_G = 1.0 \mu m$, a gate width of $Z = 250 \mu m$, and a channel width of $W_{channel} = 0.75 \mu m$. Assume that the barrier height of the metal-semiconductor barrier is $e \Phi_{Barrier} = 1.0 \text{ eV}$.
 - (a) Draw the band diagram of the FET at the gate location under equilibrium conditions and label everything appropriately.
 - (b) Calculate the pinch off voltage of the MESFET.
 - (c) Calculate the transconductance of the FET (g_m) at a gate voltage of $V_{GS} = 0$ V. Name one application where an FET is preferable over a BJT (bipolar junction transistor); justify your answer.
- 4. Determine if the following statements are true or false. Explain your answers with a few words.
 - (a) Positively charged sodium ions (Na⁺) located in the gate oxide of an p-inversion-channel MOSFET will increase the FET's threshold voltage (i.e. increase $|V_{th}|$).
 - (b) If the gate length (L_G) and width (Z) of a Si MOSFET are reduced by 50%, then the amplification (transconductance g_m) of the FET will remain approximately unchanged and the area occupied by the FET decreases to about 25% of its original value.
 - (c) pnp Si BJTs (bipolar junction transistors) generally have a higher current amplification than npn Si BJTs because the base of pnp BJTs is n-type, and $\mu_n > \mu_p$.