Exam-02 – Electrostatics¹

- 1. Consider a parallel plate capacitor with plate area A and distance d between the plates. For an area $A_1 = \frac{1}{2} A$ the gap between the plates is completely filled with a dielectric material ($\varepsilon_{r1} = 10$). For an area $A_2 = \frac{1}{2} A$ the gap between the plates is completely filled with air ($\varepsilon_{r2} = 1$). The capacitor carries the total charge Q; the Areas A_1 and A_2 carry the charge Q_1 and
 - Q_2 , respectively. Furthermore, $Q = Q_1 + Q_2$.
 - (a) Draw the experimental setup and label all objects. Assume that we force all charge into area A_1 so that $Q = Q_1$ and $Q_2 = 0$. Calculate the energy carried by the capacitor. Next, assume that we force all charge into area A_2 so that $Q = Q_2$ and $Q_1 = 0$. Calculate the energy carried by the capacitor. Which of the two calculated energies is lower?
 - (b) Given the results obtained above, and assuming that the charge Q can freely distribute between the areas A_1 and A_2 , which area would you expect to carry most charge?
 - (c) Give a symbolic expression for the capacitance of the capacitor. Calculate the ratio Q_1 / Q_2 . Is the calculated distribution of Q between areas A_1 and A_2 consistent with your expectation?
 - (d) Given that $\varepsilon = \varepsilon_r \varepsilon_0$ is called "permittivity", can you explain why it is called that way?
- 2. A uniformly charged dielectric cylinder of infinite length having a radius of 1 cm and $\varepsilon_r = 5.0$ is positively charged with a charge density of $\pm 10^{-9}$ C/cm³. The cylinder is surrounded by air.
 - (a) Draw the experimental setup and label all objects. Derive a symbolic expression for the electric flux density **D** (i) inside and (ii) outside the cylinder. Sketch **D**(r).²
 - (b) Give a symbolic expression for the electric field E (i) inside and (ii) outside the cylinder. Sketch E(r).
 - (c) Calculate **D** and **E** at the distance from the symmetry axis where **D** and **E** are maximal.
- 3. A voltage of 100 V is applied to two parallel capacitor plates (area 10 cm²) that are separated by a 0.01 mm wide air gap. Assume that the LHS and RHS³ plate is negatively and positively charged, respectively (the left-to-right direction is the *x*-direction). Assume that a test charge with $q = 10^{-9}$ C is placed in the gap.
 - (a) Draw the experimental setup and label all objects appropriately. Calculate the magnitude and the direction of the force **F** acting on the test charge.
 - (b) Next, the capacitor is disconnected from the 100 V power supply. Then the air gap is filled with a dielectric fluid having a relative dielectric constant of $\varepsilon_r = 5.0$. Calculate the magnitude and the direction of the force **F** acting on the test charge.
- 4. Determine if the following statements are (i) true or (ii) false. Explain your answers.
 - (a) If a point charge is located inside a grounded metal sphere, then there will not be an electric field outside the metal sphere.
 - (b) An antenna having a spatial dimension (size) that is >> λ (λ = wavelength of an electromagnetic signal received by the antenna) will have good reception.

¹ Always show your work, always give units, and write your name on first page.

² Bold italic letters are meant to be vectors, i.e. **D** is a vector.

³ LHS = Left hand side; RHS = Right hand side