## Exam-02 - Electrostatics ${ }^{1}$

1. Consider a parallel plate capacitor with plate area $A$ and distance $d$ between the plates. For an area $A_{1}=1 / 2 A$ the gap between the plates is completely filled with a dielectric material ( $\varepsilon_{r 1}=10$ ). For an area $A_{2}=1 / 2 A$ the gap between the plates is completely filled with air ( $\varepsilon_{r 2}$ $=1$ ). The capacitor carries the total charge $Q$; the Areas $A_{1}$ and $A_{2}$ carry the charge $Q_{1}$ and $Q_{2}$, respectively. Furthermore, $Q=Q_{1}+Q_{2}$.
(a) Draw the experimental setup and label all objects. Assume that we force all charge into area $A_{1}$ so that $Q=Q_{1}$ and $Q_{2}=0$. Calculate the energy carried by the capacitor. Next, assume that we force all charge into area $A_{2}$ so that $Q=Q_{2}$ and $Q_{1}=0$. Calculate the energy carried by the capacitor. Which of the two calculated energies is lower?
(b) Given the results obtained above, and assuming that the charge $Q$ can freely distribute between the areas $A_{1}$ and $A_{2}$, which area would you expect to carry most charge?
(c) Give a symbolic expression for the capacitance of the capacitor. Calculate the ratio $Q_{1} / Q_{2}$. Is the calculated distribution of $Q$ between areas $A_{1}$ and $A_{2}$ consistent with your expectation?
(d) Given that $\varepsilon=\varepsilon_{r} \varepsilon_{0}$ is called "permittivity", can you explain why it is called that way?
2. A uniformly charged dielectric cylinder of infinite length having a radius of 1 cm and $\varepsilon_{r}=$ 5.0 is positively charged with a charge density of $+10^{-9} \mathrm{C} / \mathrm{cm}^{3}$. The cylinder is surrounded by air.
(a) Draw the experimental setup and label all objects. Derive a symbolic expression for the electric flux density $\boldsymbol{D}$ (i) inside and (ii) outside the cylinder. Sketch $\boldsymbol{D}(r) .^{2}$
(b) Give a symbolic expression for the electric field $\boldsymbol{E}$ (i) inside and (ii) outside the cylinder. Sketch $E(r)$.
(c) Calculate $\boldsymbol{D}$ and $\boldsymbol{E}$ at the distance from the symmetry axis where $\boldsymbol{D}$ and $\boldsymbol{E}$ are maximal.
3. A voltage of 100 V is applied to two parallel capacitor plates (area $10 \mathrm{~cm}^{2}$ ) that are separated by a 0.01 mm wide air gap. Assume that the LHS and $R H S^{3}$ plate is negatively and positively charged, respectively (the left-to-right direction is the $x$-direction). Assume that a test charge with $q=10^{-9} \mathrm{C}$ is placed in the gap.
(a) Draw the experimental setup and label all objects appropriately. Calculate the magnitude and the direction of the force $\boldsymbol{F}$ acting on the test charge.
(b) Next, the capacitor is disconnected from the 100 V power supply. Then the air gap is filled with a dielectric fluid having a relative dielectric constant of $\varepsilon_{r}=5.0$. Calculate the magnitude and the direction of the force $\boldsymbol{F}$ acting on the test charge.
4. Determine if the following statements are (i) true or (ii) false. Explain your answers.
(a) If a point charge is located inside a grounded metal sphere, then there will not be an electric field outside the metal sphere.
(b) An antenna having a spatial dimension (size) that is >> $\lambda$ ( $\lambda=$ wavelength of an electromagnetic signal received by the antenna) will have good reception.
[^0]
[^0]:    ${ }^{1}$ Always show your work, always give units, and write your name on first page.
    ${ }^{2}$ Bold italic letters are meant to be vectors, i.e. $\boldsymbol{D}$ is a vector.
    ${ }^{3}$ LHS = Left hand side; RHS = Right hand side

