Exam-04 – Electrodynamics¹

- 1. Consider a EM plane wave (EM = Electro-Magnetic) with \hat{E} , \hat{H} and \hat{k} being unit vectors along the \vec{E} -, \vec{H} -field, and propagation direction, respectively. Considering the triplet \hat{E} , \hat{H} and \hat{k} ...
 - (a) ... determine and sketch the direction of the missing quantity, if ...
 - (i) \vec{E} and \vec{H} point along the -z and x direction, respectively,
 - (ii) \hat{k} and \vec{H} point along the -y and z direction, respectively, and
 - (iii) \hat{k} and \vec{E} point along the x and -y direction, respectively.
 - (b) Determine and sketch the direction of the . . .
 - (i) Poynting vector \vec{S} , if \vec{E} and \vec{H} point along the *z* and -x direction, respectively,
 - (ii) Poynting vector \vec{S} , if \hat{k} and \vec{E} point along the -x and y direction, respectively, and
 - (iii) \vec{E} vector, if \vec{S} and \vec{H} point along the y and -z direction, respectively.
- 2. The frequency of EM radiation in a microwave oven is f = 2.45 GHz. A non-magnetic liquid (e.g. water with relative permittivity $\varepsilon_r = 80$), located in a cup, is heated in the oven. At frequency f, the liquid has a resistivity of $\rho = 2 \Omega$ m and a conductivity σ .
 - (a) Draw the experimental setup. Determine, by calculation, if the liquid is a "good conductor" or "weak conductor".
 - (b) Determine the absorption constant α , and the absorption length 1/ α of the EM radiation.
 - (c) A cylindrical cup containing the liquid has a diameter of 2r = 10 cm. What is the desired relationship (inequality relationship) between 2r and $1/\alpha$? Is the relationship satisfied?
 - (d) Determine the phase constant β of the EM wave when propagating in the liquid. Determine λ of the EM wave when propagating in air.
- 3. A cell phone has an EM-wave output power of 1 W. The antenna is located at the lower end of the cell phone. The center of the head of a person operating the cell phone is 20 cm away from the antenna. Sketch the experimental setup. Assuming that EM-wave is not absorbed by human tissue, determine the magnitude of the Poynting vector, $|\vec{S}_{cell}|$, at the center of the head. Compare the value of $|\vec{S}_{cell}|$ with the value of $|\vec{S}_{solar}|$ (solar radiation on Earth).
- 4. Visible light is incident on an air-glass boundary and air-diamond boundary. Glass (SiO₂) has a refractive index of n = 1.45. Diamond (carbon) has a refractive index of n = 2.2. The relative permittivity ε_r and the refractive index are related by $n = (\varepsilon_r)^{\frac{1}{2}}$.
 - (a) Sketch the experimental setup for normal incidence. Determine the amplitude reflection coefficient (Fresnel coefficient) at the (i) air-glass and (ii) air-diamond boundary.
 - (b) Determine the power reflection coefficients for these two cases. Explain if the results are consistent with your experience.
- 5. Determine if the following statements are (i) true or (ii) false. Explain your answers.
 - (a) When an EM-wave (EM = Electro-Magnetic) is reflected off the surface of an ideal metal, the polarization directions of the incident \vec{E} -field and reflected \vec{E} -field are the same.
 - (b) Superimposing a right-rotating circularly polarized wave with a left-rotating circularly polarized wave can result in a linearly polarized wave.

¹ Always give units! Show your work! Put your name on the first page.