Exam-01 – Transmission Lines (T-lines)¹

- 1. A T-line generally has the lumped circuit elements R', G', L', and C'. For a specific T-line considered here, it is G' = L' = 0. The propagation constant of a T-line is given by $\chi = \alpha + j\beta$, where α and β are the loss constant and phase constant, respectively.
 - (a) Draw two or three lumped-circuit elements of the T-line and label all objects.
 - (b) Calculate α and β .
 - (c) Assume $R' = 10^{-3} \Omega$ / m and C' = 1 pF / m. A sinusoidal signal with amplitude of 10 V and frequency of f = 1 MHz is applied to the starting point of the T-line. Calculate the amplitude of the signal at a distance of 10 km.
 - (d) The loss constant α depends on frequency f according to $\alpha \propto f^x$. Determine x.
 - (e) Provide a narrative explanation (in words) as to why the loss constant α increases with frequency.
- 2. Assume that the two wires of a T-line are surrounded by only air.
 - (a) Can you give an example of such T-line? What are ε_r and μ_r of such T-line?
 - (b) What is the phase propagation velocity v_{phase} on such T-line?
 - (c) The line frequency of power transmission lines in the US is 60 Hz. Determine the wavelength of a voltage wave with f = 60 Hz propagating on the T-line.
 - (d) In the laboratory section for this course, we learned that for certain lengths of a T-line, interference effects (standing-wave effects) must be taken into account. For which range of length of a T-line can interference effects be neglected?
 - (e) The distance between New York State's Southern tip and Northern tip is about 400 km. Do we need to take into account interference effects of the power T-line within NY State?
- 3. A voltage signal propagates on a lossless T-line (length = l_{T-line}) with a phase velocity of $v_{phase} = 2 f l_{T-line}$, where *f* is the frequency of the voltage signal.
 - (a) Can you express the length of the T-line as a fraction or as a multiple of λ ? (λ = wavelength of voltage signal)
 - (b) Assume that the T-line is impedance matched at its input point (starting point). At its output point (ending point), the T-line is (i) open circuited (OC), (ii) impedance-matched (IM), or (iii) short circuited (SC). For these three cases, determine the condition (e.g. virtual OC, virtual SC ...) at the input point of the T-line.
- 4. Assume that a lossless T-line has a wave impedance of Z_0 and a load impedance of $Z_{Load} = (\frac{1}{2}) Z_0$. A sinusoidal voltage with amplitude V_0^+ is applied to the T-line. Assume that the power applied to the T-line is $(V_0^+)^2 / Z_0$.
 - (a) Determine the voltage reflection coefficient at the termination point. Determine the voltage at the load. Determine the power consumed in the load.
 - (b) Define the power reflection coefficient. Determine the power reflection coefficient.

¹ Always show your work, always give units, and please write your name on first page.