Exam-02 – Electrostatics¹

- 1. A uniformly charged dielectric pipe of infinite length, having an inner radius of $r_1 = 1$ cm, an outer radius of $r_2 = 2$ cm, and $\varepsilon_r = 5.0$, is negatively charged with a charge density of -10^{-9} C/m³. The dielectric pipe is concentrically surrounded by a grounded metal cylinder with radius of $r_3 = 5$ cm. Air is located inside and outside the dielectric pipe.
 - (a) Draw the experimental setup and label all objects. Derive symbolic expressions for the electric flux density **D** for r = 0 to $r = \infty$. Sketch **D**(r).²
 - (b) Give symbolic expressions for **E** for r = 0 to $r = \infty$. Sketch **E**(r).
 - (c) Give the *r* values where **D** and **E** are maximal. Calculate **D** and **E** at these values of *r*.
- 2. First, consider a **two**-plate capacitor with the plates having an area A and a separation d with one plate carrying a charge $+Q_1$ and the other plate carrying the charge $-Q_1$. Second, consider a **three**-plate capacitor with all plates having an area A and a separation d. The middle plate carries the charge $+2Q_1$ and the outer two plates each carry the charge $-Q_1$. The two outer plates are electrically connected (shorted). Air is located between all plates.
 - (a) Draw the two capacitors and label all objects. Derive the electric field *E* in the *two*-plate capacitor using Maxwell's 1st equation.
 - (b) Derive the electric field *E* in the *three*-plate capacitor using Maxwell's 1st equation. Are the *E* values identical for both capacitors? Are the voltages identical for both capacitors?
 - (c) Determine the capacitances of the two capacitors ($C_{2-\text{plate}}$ and $C_{3-\text{plate}}$) using C = Q / V.
 - (d) Compare the two capacitance values. Is one of the capacitors ($C_{2-\text{plate}}$ or $C_{3-\text{plate}}$) more favorable in terms of materials usage? Explain your answer.
- 3. A metal sphere (very small radius $r_0 = 1$ nm = 10^{-9} m) carries the charge Q and is located in free space ($\varepsilon_r = 1.0$). Consider a concentric spherical shell ($\varepsilon_r = 1.0$) surrounding the metal sphere having a radius r and a shell thickness dr, with dr $\neq 0$ and dr << r.
 - (a) Draw the experimental setup and label all objects. Calculate the electric field surrounding the metal sphere.
 - (b) The electric field energy density is given by $(\frac{1}{2}) \varepsilon E^2$. Calculate the electric field energy contained inside the thickness dr of the shell.
 - (c) Calculate the electric field energy within the entire space surrounding the metal sphere.
 - (d) Calculate the numerical value of the electric field energy for $Q = 10^{-10}$ C.
 - (e) Consider two metal sphere charges +Q and −Q. Calculate the sum of the electric field energies (i) if the two charges are separated by a large distance ("Configuration 1"), and (ii) if the two charges would be located in the exactly same location ("Configuration 2").
 - (f) What is the energy gained (i.e. the change in energy) by moving the two point charges from "Configuration 1" to "Configuration 2"?
- 4. Determine if the following statements are (i) true or (ii) false. Explain your answers.
 - (a) The electric field energy density has the unit J/m^3 .
 - (b) The electric flux density **D** can be smaller than the electric field **E**, that is, **D** < **E**.

¹ Always show your work, always give units, and write your name on first page.

² Bold italic letters are meant to be vectors, i.e. *E* and *D* are vectors.