Physical constants

a_{B}	=	0.5292 Å	Bohr radius	$(a_{\rm B} = 0.5292 \times 10^{-10} \mathrm{m})$
E 0	=	$8.8542 \times 10^{-12} \mathrm{As/(Vm)}$	absolute dielectric cor	nstant
e	=	$1.6022 \times 10^{-19} \mathrm{C}$	elementary charge	
С	=	$2.9979 \times 10^8 \mathrm{m/s}$	velocity of light in vac	cuum
$E_{\rm Ryd}$	=	13.606 eV	Rydberg energy	
g	=	9.8067 m/s^2	acceleration on earth a	at sea level due to gravity
G	=	$6.6873 \times 10^{-11} \text{ m}^3/(\text{kg s}^2)$	gravitational constant	$(F = G M m / r^2)$
h	=	$6.6261 \times 10^{-34} \mathrm{Js}$	Planck constant	$(h = 4.1356 \times 10^{-15} \mathrm{eVs})$
ħ	=	$1.0546 \times 10^{-34} \mathrm{Js}$	$\hbar = h/(2\pi)$	$(\hbar = 6.5821 \times 10^{-16} \mathrm{eVs})$
k	=	$1.3807 \times 10^{-23} \text{ J/K}$	Boltzmann constant	$(k = 8.6175 \times 10^{-5} \text{ eV/K})$
μ_0	=	$1.2566 \times 10^{-6} \mathrm{V s/(A m)}$	absolute magnetic cor	istant
m _e	=	$9.1094 \times 10^{-31} \text{ kg}$	free electron mass	
$N_{ m Avo}$	=	$6.0221 \times 10^{23} \text{ mol}^{-1}$	Avogadro number	
$R = k N_{Avo}$	=	$8.3145 \text{ J K}^{-1} \text{ mol}^{-1}$	ideal gas constant	

Note:

The *dielectric permittivity* of a material is given by $\varepsilon = \varepsilon_r \varepsilon_0$ where ε_r and ε_0 are the *relative* and *absolute* dielectric permittivity, respectively.

The *magnetic permeability* of a material is given by $\mu = \mu_r \mu_0$ where μ_r and μ_0 are the *relative* and *absolute* magnetic permeability, respectively.

Useful conversions

$1 \text{ eV} = 1.6022 \times 10^{-19} \text{ CV} = 1.6022 \times 10^{-19} \text{ J}$					
$E = hv = hc/\lambda = 1239.8 \text{ eV} / (\lambda/\text{nm})$					
kT	= 25.86 meV	(at $T = 300$ K)			
kT	= 25.25 meV	(at $T = 20 \text{ °C} = 293.15 \text{ K}$)			