Units

SI units: International system of units (French: "SI" means "Système Internationale")

The seven SI base units are:

Mass: kg Defined by the prototype "standard kilogram" located in Paris. The

standard kilogram is made of Pt metal.

Length: m Originally defined by the prototype "standard meter" located in Paris.

Then defined as 1,650,763.73 wavelengths of the orange-red radiation of Krypton⁸⁶ under certain specified conditions. (*Official definition*: The distance traveled by light in vacuum during a time interval of 1 / 299 792

458 of a second)

Time: s The second is defined as the duration of a certain number of oscillations

of radiation coming from Cs atoms. (Official definition: The second is the duration of 9,192,631,770 periods of the radiation of the hyperfine-

level transition of the ground state of the Cs¹³³ atom)

Current: A Defined as the current that causes a certain force between two parallel

wires. (Official definition: The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2×10^{-7}

Newton per meter of length.

Temperature: K One percent of the temperature difference between boiling point and

freezing point of water. (Official definition: The Kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the

thermodynamic temperature of the triple point of water.

Amount of substance: mol The amount of a substance that contains Avogadro's number $N_{\text{Avo}} =$

 6.0221×10^{23} of atoms or molecules. (Official definition: The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 12 grams of C¹². When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions,

electrons, other particles, or specified groups of such particles)

Luminous intensity: cd The candela was defined as the luminous intensity of one candle with

standardized dimensions and construction. (Official definition: The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} Hertz and that

has a radiant intensity in that direction of (1/683) Watt per steradian)

Some SI-derived units and useful conversions

Force Newton = $N = kg m/s^2$

Mechanical energy and work Joule = $J = Nm = kg (m/s^2) m = kg m^2/s^2$

CV = VAsElectrical energy and work Joule J W =Power Watt J/s = VA= V **Voltage** Volt = W/ACapacitance Faraday = F C/V $= \Omega$ Resistance Ohm

The "electron Volt" $eV = eV = 1.602 \times 10^{-19} \text{ CV} \text{ where } e = 1.602 \times 10^{-19} \text{ C}$

Work with units: Always "carry along" units. If units in an equation do not work out, it is erroneous.

E. F. Schubert