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1. Introduction

In most radar and sonar applications, the environment to be imaged is extended
in range and Doppler space. This means that the environment is composed of several
discrete scatterers or a large object with continuum of scatterers in range-Doppler
space. In extended environment, the received signal is modeled as a weighted average
of the time-delayed and scaled version of the transmitted waveform [1]
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where p is the transmitted waveform and TW is the wideband reflectivity density func-
tion of the environment associated with each time-delayed and scaled version of the
transmitted waveform. τ is called the time-delay and s is called the Doppler-scale
factor given by

s =
c− v

c + v
(2)

where c is the speed of the transmitted waveform in the propagation medium and v is
the radial velocity of scatters.

If the transmitted waveform is narrowband, the model in (1) can be approximated
as

e(t) =
∫ ∞

−∞
TN (ω, τ)p(t− τ) e iωtdτdω (3)

where TN is called the narrowband reflectivity density function of the environment
associated with each time-delayed and frequency-shifted version of the transmitted
waveform p and ω is called the Doppler-shift.



Equation (1) is referred to as the wideband model and is applicable to scenar-
ios involving both wideband and narrowband transmitted waveforms. Equation (3) is
referred to as the narrowband model. The narrowband model is sufficient for most
radar applications. However, for sonar and ultra-wideband radar, wideband model
is needed [2]. In this chapter, we employ the wideband model due to its generality
and the underlying mathematical structure which allows alternative image formation
methods.

In radar and sonar, the environment to be imaged is composed of two types of scat-
terers: Those that are of interests to a practitioner, called target; and those scatterers
that are not of interest, called clutter. The objective in radar (sonar) imaging is to es-
timate the target reflectivity function embedded in clutter and additive thermal noise.
Thus, in practice, measurements are modeled as:

y(t) = eT (t) + eC(t) + n(t), t ∈ [t0, t1] (4)

where n denotes additive thermal noise, eT and eC denote the received signal due to
target T and clutter C, respectively. eC is modeled as:

eC(t) =
∫ ∞

−∞

∫ ∞
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C(s, t)
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)
ds

s
dτ. (5)

Figure 1.1 displays the components of the radar (sonar) range-Doppler measurement
model.
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Figure 1.1. A block diagram of the radar range-Doppler measurement model

In this chapter, we address the following two problems: (i) How can we recon-
struct the wideband target reflectivity density function embedded in clutter? (ii) What
waveforms can we transmit so that the signal due to clutter is “minimized” in some
sense?

The reconstruction of wideband target reflectivity was studied before. (See, [3–9]
and references therein.) In [7] and [3], the Fourier theory of the affine group was
used to develop a method to reconstruct the target reflectivity density function in a



deterministic setting. In [6], the wavelet transform was used for the reconstruction
of the wideband target reflectivity function. However, this approach requires target
reflectivity function to be in the reproducing kernel Hilbert space of the transmitted
wavelet waveform. In [8,9], the approach in [6] was extended to include affine frames.
In all of these studies, the measurements are assumed to be free of additive noise and
clutter.

In this paper, we assume that the target to be imaged is embedded in clutter and de-
veloped an statistical approach that addresses the target estimation and waveform de-
sign problems jointly. We show that with the transmission of appropriate waveforms,
the received signal due to clutter can be minimized and a high resolution reconstruc-
tion of the target in range-Doppler space can be achieved. Our approach results in the
following advantages: (i) Efficient use of transmitted waveform power. For a fixed
transmitted signal power, our approach results in higher signal-to-clutter-ratio (SCR)
in received measurements. (ii) Reduced computational complexity in receive process-
ing. Clutter suppression is performed via transmission of appropriate waveforms as
opposed to processing in receive. (iii) High range-Doppler resolution imaging. The
affine Fourier theory based image formation results in an ideal point spread function
(PSF), i.e., Dirac-delta function in range and Doppler space, as opposed to the wide-
band ambiguity function which results from matched-filtering based approach.

Our approach is based on the observation that the received signal can be treated as
the affine group Fourier transform of the wideband reflectivity density function evalu-
ated at the transmitted waveform. We design a Wiener filter in the affine group Fourier
transform domain as presented in [10] to suppress clutter. We then modify the Wiener
filter with an operator associated with the affine group Fourier transform and develop
a preconditioner for the transmitted waveforms. We show that when the waveforms
are transformed by the preconditioner before transmission, the received signal due to
clutter is minimized in the mean square error (MSE) sense. Next, we show that, if N
waveforms are to be transmitted, the eigenfunctions of the preconditioner correspond-
ing to largest N eigenvalues are the optimal waveforms in the MSE sense.

The chapter is organized as follows: In Section 2, we provide a review of the
affine group and its Fourier transform. In Section 3 we present the estimation of target
reflectivity function in a statistical setting. In Section 4, we present the derivation of
the optimal clutter rejecting waveforms. In Section 5, we demonstrate the performance
of our target estimation and waveform design method. Finally, Section 6 concludes our
discussion.

Note that in this chapter we limit our discussion to the clutter suppression and
design of clutter rejecting waveforms. For the suppression of additive noise, see our
work in [11].



2. Fourier Theory Of the Affine Group

2.1. Affine Group

Affine group or the ax + b group is a 2-parameter Lie group whose elements are
given by 2× 2 matrices of the form

[
a b
0 1

]
, a ∈ R+, b ∈ R, (6)

parameterized by the scale parameter a and the translation parameter b.

The affine group operation is the usual matrix multiplication, i.e. (a, b)(c, d) =
(ac, ad + b) and the inverse elements are given by the matrix inversion (a, b)−1 =
(a−1,−a−1b). This defines the affine group as a semi-direct product of the additive
group (R, +) and the multiplicative group (R+,×). For the rest of the chapter, we
shall denote the affine group by A.

Let (s, τ) ∈ A, and let L2(A, s−2ds dτ) and L1(A, s−2ds dτ) denote the space of
square summable and absolutely summable functions over A, respectively, i.e.

∫

A
|f(s, τ)|2 ds

s2
dτ < +∞,

∫

A
|f(s, τ)|ds

s2
dτ < +∞, (7)

where s−2ds dτ is the left Haar measure of the affine group. The inner product of two
functions f1 and f2 in L2(A, s−2ds dτ) is defined as

〈f1, f2〉 =
∫

A
f1(s, τ)f2(s, τ)

ds

s2
dτ. (8)

Affine group is a nonunimodular group, where the right Haar measure is s−1dsdτ .
Note that for the affine group, the modular function is given by ∆(s, τ) = s−1.

2.2. Fourier Transform over the Affine Group

There are exactly two nonequivalent, infinite dimensional, irreducible, unitary rep-
resentations of the affine group, i.e. λ ∈ {+,−}, U±(s, τ). Let U+ act on the rep-
resentation space H+ that consists of functions ϕ+, whose Fourier transform are sup-
ported on the right half-line and U− act on H−, the orthogonal complement of H+,
that consists of functions ϕ− whose Fourier transforms are supported on the left half-
line. Note that L2(R, dt) is a direct sum of H+ and H−, i.e. L2(R) = H+ ⊕ H−.
Then, the representations

U±(s, τ)ϕ±(t) =
1√
s
ϕ±

(
t− τ

s

)
(9)

are unitary, nonequivalent and irreducible in the space H+ and H−, respectively.



The affine Fourier transform of a function f ∈ L2(A, s−2ds dτ) is defined as

F±(f) =
∫ ∞

−∞

∫ ∞

0

s−2dsdτf(s, τ)U±(s, τ). (10)

The inverse affine Fourier transform is given by

f(s, τ) =
∑
±

trace(U†
±(s, τ)F±(f)ξ±). (11)

where U†
±(s, τ) denote the adjoint of U±(s, τ) and ξ± are the Hermitian positive def-

inite operators defined as

ξ±ϕ±(t) = ∓ i
2π

dϕ±
dt

(t). (12)

The convolution of two functions f1, f2 over the affine group is given by

(f1 ∗ f2)(s, τ) =
∫ ∞

−∞

∫ ∞

0

f1(a, b)f2

(
s

a
,
τ − b

a

)
da

a2
db, (s, τ) ∈ A. (13)

Under the affine group Fourier transform, the convolution of two functions over the
affine group becomes operator composition. More specifically,

F±(f1 ∗ f2) = F±(f1)F±(f2). (14)

Let {sn
±(t)} denote a set of orthonormal differentiable bases for H±, respectively.

Define sn(t) = sn
+(t) + sn

−(t), U(s, τ) = U+(s, τ) ⊕ U−(s, τ), (s, τ) ∈ A and
ξ = ξ+ ⊕ ξ−. Then for any p ∈ L2(R, dx),

U(s, τ)p = U+(s, τ)p+ + U−(s, τ)p−. (15)

and if p is differentiable,
ξp = ξ+p+ + ξ−p−, (16)

where p+ and p− are orthogonal components of p in H+ and H−, respectively.

For a given orthonormal, differentiable basis {sn
±(t)} of H±, the inverse affine

Fourier transform can be expressed as

f(s, τ) =
∑
±

∑
n

〈U†
±(s, τ)F±(f)ξ±sn

±, sn
±〉

=
∑

n

〈F(f)ξsn, U(s, τ)sn〉
(17)

where F(f) = F+(f)⊕F−(f).



3. Target Reflectivity Estimation

We observe that the wideband received signal model (1) is the affine Fourier trans-
form of the target reflectivity density function TW evaluated at the transmitted wave-
form p, i.e.,

eT (t) = F(TW )p(t) (18)

where eT is the received signal due to target. We now assume that the unknown target
reflectivity density function, TW (a, b), is a left affine stationary process embedded in
additive left affine stationary clutter C(a, b) on the range-Doppler plane. It follows
from [10] that the optimal estimator for the target reflectivity density function in the
mean square error sense is given by

T̃W = (TW + C) ∗Wopt. (19)

Here, Wopt is the Wiener filter over the affine group given by

F±(Wopt) = (ST
± + SC

±)−1ST
±, (20)

where ST
± and SC

± are the spectral density operators of the target and clutter reflectivity
density functions, respectively.

Alternatively, (19) can be expressed as

F±(T̃W ) = F±(TW + C)F±(Wopt), (21)

or

T̃W (s, τ) =
∑
±

trace
(
U†
±(s, τ)F±(TW + C)F±(Wopt)ξ

)
. (22)

This estimate can be implemented in various forms leading to different adaptive
receive and transmit algorithms [11]. Note that both target and clutter spectra, ST

± and
SC
± , are not Hermitian operators due to the nonunimodular nature of the affine group.

However, it can be shown that ST
±ξ and SC

±ξ are Hermitian and nonnegative definite.
We define

S̃T
± = ST

±ξ and S̃C
± = SC

±ξ. (23)

Then, (22) can be rewritten as

T̃W (s, τ) =
∑
±

trace
(
U†
±(s, τ)F±(TW + C)ξ(S̃T

± + S̃C
±)−1S̃T

±
)

. (24)

Below, we summarize the resulting algorithm to implement the estimate given in (24)
and discuss how the estimation problem couples with the waveform design problem.



Receiver Design - Let {sn
±(t)} be a set of orthonormal basis for H±, respectively.

Then, the target reflectivity estimate in (24) can be expressed as

T̃W (s, τ) =
∑
±

∑
n

〈
F±(TW + C)ξ(S̃T

± + S̃C
±)−1S̃T

±sn
±, U±(s, τ)sn

±
〉

=
∑
±

∑
n

〈F±(TW + C)s̃n
±, U±(s, τ)sn

±
〉
, (25)

where

s̃n
± = ξ(S̃T

± + S̃C
±)−1S̃T

±sn
±. (26)

Note that if s̃n = s̃n
+ + s̃n

− is chosen as the transmitted waveform, then yn(t) =
F(TW + C)s̃n becomes the received signal and (25) can be reexpressed as

T̃W (s, τ) =
∑

n

〈yn, U(s, τ)sn〉. (27)

This observation leads to the following algorithm for receiver and waveform design:

Algorithm -

1. Choose a set of orthonormal basis functions {sn
±} for H±.

2. Transmit s̃n = s̃n
+ + s̃n

−, where s̃n
± = ξ(S̃T

± + S̃C
±)−1S̃T

±sn
± for each channel.

3. At the receiver side, perform affine matched-filtering for each channel as fol-
lows:

zn(s, τ) = 〈yn, U(s, τ)s̃n〉 (28)

where yn is the received signal for the nth channel.

4. Coherently sum all channel outputs

T̃W (s, τ) =
∑

n

zn(s, τ). (29)

So far, we have not specified how we can choose a set of orthonormal basis func-
tions {sn

±} because, the wideband image formation algorithm described above is appli-
cable independent of the choice of transmitted waveforms. The orthogonal functions
{sn
±} or their filtered counterparts {s̃n

±} do not need to be wideband signals. Thus, this
reconstruction formula can be applied to a scenario where there are multiple antenna
elements operating independently, each with a limited low resolution aperture (i.e.
narrowband transmission). Nevertheless, appropriate processing and fusion of mea-
surements from multiple antenna elements as described above results in a synthetic
high resolution image in both range and Doppler.



4. Design of Clutter Rejecting Waveforms

Note that in the target reflectivity estimation outlined above, the minimum mean
square error (MMSE) is achieved irrespective of the choice of basis functions or trans-
mitted waveforms. However, the requirement is that a complete set of modified basis
functions {s̃n} must be transmitted to achieve the MMSE. In practice, we are only
allowed to transmit a finite number of, say N , waveforms. So the question is how to
choose the N best waveforms to achieve the MMSE.

We observe that the target reflectivity estimate (22) can be written as

T̃W (s, τ) =
∑
±

trace
(
U†
±(s, τ)F±(T̃W )ξ

)
(30)

=
∑
±

∑
n

〈F±(T̃W )ξsn
±U±(s, τ)sn

±〉, (31)

where {sn
±} are orthonormal bases for H±, sn

± = sn
+ + sn

−.

Let Tn(s, τ) = 〈F(T̃W )ξsn, U(s, τ)sn〉. Then,

T̃W (s, τ) =
∑

n

Tn(s, τ). (32)

It is straightforward to show that T̃W (s, τ) and Tn(s, τ) are affine stationary processes
with the following properties:

1. Tn(s, τ) and Tm(s, τ) are jointly affine stationary.

2. E[Tn(s, τ)Tm(s, τ)] = 0 if n 6= m.

3. E[Tn(s, τ)T̃W (s, τ)] = E[|Tn(s, τ)|2] = 〈F(RT̃W
)ξsn, sn〉 where RT̃W

is the
autocorrelation function of T̃W (s, τ).

4. E[|T̃W (s, τ)|2] =
∑
± trace(F±(RT̃W

)ξ).

5. RT̃W
= W ∗

opt∗(RT +RC)∗Wopt, where W ∗
opt(s, τ) = Wopt((s, τ)−1) and RT ,

RC are autocorrelation functions of target reflectivity density process T (s, τ),
and clutter C(s, τ), respectively.

It follows from the above properties that if only N waveforms are transmitted, then



the mean square error is given by

E




∣∣∣∣∣T̃W −
N∑

n=1

Tn

∣∣∣∣∣

2

 = E[|T̃W |2] +

N∑
n=1

E[|Tn|2]− 2
N∑

n=1

E[TnT̃W ]

=
∑
±

trace(F±(RT̃W
)ξ)−

N∑
n=1

〈Fπ(RT̃W
)ξsn, sn〉

=
∑
±

trace(F±(RT̃W
)ξ)−

∑
±

N∑
n=1

〈F±(RT̃W
)ξsn

±, sn
±〉

=
∑
±

∞∑

n=N+1

〈F±(RT̃W
)ξsn

±, sn
±〉.

(33)

Note that

F±(RT̃W
)ξ = F±(W ∗

opt ∗ (RT + RN ) ∗Wopt)ξ

= F±(W ∗
opt)(S

T
± + SN

± )(ST
± + SN

± )−1ST
±ξ = F±(W ∗

opt)S̃
T
±.

(34)

Therefore, the MMSE is achieved if sn
±, n = 1 . . . N, are chosen as the eigenfunctions

of the operators F±(W ∗
opt)S̃

T
± corresponding to the N largest eigenvalues. Thus, Step

1 of the algorithm introduced in Section 3 can be modified so that the orthonormal
functions {sn

±}, n = 1, . . . , N are the unit eigenfunctions of F±(W ∗
opt)S̃T

± corre-
sponding to the N largest eigenvalues.

5. Numerical Experiments

In this section, we demonstrate the performance of the target estimation and wave-
form design methods introduced in the previous sections.

For computational convenience, we derived the transmitted waveforms from the
Laguerre polynomials.

Let

ŝn
+(ω) = Ln−1(ω) e−ω/2, ω ∈ R+, n ∈ N, (35)

where ŝn
+(ω) is the Fourier transform of sn

+(t) and Ln−1, n ∈ N are the Laguerre
polynomials defined by

L0(x) = 1 (36)
L1(x) = −x + 1 (37)

Ln+1(x) =
2n + 1− x

n + 1
Ln(x)− n

n + 1
Ln−1(x), n ∈ N. (38)



It is well-known that [12]

∫ ∞

0

e−xLm(x)Ln(x)dx =

{
1 m = n,
0 else.

(39)

Therefore, {ŝn
+} is an orthonormal basis for L2(R+, dx). Let sn

+ be the standard
inverse Fourier transform of ŝn

+. Then, {sn
+} is an orthonormal basis for H+. Let

ŝn
−(ω) = ŝn

+(−ω), ω ∈ R−. Then, sn
−(t) = sn

+(t), t ∈ R and {sn
−} are orthonormal

bases for H−.

We generated a set of realizations of the target and the clutter based on the follow-
ing spectral density operators S̃T

± and S̃C
± with respect to bases {sn

±}

S̃T
± =




10 4.5
4.5 9 4

4 8 3.5
3.5 7 3

3 6 2.5
2.5 5 2

2 4 1.5
1.5 3 1

1 2 0.5
0.5 1


 and S̃C

± =




07×7
4

8
10

12

. . .
40


 . (40)

Figures 5.1 (a) and (b) show a realization of the target and target embedded in clutter.

We synthesized 10 realizations of the target and clutter at various signal to clutter
ratios (SCR) defined as SCR = 20 log10(σ2

s/σ2
c ) where σ2

s and σ2
c are the target and

clutter reflectivity variance, respectively. We generated each realization according to
the spectral density operators σ2

s S̃T
± and σ2

c S̃C
± .

We chose the transmitted waveforms as

sn = ξ
(
S̃T + S̃C

)−1

S̃T sn, n = 1, . . . , 20. (41)

Figure 5.1 (c) and (d) show estimated target reflectivity using our method and the
method in [7]. Note that the method in [7] uses Hermite polynomial basis. Figure
5.2 shows the mean square error (MSE) between the true and estimated reflectivity
density functions for our method and for the method in [7] at different SCR levels.
We calculated the MSE by averaging the error over 10 realizations of the true and the
estimated target reflectivity at each SCR level. The numerical results show that our
method results in a lower MSE than the one in [7], particularly for low levels of SCR.

6. Conclusion

We treated the wideband received signal as the affine group Fourier transform of
the range-Doppler wideband target reflectivity function evaluated at the transmitted
waveform. Our approach provides to a framework in which the high resolution target
reflectivity function estimation and waveform design problems are jointly addressed.
We developed a Wiener filtering method in the Fourier transform of the affine group
to suppress clutter. We, then, showed that Wiener filter can be used to precondition



(a) Target (b) Target embedded in clutter

(c) Estimated target by the method in [7] (d) Our method

Figure 5.1. Estimated target reflectivity function embedded in clutter. (a) True target
reflectivity function. (b) Target reflectivity function embedded in clutter. (c) Estimated
target reflectivity function using the method in [7]. (d) Estimated target reflectivity
function by our method.

the transmitted waveforms to reject clutter. When, only N waveforms are to be trans-
mitted, the optimal waveforms in the MMSE sense becomes the eigenfunctions of the
modified Wiener filter corresponding to the largest N eigenvalues.
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