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Abstract
The integral of a function defined on the half-plane along the semi-circles
centered on the boundary of the half-plane is known as the circular averages
transform. Circular averages transform arises in many tomographic image
reconstruction problems. In particular, in synthetic aperture radar (SAR)
when the transmitting and receiving antennas are colocated, the received
signal is modeled as the integral of the ground reflectivity function of the
illuminated scene over the intersection of spheres centered at the antenna
location and the surface topography. When the surface topography is flat
the received signal becomes the circular averages transform of the ground
reflectivity function. Thus, SAR image formation requires inversion of the
circular averages transform. Apart from SAR, circular averages transform
also arises in thermo-acoustic tomography and sonar inverse problems. In this
paper, we present a new inversion method for the circular averages transform
using the Funk transform. For a function defined on the unit sphere, its Funk
transform is given by the integrals of the function along the great circles. We
used hyperbolic geometry to establish a diffeomorphism between the circular
averages transform, hyperbolic x-ray and Funk transforms. The method is
exact and numerically efficient when fast Fourier transforms over the sphere
are used. We present numerical simulations to demonstrate the performance of
the inversion method.

Dedicated to Dennis Healy, a friend of Applied Mathematics and Engineering.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The circular averages transform arises in many inverse problems including synthetic aperture
radar (SAR) [1, 2], thermo-acoustic tomography [3] and sonar [4].
3 Author to whom any correspondence should be addressed.
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Figure 1. An illustration of the synthetic aperture radar geometry.

In SAR, when the wavelength is considerably longer than the size of the antenna, the
transmitted electromagnetic waves are almost spherical. For an aircraft cruising along a
straight flight trajectory at a constant altitude with constant velocity, the received signal from
a flat topography can be modeled by the circular averages transform of the ground reflectivity
function [1, 5]. Here, the center of the circles corresponds to the projection of the flight path
onto the ground as illustrated in figure 1.

Without loss of generality, assuming that the flight trajectory is along the x1-axis, the
circular averages transform of the ground reflectivity f is given by

g(c, t) = RC[f ](c, t) =
∫ 2π

0
f (c + t cos θ, t sin θ) dθ (1)

where c ∈ R and t ∈ R+ denote the center on the x1-axis and the radius of the circle,
respectively. Thus, the reconstruction of the ground reflectivity function from SAR data
requires inversion of the circular averages transform.

If a function f is odd in its second variable, i.e. f (x1, x2) = −f (x1,−x2), then its
circular averages transform vanishes. The unique determination of a function f , which is
symmetric with respect to the x1-axis, from its circular averages transform g was proved by
Courant and Hilbert [6]. As a consequence, for a side looking radar, a function supported on
the half-plane can be uniquely recovered from its integrals over the semi-circles centered on
the boundary of the half-plane. For the rest of our discussion, we consider inversion of RC

for functions that are symmetric with respect to the x1-axis. In this regard, we do not make
any distinction between the circular averages transform of even functions and semi-circular
averages transform of functions supported on the upper half-plane.

In [7], Lavrent’ev gave a characterization of the range of the circular averages transform
and an inversion method that requires an infinite number of RC[f ] moments. One of the
earliest inversion methods for circular averages transform was presented by Norton where
weighted parameterized projections were related to the weighted parameterized function via
a two-dimensional convolution (see equation (16) in [8]) and the inversion was derived using
the 2D Fourier transform. Another inversion method based on the 2D Fourier transform was
given by Palamodov [9]. An alternative inversion was presented by Fawcett where he showed
that the Fourier–Hankel transform of RC[f ] is equivalent to the two-dimensional Fourier
transform of f (see equation (11a) in [10]).

Andersson gave an alternative proof of Fawcett’s inversion method, by taking the Fourier
transform of RC[f ] [1]. The first fast inversion algorithm for the circular averages transform
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Figure 2. The geometry of the Funk transform. The vector n, the normal of the plane enclosing a
great circle, parameterizes the Funk transform.

was developed by Nilsson, who reformulated Andersson’s inversion formula in a filtered-
backprojection form [11]. For a more detailed review of the circular averages transform
inversion methods, see [12].

In this paper, we develop a new inversion method for the circular averages transform using
the Funk transform, where we use results from the hyperbolic geometry to express the circular
averages transform in terms of the Funk transform. For a function defined on the unit sphere,
its Funk transform is given by the integrals of the function along the great circles. Expressing
the circular averages transform in terms of the hyperbolic x-ray transform on the hyperbolic
half-plane, we derive a diffeomorphism that transforms the hyperbolic x-ray transform on
the hyperbolic half-plane into the Funk transform. Thus, we show that the inversion of the
circular averages transform is equivalent to the inversion of the Funk transform and use fast
Fourier transforms over the rotation group to invert the circular averages transform. We present
numerical simulations to demonstrate the applicability of the new inversion method.

The organization of the paper is as follows. In section 2, we present the Funk transform
and its inversion. In section 3, we present the relationship between the upper semi-sphere and
hyperbolic half-plane. In section 4, we give an inversion algorithm for the circular averages
transform using the results in section 3. In section 5, we demonstrate the performance
of the inversion method in numerical simulations. Finally, we conclude our discussion in
section 6. The paper includes an appendix presenting an intermediate result needed for the
inversion method.

2. The Funk transform and its inversion

We use the following notational conventions throughout the paper. The bold letters, such as
x, n, etc are used to denote vector quantities. The calligraphic letters (F,K, etc) are used to
denote operators. Table 1 lists the notations used throughout the paper.

Given a function f defined on the unit sphere S2 = {x ∈ R3:|x| = 1}, its Funk transform
is defined by the integrals of f along the great circles:

M[f ](n) =
∫

S2
f (x)δ(x · n) dx (2)

where δ is the one-dimensional Dirac-delta function, dx is the normalized Haar measure on
S2 [13] and n is the normal of the plane enclosing a great circle as illustrated in figure 2.

By (2), the Funk transform is even, i.e. M[f ](−n) = M[f ](n). Therefore, only
the even part of a function can be uniquely recovered from its Funk transform. In [14],
Funk showed that the even part of a function over S2 can be uniquely determined from its
Funk transform and presented two different inversion methods. The first method is based

3
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Table 1. Table of notations.

Symbol Designation

M Funk transform
S2 Unit sphere
δ One-dimensional Dirac-delta function
n Normal of the plane enclosing a great circle
θ An element of S2

SO(3) Three-dimensional rotation group
ei ith column of the 3-by-3 identity matrix
d(Z) Normalized Haar measure on SO(3)
α, γ, β Euler angles in [0, 2π) and [0, π)

�̂ SO(3)-Fourier transform of a function � defined on SO(3)

�̂kl Matrix coefficients of �̂

S2
+ Unit upper hemisphere

H 2
+ The upper sheet of the two-sheet hyperboloid, {x ∈ R

3 : x2
1 + x2

2 − x2
3 = −1}

C+ The cone {x ∈ R
3 : x3 > 0, arccos(x3/|x|) < π/4}

πS2
+

Projection operator from the upper half-space, {(x1, x2, x3) : x3 > 0},
onto the upper hemisphere S2

+

πH 2
+

Projection operator from the cone C+ onto the hyperboloid H 2
+

π(−1,0,0) Projection onto the hyperbolic half-plane
π(H 2

+ →S2
+) Projection operator from H 2

+ → S2
+

H+ The half-plane defined by {(x1, x2, x3) : x1 = 1, x3 > 0}
	 π(−1,0,0) ◦ π(H 2

+ →S2
+) ◦ πH 2

+

	∗ Pull-back of 	

||x||H Hyperbolic metric,
√

x2
1 + x2

2 − x2
3

ds2
H+

Riemannian metric on H+

ds2
C+∩S2

+
Riemannian metric on C+ ∩ S2

+

on expressing the spherical harmonic decomposition of the function in terms of the spherical
harmonic decomposition of its Funk transform. The second method utilizes Abel’s integral
equation. We focus on the first inversion method since it can be efficiently implemented using
the fast Fourier transform algorithms over the rotation group and the sphere [15–22].

By (2), the Funk transform is invariant with respect to rotations, i.e. M[f (Q · p)](θ) =
M[f ](Qθ), where θ ∈ S2 and Q ∈ SO(3) is a rotation matrix4.

Let ei, i = 1, 2, 3, denote the ith column of the 3-by-3 identity matrix. Since S2 is a
homogeneous space of SO(3), any unit vector can be written as a product of a rotation matrix
and the unit vector e3. Thus, using the homogeneity of S2, we can express the Funk transform
as a convolution over the rotation group SO(3) as follows:

M[f ](n) =
∫

S2
f (x)δ(x · Re3) dx

=
∫

SO(3)

F (Z)�M(R−1Z)d(Z)

= (F ∗SO(3) �∗
M)(R), (3)

4 SO(3) is a three-parameter Lie group whose elements are 3-by-3 real orthogonal matrices with determinant equal
to 1.
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where R,Z ∈ SO(3), n = Re3, F(Z) = f (Ze3), δ(s · e3) is the Dirac measure of the
equatorial circle, �M(Z) = δ(Ze3 · e3) is the kernel of the Funk transform, and d(Z) is the
normalized Haar measure on SO(3). Using the Euler angles α, γ ∈ [0, 2π), and β ∈ [0, π),
the normalized Haar measure on SO(3) can be expressed as dα sin β dβ dγ .

Let �̂ denote the SO(3)-Fourier transform of the function � defined on SO(3) and �̂kl

represent the matrix coefficients of �̂. By the S2-invariance and the convolution property of
the SO(3)-Fourier transform [23], the Funk transform is diagonalized in the SO(3)-Fourier
domain as follows:

M̂[f ]
2l

m0 = F̂ 2l
m0�̂M

2l

00, (4)

where

F̂ l
mn = 2l + 1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
F(α, β, γ ) ei(mα+nγ )

× dl
mn(β) dα sin β dβ dγ, |m|, |n| � l ∈ Z+, (5)

and

F(α, β, γ ) =
∑
l�0

l∑
m=−l

l∑
n=−l

F̂ l
mn e−i(mα+nγ )dl

mn(β) (6)

are the matrix coefficients of the SO(3)-Fourier and inverse SO(3)-Fourier transforms of F,
respectively. Here, dl

mn are the Wigner-D functions [24, 25]. Thus, for an even function f on
the unit sphere, the inversion of the Funk transform can be implemented efficiently using the
fast SO(3)-Fourier transform algorithms [19–22] in three steps as shown below:

M[f ]
FSO(3)−−−−→

1
M[f ]

l

m0

(ΛM
l

00)−1

−−−−−→
2

f l
m0

F−1
SO(3)−−−−→
3

f. (7)

Due to the evenness of the Funk transform of a function, for the rest of our paper, we
consider only the functions defined on the upper hemisphere of S2 which can be uniquely
recovered from their Funk transforms.

3. Mapping from the upper semi-sphere to the hyperbolic half-plane

In this section, we present some results from the hyperbolic geometry [26–28] and use these
results to establish a relationship between the Funk and circular averages transforms.

3.1. Mapping from the upper hemisphere to the upper hyperboloid

Let x ∈ R3, xi = x · ei, i = 1, 2, 3, and S2
+ = {x ∈ S2 : x3 > 0} be the unit upper

hemisphere. We define πS2
+

: {x ∈ R3 : x3 > 0} → S2
+ to be the mapping

πS2
+
(x) = x

|x| (8)

that projects a point in the upper half-space x3 > 0 onto the upper hemisphere S2
+ (see

figure 3).
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Figure 3. πH 2
+

projects arcs of semi-great circles of S2
+ lying in C+ onto the hyperbolas given by

the intersection of the plane containing the semi-great circle and H 2
+ . Conversely, πS2

+
projects

hyperbolas obtained by the intersection of H 2
+ and planes passing from the origin onto the arcs of

semi-great circles that lie in these planes and C+.

Let H 2
+ = {x ∈ R3 : x2

1 + x2
2 − x2

3 = −1, x3 > 0} be the upper sheet of
the two-sheet hyperboloid, as shown in figure 3. Let C+ denote the cone defined by
C+ = {x ∈ R3 : x3 > 0, arccos(x3/|x|) < π/4}. We define πH 2

+
: C+ → H 2

+ to be
the mapping

πH 2
+
(x) = x√

x2
3 − x2

1 − x2
2

, xi = x · ei, i = 1, 2, 3, (9)

that projects any point x ∈ C+ onto the hyperboloid H 2
+ . Thus, πH 2

+
projects the arcs of the

semi-great circles of S2
+ lying in C+ onto the hyperbolas that are given by the intersection of

the hyperboloid H 2
+ with the plane containing the semi-great circles. These hyperbolas are

called the geodesic lines of the hyperbolic plane [27] (see figure 3).

3.2. Mapping from the upper hyperboloid to the upper semi-sphere via a Poincaré disk

Consider the line segment that connects the points x = (x1, x2, x3) ∈ H 2
+ and (x1, x2, 0)/(1 +

x3), which lies within the unit disk on the plane x3 = 0. The intersection of this line segment
with S2

+ is given by (x1, x2, 1)/x3. As a consequence, the mapping π(H 2
+ →S2

+) : H 2
+ → S2

+
defined by

π(H 2
+ →S2

+)(x) = (x1/x3, x2/x3, 1/x3), xi = x · ei, i = 1, 2, 3 (10)

maps the geodesic lines of H 2
+ to the semi-circles which are given by the intersection of S2

+
and the planes perpendicular to the x1–x2 plane [27] (see figure 4).

6
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Figure 4. The projection of H 2
+ onto the upper hemisphere by πH 2

+ →S2
+
. The geodesic hyperbolas

on H 2
+ are mapped onto the semi-circles obtained by the intersection of the plane perpendicular to

the x1–x2 plane with S2
+.

Figure 5. The projection of the upper hemisphere onto the hyperbolic half-plane H+ by π(−1,0,0).
π(−1,0,0) maps the semi-circles obtained by the intersection of the plane perpendicular to the x1–x2
plane with S2

+ onto the semi-circles centered on the line x1 = 1, x2 ∈ R, x3 = 0.

Let H+ denote the half-plane x1 = 1, x3 > 0. The projection of the resulting semi-circles
onto H+ using the mapping π(−1,0,0) : S2

+ → H+ defined by

π(−1,0,0)(x) =
(

1,
2x2

1 + x1
,

2x3

1 + x1

)
, xi = x · ei, (11)

gives semi-circles that have their centers on (or half-lines that are perpendicular to) the line
x1 = 1, x2 ∈ R, x3 = 0 [27]. Thus, π(−1,0,0) ◦ π(H 2

+ →S2
+) maps H 2

+ onto the plane x1 = 1 (see
figure 5). Note that the half-lines are semi-circles with infinite radius. In the context of SAR,

7
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Figure 6. An illustration of the mapping 	 from C+ ∩ S2
+ to H+.

Figure 7. The projection of the arcs of the semi-great circles on S2
+ ∪ C+ onto H+ by 	 and vice

versa.

we are not interested in the half-lines but only the semi-circles since we can only collect data
for a finite time duration, which is related to the maximum radius of the semi-circles that are
within the scene to be imaged (see (1)).

3.3. Mapping from the upper semi-sphere to the hyperbolic upper half-plane

Let 	 : S2
+ ∩ C+ → H+ be defined by

	(x) = π(−1,0,0) ◦ π(H 2
+ →S2

+) ◦ πH 2
+
(x), (12)

=
⎛⎝1,

2x2

x1 + x3
,

2
√

x2
3 − (

x2
1 + x2

2

)
x1 + x3

⎞⎠ = (1, y2, y3). (13)

Since πH 2
+

projects the arcs of the semi-great circles at the intersection of S2
+ and the cone

C+ onto the geodesics of the hyperboloid H 2
+ , 	, defined by the composition of πH 2

+
with

π(−1,0,0) ◦ π(H 2
+ →S2

+), maps C+ ∩ S2
+ diffeomorphically onto H+, while mapping the arcs of the

semi-great circles of S2
+ lying in C+ to the semi-circles centered on the boundary of H+ as

illustrated in figure 6. Note that we drop 1 and identify (1, y2, y3) with y = (y2, y3), and treat
y as a point on H+.

Conversely, both π(−1,0,0) and π(H 2
+ →S2

+) are invertible. Therefore, π−1
(H 2

+ →S2
+)

◦ π−1
(−1,0,0)

maps the semi-circles centered on the boundary of H+ onto the hyperbolas formed by the
intersection of the upper sheet H 2

+ and the plane passing through the origin with the normal
n (see figure 7). As a consequence, 	−1 = πS2

+
◦ π−1

(H 2
+ →S2

+)
◦ π−1

(−1,0,0) maps the semi-circles

centered on the boundary of H+ onto the arcs of the semi-great circles of S2
+ lying in C+ (see

figure 7).

8
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4. Inversion of the circular averages transform

4.1. Mapping from the Funk transform to the circular averages transform

Integration of a function f along the semi-circles centered on the boundary of H+ is known
as the x-ray transform on the hyperbolic half-plane or the hyperbolic x-ray transform on the
upper half-plane [29]. Since the projection f (	(x)) of a function f on H+ back onto C+ ∩S2

+
can be treated as a function on S2 supported on C+ ∩ S2

+, taking the hyperbolic x-ray transform
of f on H+ is equivalent to taking the weighted Funk transform of the compactly supported
function f (	(x)), x ∈ C+ ∩ S2

+, on S2:

Lemma 4.1. Given a great circle Y perpendicular to the unit vector n, we have∫
	(Y∩C+∩S2

+)

f (y2, y3)

√
ds2

H+
=

∫
Y∩C+∩S2

+

	∗f (y2, y3)

√
	∗ds2

H+

=
∫

Y∩C+∩S2
+

f (	(x))
‖n‖H

‖x‖2
H

√
ds2

C+∩S2
+
, (14)

where 	∗ is the pull-back of 	 defined by 	∗f (y2, y3) = f (	(x)), with 	(x) = y =
(1, y2, y3), ‖x‖H =

√
x2

1 + x2
2 − x2

3 is the hyperbolic metric, ds2
H+

and ds2
C+∩S2

+
are the

associated Riemannian metrics on H+ and C+ ∩ S2
+ restricted to the great circle Y.

The left-hand side of (14) defines the hyperbolic x-ray transform f , while the right-hand
side is the weighted Funk transform of f (	(x)).

Proof. Using the parameterization n = [− sin φ sin θ, cos φ sin θ, cos θ ]T , x =
[x1, x2, x3]T = [cos φ cos α − sin φ cos α, sin φ cos α + cosφ cos θ sin α,− sin θ sin α]T , the
associated Riemannian metrics on H+ and C+ ∩ S2

+ restricted to the great circle Y are given by

ds2
C+∩S2

+
= dx2

1 + dx2
2 + dx2

3 = dα2 (15)

ds2
H+

= dy2
2 + dy2

3

y2
3

. (16)

Consequently,

	∗ds2
H+

= dy2
2 + dy2

3

y2
3

=
∑2

k=1

( ∑3
l=1

∂yk

∂xl

∂xl

∂α
dα

)2

(	(x) · e3)2
= n2

1 + n2
2 − n2

3(
x2

1 + x2
2 − x2

3

)2 dα2

= ‖n‖2
H

‖x‖4
H

ds2
C+∩S2

+
. (17)

Note that, by (16), the hyperbolic x-ray transform is a weighted circular averages
transform, where the weight is given by 1/y3. Thus, we have �

Theorem 4.2. The circular averages and Funk transforms are related by

RC[f ](c, t) = ‖n(c, t)‖H

t
M

[
f (	(x)) [	(x) · e3]

‖x‖2
H

]
(n(c, t)) (18)

where

n(c, t) = un(c, t)

|un(c, t)| (19)

9
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f(y2, y3)
RC−−−→ RC [f ](c, t)

×t/ (c,t) H−−−−−−−→
1

F1(c, t)
Φ−1

−−−→
2

F2(n(c, t))

M−1

⏐
⏐

3

f(Φ(x))
6←−−−

×1/y3

F5(Φ(x))
5←−−−
Φ

F4(x)
4←−−−−

2
H

F3(x
x

)

n

Figure 8. The steps of the algorithm for the inversion of the circular averages transform using the
Funk transform.

with

un(c, t) = 3

8

(
4 + t2 − c2

4t
,
c

t
,
−4 + t2 − c2

4t

)
(20)

and 	(x) = (c + t cos θ, t sin θ), for x ∈ C+ ∩ S2
+.

Proof. In order to map the circular averages transform to the Funk transform, one needs to
determine which semi-circle on the half-plane is mapped to which semi-great circle on the
upper hemisphere, i.e. given (c, t), one needs to determine the normal n(c, t) of the plane
that encloses the corresponding semi-great circle. The derivation of n(c, t) is given in the
appendix.

Then, for (y2, y3) = (c + t cos θ, t sin θ), substituting (15) in (14) we have

tRC[g](c, t) = ‖n(c, t)‖HMG(n(c, t)) (21)

where g(y2, y3) = y−1
3 f (y2, y3) for (y2, y3) = (c + t cos θ, t sin θ) and G(x) = F(x)/‖x‖2

H ,
where F(x) = f (	(x)) for x ∈ C+ ∩ S2

+. Replacing g(y2, y3) with y3 g(y2, y3) in (21)
completes the proof. �

4.2. Inversion of the circular averages transform

The inversion of the circular averages follows from (18) and is given in the following corollary.

Corollary 4.3. The circular averages transform can be inverted by the following formula:

f (y2, y3) = ‖	−1(y2, y3)‖2
H

y3
M−1

[
t Rc[f ](c, t)

‖n(c, t)‖H

]
(	−1(y2, y3)) (22)

where 	(x) = (y2, y3).

The inversion formula above can be implemented in six steps as follows.

Step 1. Compute F1(c, t) = t RC [f ](c,t)
‖n(c,t)‖H

by multiplying RC[f ](c, t) with t
‖n(c,t)‖H

.

Step 2. Compute F2(n(c, t)) = t Rc[f ](c,t)
‖n(c,t)‖H

by projecting t/‖n(c, t)‖H RC[f ](c, t) onto

the unit sphere using 	−1.
Step 3. Compute F3(x) = M−1[F2](x) by taking the inverse Funk transform of F2(n).
Step 4. Compute F4(x) by multiplying F3(x) with ‖x‖2

H .
Step 5. Compute F5(	(x)) = F4(x).
Step 6. Compute f (	(x)) by multiplying F5(	(x)) with 1/y3.

Figure 8 summarizes the above steps graphically. Figure 9 illustrates the steps of the
reconstruction algorithm for a circular disk phantom. For the parameters of the disk phantom,
see table 2, phantom 1.

Note that for truncated circular averages data, step 2 results in truncated limited data on
the sphere. In order to reduce the artifact caused by this truncation, we performed linear
interpolation in spherical coordinates to fill the truncated data on the sphere.

10
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Figure 9. The steps of the inversion of the circular averages transform using the Funk transform
for the disk phantom 1. For the parameters of the disk phantom, see table 2.

Table 2. The phantom parameters. (c0, y0) denotes the center of the disks and r denotes the
corresponding radius.

Phantom (c0, y0) r

1 (0, 2) 0.5
2 (0, 2) 0.25
3 (0, 2) 0.125

5. Numerical simulations

We used numerical phantoms to demonstrate the performance of the new inversion method.
We computed the circular averages transform of the disk phantoms analytically. Let

f (x1, x2) =
{

1 for (x1 − c0)
2 + (x2 − y0)

2 � r2

0 otherwise
(23)

be a disk centered at (c0, y0), y0 > 0, with radius r < y0. Then,

RCf (c, t) =
⎧⎨⎩2ϕt, 0 < t − r <

√
(c − c0)2 + y2

0 < t + r

0, otherwise,
(24)

where ϕ is given by the law of cosines (see figure 10) by[
(c − c0)

2 + y2
0

]
+ t2 − 2 t

√
(c − c0)2 + y2

0 cos ϕ = r2. (25)

We reconstructed disk phantoms with unit amplitude and varying radii as shown in
figure 11. The center parameters and radii of the disks are given in table 2. We formed
the circular averages transform data by uniformly sampling (c, t) on [−10, 10] × [0, 6] at
201 × 119 points. The scene to be reconstructed is (x1, x2) ∈ [−10, 10] × [0, 20], which we
uniformly discretized into 201 × 201 pixels. Phantom 3 is the smallest phantom that we were
able to reconstruct whose reconstruction formed the point spread function for our numerical

11
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Figure 10. ϕ is given by the law of cosines as shown in (25).
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Figure 11. The reconstruction of disk phantoms whose parameters are given in table 2. (Top)
Numerical phantoms, (middle) corresponding circular averages transform data and (bottom)
reconstructed images.

implementation. Figure 12 shows the horizontal cross-section of the reconstructed image for
phantom 3. The cross section suggests that we can resolve two disks with radii 0.125 if their
edges are 0.25 apart as demonstrated in figure 13.

The computational complexity of our inversion method is determined by the computational
requirements of the SO(3)-Fourier transform implementation, which is needed for the
numerical inversion of the Funk transform. In our numerical simulations, we used the

12
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Figure 12. The horizontal cross-section of the point spread function (left) for a disk (right) centered
at (c0, y0) = (0, 2) with radius 0.125.
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Figure 13. The reconstruction of disks centered at (−5, 2), (0, 2) and (−5, 2) with radius 0.125.

SO(3)-Fourier transform algorithm presented in [18]. For a function defined on S2, which is
uniformly sampled at 2M ×2M points in spherical coordinates, the computational complexity

13
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of computing its SO(3)-Fourier coefficients using the algorithm in [18] is O(M2 log2 M).
With the recent advancements in the numerical spherical harmonic decomposition methods
[21, 22], SO(3)-Fourier transform can be implemented with the computational complexity of
O(M2 log M). Thus, the computational complexity of our inversion method is less than that
of the standard filtered backprojection algorithms, which have the computation complexity of
O(M3), and equal to that of the fast backprojection algorithms, which have the computational
complexity of O(M2 log M) [11, 30].

6. Conclusion

We presented a new method for the inversion of the circular averages transform using the
Funk transform. In our treatment, we used the relationship between the hyperbolic geometry,
circular averages transform and the Funk transform. We viewed the circular averages transform
as the hyperbolic x-ray transform on the hyperbolic half-plane and showed that the inversion
of the circular averages transform is equivalent to the inversion of the Funk transform for a
class of compactly supported functions on the sphere, and developed a new inversion method.
We demonstrated the performance of the inversion method in numerical simulations. With
the recent advancements in numerical spherical harmonic decomposition, the computational
complexity of our inversion method is equal to that of the fast backprojection algorithms.

Our approach can be extended to the inversion of x-ray transform on the hyperbolic disk
which has applications in the linearized electrical impedance tomography inverse problem
[31–33].
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Appendix. Analytic derivation of n(c, t)

The circular averages transform inversion formula given in (22) requires computation of the
normal vector n. n is the normal of the plane that contains the semi-great circle in S2

+ and the
arc which is the inverse image of a semi-great circle in H+ with respect to 	 (see figure 7).

Note that both projections of a semi-great circle in H+ onto H 2
+ and S2

+ by π−1
(H 2

+ →S2
+)

◦
π−1

(−1,0,0) and πS2
+
◦ π−1

(H 2
+ →S2

+)
◦ π−1

(−1,0,0), respectively, lie within the same plane. Since three
points determine a plane, it is sufficient to determine the projections of three distinct points
on the semi-circle in H+ onto H 2

+ (see figure 7).
The inverse of π(−1,0,0) and π(H 2

+ →S2
+) and their composition are given by

π−1
(−1,0,0)(1, x2, x3) =

(
4 − (

x2
2 + x2

3

)
4 +

(
x2

2 + x2
3

) ,
4x2

4 +
(
x2

2 + x2
3

) ,
4x3

4 +
(
x2

2 + x2
3

))
(A.1)

π−1
(H 2

+ →S2
+)
(x) =

(
x1

x3
,
x2

x3
,

1

x3

)
, (A.2)
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and

π−1
(H 2

+ →S2
+)

◦ π−1
(−1,0,0)(x2, x3) =

(
4 − (

x2
2 + x2

3

)
4x3

,
x2

x3
,

4 +
(
x2

2 + x2
3

)
4x3

)
. (A.3)

Using polar representation on x1 = 1, x3 > 0, a point p on the semi-circle centered at x2 = c

with radius r can be expressed as (1, t cos ϕ + c, t sin ϕ), t ∈ R+ and ϕ ∈ (0, π).
Let u be the projection of p onto H 2

+ ,

u(c, t, ϕ) = π−1
(H 2

+ →S2
+)

◦ π−1
(−1,0,0)(1, t cos ϕ + c, t sin ϕ)

=
(

4 − (t2 + c2 + 2tc cos ϕ)

4t sin ϕ
,
t cos ϕ + c

t sin ϕ
,

4 + t2 + c2 + 2tc cos ϕ

4t sin ϕ

)
. (A.4)

For distinct ϕ0, ϕ1 and ϕ2, the normal n of the plane passing from u(c, t, ϕ0), u(c, t, ϕ1), and
u(c, t, ϕ2) is given by

n(c, t) = un(c, t)

|un(c, t)| (A.5)

where

un(c, t) = [u(c, t, ϕ0) − u(c, t, ϕ1)] × [u(c, t, ϕ0) − u(c, t, ϕ2)] . (A.6)

Here, × denotes the vector cross-product. The normal of the plane is independent of the
three points chosen on the semi-circle. For computational ease, we choose ϕ0 = π/2,
ϕ1 = arcsin(0.6) and ϕ2 = arcsin(−0.6). Hence,

sin ϕ0 = 1, cos ϕ0 = 0

sin ϕ1 = 0.8, cos ϕ1 = 0.6

sin ϕ2 = 0.8, cos ϕ2 = −0.6,

(A.7)

which results in

un(c, t) = 3

8

(
4 + t2 − c2

4t
,
c

t
,
−4 + t2 − c2

4t

)
. (A.8)
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