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Abstract—We develop a novel passive image formation method
for moving targets using measurements from a sparse array of
receivers that rely on illumination sources of opportunity. We
use a physics-based approach to model the wave propagation
and develop a passive measurement model that expresses the
measurement at each receiver in terms of the measurement at a
different receiver. This model eliminates the need for knowledge
about the transmitter locations and waveforms in the proposed
image formation method. We formulate the image formation
problem as a Generalized Likelihood Ratio Test (GLRT) for
unknown target location and velocity using the proposed passive
measurement model. We form the image in spatial and velocity
space using the space- and velocity-resolved test-statistics.

I. I NTRODUCTION

With the rapid growth of broadcasting stations, mobile
phone base stations, communication and navigation satellites,
as well as relatively low cost and rapid deployment of re-
ceivers, passive radar imaging using transmitters of opportu-
nity has emerged as an active area of research in recent years
[1]–[7].

In this paper, we develop a passive image formation method
for moving targets using static distributed receivers. The
method is based on a new passive measurement model and
a space- and velocity-resolved binary hypothesis testing.Our
method requires no information on the location of transmitters
or the transmitted waveforms. Additionally, it does not rely on
receivers with high directivity.

II. PASSIVE MEASUREMENTMODEL

For a single transmitter with isotropic antenna located at
z transmitting the waveformp(t) starting at timet = −Tz,
the propagation of electromagnetic waves in a medium can be
described using the scalar wave equation,

[∇2 − c−2(t,x)∂2
t ]E(t,x, z) = δ(x − z)p(t + Tz) (1)

wherec is the wave speed in the medium andE is the electric
field. Note that this model can be extended to realistic antenna
models and multiple transmitters in a straightforward manner.

A single scatterer moving at velocityv corresponds to an
index-of-refraction distributionn2(x − vt). Thus, the wave
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speedc can be expressed as

c−2(t,x) = c−2
0 [1 + n2(x − vt)] (2)

wherec0 denotes the speed in the background medium and the
second term in (2) represents the perturbation due to deviation
from the background reflectivity that is caused by the moving
scatterer. In this work, we focus specially on radar imaging
and assume thatc0 is equal to the speed of light in vacuum.

Let qv(x−vt) = c−2
0 n2(x−vt). The moving scatterers in

the spatial volumed3x centered atx give rise toc−2(t,x) =
c−2
0 +

∫

qv(x − vt)d3v [8].
The propagation medium is characterized by theGreen’s

function. For free-space, theGreen’s function is given by

g(x, z, t) =
δ(t − |x − z|/c0)

4π|x − z|
. (3)

We assume that the electromagnetic waves decay rapidly as
they penetrate the ground. We then writeqv(x− vt) in terms
of 2D location and 2D velocity as in

qv(x − vt) = qv(x − vt)δ(x3 − h(x))δ(v3 − D · v) (4)

where x = (x, x3), x ∈ R2 and v = (v, v3), v ∈ R2, h
represents the ground topography andD = [ ∂h

∂x1

∂h
∂x2

].
For the slow-mover case where the speed of the target is

much slower than the speed of lightc0, the scattered field
measurement at the receiver located atx0 due to a transmitter
located atz is expressed as [8]

m(t) =

∫

p̈ [αy,v,x0,z (t − |y − x0|/c0) − |y − z|/c0 + Tz]

(4π)2|y − x0||y − z|

× qv(y)dydv + n(t) (5)

where

αy,v,x0,z =
1 − ŷ − z · v/c0

1 + ŷ − x0 · v/c0

(6)

is theDoppler-scale-factor [8] andn(t) is the additive thermal
noise at the receiver. Note thaty = (y, h(y)) andv = (v, D ·
v). In Fourier domain, (5) becomes

m̂(ω) =
−ω2

(4π)2

∫

eiφy,v,x0

|y − x0||y − z|α3
y,v,x0,z

p̂

(

ω

αy,v,x0,z

)

× qv(y)dydv + n̂(ω). (7)



where

φ =
ω

αy,v,x0,z

(

Tz −
|y − z|

c0

)

− ω
|y − x0|

c0
. (8)

In the analysis that follows, we consider a sparse distribution
of N receivers located atxi , i = 1, · · · , N . We assume
that there is a single transmitter located atz0 transmitting
waveformp0 starting at timet = −T0. This assumption allows
us to simplify the analysis and distill the important aspects of
our imaging theory. The results obtained in this paper can
easily be extended to multiple-transmitter case.

Passive measurement model cannot depend on the trans-
mitter location or transmitted waveforms. We develop an
alternative measurement model that expresses measurements
at each receiver in terms of the measurements at a different
receiver, which involves a back-propagation operation anda
forward-propagation operation.

Let u = −qv(y)ω2 ˜̂
Ein(y, v, ω) where

˜̂
Ein(y, v, ω) =

e
i ω

µ̃y,v,z0

“

T0−
|y−z0|

c0

”

4π|y − z0|µ̃y,v,z0

p̂0

(

ω

µ̃y,v,z0

)

(9)

with µ̃y,v,z0
= 1− ŷ − z0 ·v/c0. Note that ˜̂Ein can be viewed

as the incident field observed by a moving target. The scale
factor, µ̃, accounts for the Doppler scaling effect induced by
the movement of the target on the field due to the transmitted
waveform.

Let m̂i denote the Fourier transform of the measurement
at the ith receiver. Using (7), we define the linear operator,
Py,v,i, that propagates the fieldu to the ith measurements,
i.e.,

Py,v,i[u](ω) = m̂j(ω) (10)

as the forward-propagation operator with respect to theith

receiver. Using (7), we expressPy,v,i as follows:

Py,v,i[u](ω) = Gy,iSv,i[u](ω). (11)

whereSv,i is a scaling operator that accounts for the Doppler-
scale factor observed by theith receiver due to the movement
of the target at the hypothetical velocityv; andGy,i in (11) is
a propagation operator that accounts for the time delay from
the target to theith receiver in free-space.
Sv,i is given by

Sv,i[u](ω) =

∫

Wv(v′, v)µy,v′,i u(µy,v′,i ω)dv
′ (12)

whereWv(v′, v) is a windowing function of unit amplitude
in velocity space centered at the hypothetical velocityv and

µy,v,i = 1 + ŷ − xi · v/c0, (13)

which accounts for the Doppler-scale-factor observed by the
ith receiver due to the movement of the target at the hypo-
thetical velocityv.
Gy,i in (11) is given by

Gy,i[u](ω) =

∫

Ws(y
′, y)ĝ(xi, y, ω)u(y′, v, ω)dy

′ (14)

where Ws(y
′, y) is a spatial windowing function of unit

amplitude centered at a hypothetical target locationy and
ĝ(xi, y, ω) represents the Fourier transform of (3).

We define the back-propagation operator as the inverse of
Py,v,i and denote it byP−1

y,v,i. Using (11), we obtain

P−1
y,v,i[m̂i](ω) = S−1

v,iG
−1
y,i [m̂i](ω) (15)

whereG−1
y,i is the inverse ofGy,i, S

−1
v,i is the inverse ofSv,i

and m̂i represents the measurement at theith receiver. Note
that if P−1

y,v,i does not exist, it may be replaced with its
pseudoinverse.

We now express the measurement at theith receiver,m̂i

in terms of the measurement at thejth receiver, m̂j , by
back-propagatinĝmj measured atxj to a hypothetical target
location with a hypothetical velocity via the back-propagation
operator and then forward-propagating the resulting field to
xi via the forward-propagation operator. Let̂mj

i (ω) denote
the ith measurement expressed in terms of thejth measure-
ment. We define the passive measurement model for thejth

measurement as follows:

m̂j
i (ω) = Py,v,iP

−1
y,v,jm̂j(ω) + n̂i(ω) (16)

wheren̂i(ω) is the additive thermal noise at theith receiver.
Taking thejth receiver as a reference, we form the following

measurement vector forN receivers:

m =
[

m̂j
1 m̂j

2 · · · m̂j
N

]T
(17)

wherem̂j
i , i = 1, · · · , N andi 6= j, denotes the measurement

m̂i modeled in terms of the reference measurementm̂j .
Similarly, we vectorize the “reference measurements”,m̂j ’s,
and the noise:

mr =
[

m̂j m̂j · · · m̂j

]T
(18)

n =
[

n̂1 n̂2 · · · n̂N

]T
. (19)

Note thatm,mr andn are all (N − 1) vectors.
We represent the composition of the back-propagation and

forward-propagation operators as a diagonal matrix as follows:

Py,v = diag
[

Py,v,1P
−1
y,v,j · · · Py,v,NP−1

y,v,j

]

(20)

wherei 6= j andPy,v is (N − 1) × (N − 1).
Using (16), (17)-(20), we form the vectorized passive mea-

surement model as follows:

m(ω) = Py,vmr(ω) + n(ω) (21)

for some range ofω.
Note that in (21) all the operations are understood to be

elementwise.

III. I MAGE FORMATION IN SPATIAL AND VELOCITY SPACE

We formulate the image formation problem as a test of
binary hypothesis, which has its roots in the Generalized
Likelihood Ratio Test (GLRT) [9]. We extract a space- and
velocity-resolved test-statistic as opposed to reconstructing the
unknown quantities of interest themselves due to the limited
number of measurements available. The image is then formed



in (y, v) domain by the space- and velocity-resolved test-
statistic where the location and the velocity can be identified
by thresholding the image.

We define the space- and velocity-resolved binary hypoth-
esis test as follows:

H0 : m = n

H1 : m = Py,vmr + n
(22)

wherePy,v ,mr,m andn are as defined in (17)-(21). The null
hypothesis states that the measurement is due to noise whereas
the alternative hypothesis states that the measurement is due
to a target located aty moving with velocityv.

Using (16), (18), (19) and (22), we obtain

E [m|H0] = 0 (23)

Cov [m|H0] = Rn =: R0 (24)

E [m|H1] = Py,vE [mr|H1] = Py,vmr (25)

Cov [m|H1] = Py,vRnr
PH

y,v + Rn =: R1 (26)

whereE [·] denotes the expectation operator andCov [·] de-
notes the covariance operator,mr denotesE [mr|H1], PH

y,v

denotes the Hermitian transpose ofPy,v , Rn denotes the auto-
covariance of the vectorn, i.e.,Rn(ω, ω′) = E

[

n(ω)nH(ω′)
]

and Rnr
is the autocovariance of the noise vectornr =

[n̂j , n̂j , · · · , n̂j ], i.e., Rnr
(ω, ω′) = E

[

nr(ω)nH
r

(ω′)
]

.
We determine the test-statistic by maximizing the signal-

to-noise ratio (SNR) of the test-statistic while constraining
the associated discriminant functional to be linear. The linear
discriminant functional involved in our problem has the form

λ = 〈m,w〉 :=

∫

wHmdω =
∑

i6=j

∫

w∗
i (ω)m̂j

i (ω)dω (27)

whereλ denote the the output of the discriminant functional,
which we call thetest-statistic andw is a template given by
w = [w1 w2 · · ·wN ]T .

Under the assumption that the noise at different receivers
are wide sense stationary and mutually uncorrelated, the
maximization of the SNR ofλ [9] results in an optimal linear
template given by

w⋆ = S
−1

(ω)Py,v(ω)mr(ω) (28)

where S
−1

is the inverse of S defined by S(ω) =
∫

1/2(R1(ω, ω′) + R0(ω, ω′))dω′. Using (24) and (26), We

can approximateS
−1

by a diagonal matrix. (See [10] for
details.) We denote diagonal elements ofS

−1
by S

−1

i (ω), i =
1, · · · , N andi 6= j, which is a function of the power spectral
density function of noise at theith receiver and the kernel of
Py,v .

IV. RESOLUTION ANALYSIS

In this section, we assume that the surface topography is flat,
i.e., h(y) = h, for somey ∈ R2 and therefore sety = [y, h],
v = [v, 0]. We focus our analysis on the deterministic moving
point target model given by

qv(y) = Tδ(y − y0)δ(v − v0) (29)

and analyze how moving point targets are resolved in the four-
dimensional imageλ(y, v), y, v ∈ R2.

Let K(y, y0; v, v0) denote the PSF of the four-dimensional
imaging operator. We defineK as the expected value of the
image of a moving point target represented by (29), i.e.,
K(y, y0; v, v0) := E [λ(y, v)].

Without loss of generality, we first assume that there is a
single pair of receivers present in the scene and then extendthe
results to the case where there are multiple pairs of receivers.

For a deterministic moving point target model given by (29),
we have

E [m̂j(ω)] =
ω2T eiφy0,v0,j

(4π)2|y0 − xj ||y0 − z0|α3
y0,v0,xj,z0

× p̂0

(

ω

αy0,v0,xj ,z0

)

(30)

whereαy0,v0,xj ,z0
is as described by (6) and

φy0,v0,j =
ω

αy0,v0,xj ,z0

(

Tz1
−

|y0 − z0|

c0

)

− ω
|y0 − xj |

c0
.

(31)
For notational simplicity, we dropz0 from the subscript ofα
for the rest of our paper.

We assume that there are two receivers located atx1 and
x2 and take the measurement at thex1 as the reference. Thus,
Using(27), (28), (11), (15), (12), (14) and (29), we have

K(y, y0; v, v0) =
|y − x1|

|y − x2|
γy,v,21

∫

S
−1

2 (ω)×

e−ik (|y−x2|−γy,v,21|y−x1|)E [m̂1(γy,v,21 ω)] E [m̂∗
2(ω)] dω

(32)

where

γy,v,21 =
1 + ŷ − x2 · v/c0

1 + ŷ − x1 · v/c0

. (33)

Using (30), (32) becomes

K(y, y0; v, v0) = β

∫

S
−1

2 (ω)ω4e−i kr21

× e
ik

h“

γy,v,21

αy0,v0,x1
− 1

αy0,v0,x2

”

(cTz0
−|y0−z0|)

i

× p̂0

(

γy,v,21

αy0,v0,x1

ω

)

p̂∗0

(

ω

αy0,v0,x2

)

dω (34)

whereβ is a s scaling term due to geometric spreading factors
and Doppler-scale-factors and

r21 = |y−x2|−γy,v,21|y−x1|−(|y0−x2|−γy,v,21|y0−x1|) .
(35)

Note that if Tz0
is chosen to be equal to|y0 − z0|/c0, the

second exponential term disappears.
Examining (34), we see that if

γy,v,21

αy0,v0,x1

=
1

αy0,v0,x2

, (36)



(34) becomes

K(y, y0; v, v0) =
T 2|y − x1|

(4π)4|y0 − z0|2|y0 − x1||y − x2|α6
y0,v0,x2

×

∫

S
−1

2 (ω)ω4e−i kr21

∣

∣

∣

∣

p̂0

(

ω

αy0,v0,x2

)∣

∣

∣

∣

2

dω (37)

which defines the correlation of
∣

∣

∣
S
−1/2

2 (ω)ω2p̂1

(

ω
αy0,v0,x2

)
∣

∣

∣

with itself in time domain. Clearly, this correlation peakswhen
r21 = 0, i.e.,

|y−x2|−γy,v,21|y−x1| = |y0−x2|−γy,v,21|y0−x1| . (38)

The analysis above shows that the PSF of the imaging oper-
ator for two receivers and one transmitter becomes maximum
under the two conditions given by (36) and (38).

Substituting (6) into (36), we have

γy,v,21 =
1 + ŷ0 − x2 · v0/c0

1 + ŷ0 − x1 · v0/c0

= γy0,v0,21 . (39)

Note thaty0 = (y0, h) andv0 = (v0, 0). Under the slower-
mover assumption,γy,v,ij can be approximated as follows:

γy,v,ij =
1 + ŷ − xi · v/c0

1 + ŷ − xj · v/c0

≈ 1 + (ŷ − xi − ŷ − xj) · v/c0 .

(40)

Let
{(y, v) ∈ R

2 × R
2 : γy,v,ij = C} (41)

for some constantC ∈ R+. Using (40),γy,v,ij = C can be
written as

(ŷ − x2 − ŷ − x1) · v = (C − 1)c0 . (42)

Note that if we multiply both sides byω, the left-hand side of
(42) becomes thehitchhiker-Doppler defined in [11] and for
a fixed frequency it becomes theDSAH-Doppler defined in
[12]. In this regard, we refer to the four-dimensional manifold
formed by{(y, v) ∈ R2 × R2 : γy,v,ij = C} in (y, v) space,
for some constantC ∈ R+, as apassive-iso-Doppler manifold.

Thus, (39) specifies a passive-iso-Doppler manifold with
respect to two receivers located atx1 andx2. The test-statistic
due to a moving point target located aty0 moving with
velocity v0 is constant on this mainfold.

Substituting (39) into the left-hand side of (38), we obtain

|y − x2| − γy,v,21|y − x1| = |y0 − x2| − γy0,v0,21|y0 − x1| .
(43)

Let
r21(y, v) = |y − x2| − γy,v,21|y − x1| . (44)

We refer tor21(y, v) aspassive-range. For a pair of receivers
located atx1 and x2, {(y, v) ∈ R2 × R2 : r12(v, y) = C}
whereC ∈ R+ denotes some constant forms a manifold in the
four-dimensional(y, v) space. We refer to the this manifold
as anpassive-iso-range manifold. (43) specifies an passive-
iso-range manifold with respect to two receivers located atx1

andx2. The test-statistic due to a moving point target located
at y0 moving with velocityv0 is constant on this manifold.

Based on the analysis above, we conclude that PSF peaks
at the intersection of the passive-iso-Doppler manifold defined
by (39), and the passive-iso-range manifold defined by (43).
Note that (37) can be interpreted as a generalized auto-
ambiguity function of the transmitted waveformp1. The spread
of the passive-iso-Doppler manifold and the passive-iso-range
manifold are both related to the shape of this generalized auto-
ambiguity function. Hence, the resolution of the reconstructed
image in(y, v) is determined by the overlapping area between
the passive-iso-Doppler and passive-iso-range manifolds.

For N > 2 receivers, it can be shown that multiple pairs
of receivers generate multiple four-dimensional passive-iso-
Doppler and passive-iso-range manifolds. These manifolds
intersect at the correct target location and correct velocity in
(y, v) space and contribute to the reconstruction of the target
image. The test-statistic value at the the correct target location
and correct velocity increases by roughly a factor ofN −1 as
compared to the two-receiver scenario as described in (34).

V. CONCLUSION

In this work, we proposed a new passive radar imaging
method for moving targets using sparsely distributed receivers.
We performed extensive numerical simulations to verify our
method. Due to page limitations, numerical simulations will
be presented at the conference.

While we mainly focused on passive radar application, the
results presented in our paper are also applicable to other
wave-based passive imaging applications, such as passive
acoustic or seismic imaging.
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